RETURN TO ISSUEPREVResearch ArticleNEXT

Activating Titania for Efficient Electrocatalysis by Vacancy Engineering

  • Haifeng Feng
    Haifeng Feng
    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
    Beihang-UOW Joint Research Centre, Beihang University, Beijing 100191, People’s Republic of China
    More by Haifeng Feng
  • Zhongfei Xu
    Zhongfei Xu
    Beihang-UOW Joint Research Centre, Beihang University, Beijing 100191, People’s Republic of China
    Department of Physics and Key Laboratory of Micro-Nano Measurement, Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191, People’s Republic of China
    More by Zhongfei Xu
  • Long Ren
    Long Ren
    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
    More by Long Ren
  • Chen Liu
    Chen Liu
    Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
    More by Chen Liu
  • Jincheng Zhuang
    Jincheng Zhuang
    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
  • Zhenpeng Hu*
    Zhenpeng Hu
    School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
    *E-mail for Y.D.: [email protected]
    More by Zhenpeng Hu
  • Xun Xu
    Xun Xu
    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
    Beihang-UOW Joint Research Centre, Beihang University, Beijing 100191, People’s Republic of China
    More by Xun Xu
  • Jun Chen
    Jun Chen
    Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2500, Australia
    More by Jun Chen
  • Jiaou Wang
    Jiaou Wang
    Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
    More by Jiaou Wang
  • Weichang Hao*
    Weichang Hao
    Beihang-UOW Joint Research Centre, Beihang University, Beijing 100191, People’s Republic of China
    Department of Physics and Key Laboratory of Micro-Nano Measurement, Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191, People’s Republic of China
    *E-mail for W.H.: [email protected]
    More by Weichang Hao
  • Yi Du*
    Yi Du
    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
    Beihang-UOW Joint Research Centre, Beihang University, Beijing 100191, People’s Republic of China
    *E-mail for Z.H.: [email protected]
    More by Yi Du
  • , and 
  • Shi Xue Dou
    Shi Xue Dou
    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
    Beihang-UOW Joint Research Centre, Beihang University, Beijing 100191, People’s Republic of China
    More by Shi Xue Dou
Cite this: ACS Catal. 2018, 8, 5, 4288–4293
Publication Date (Web):April 11, 2018
https://doi.org/10.1021/acscatal.8b00719
Copyright © 2018 American Chemical Society
Article Views
3741
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Pursuing efficient and low-cost electrocatalysts is crucial for the performance of water–alkali electrolyzers toward water splitting. Earth-abundant transition-metal oxides, in spite of their alluring performances in the oxygen evolution reaction, are thought to be inactive in the hydrogen evolution reaction in alkaline media. Here, we demonstrate that pure TiO2 single crystals, a typical transition-metal oxide, can be activated toward electrocatalytic hydrogen evolution reaction in alkaline media through engineering interfacial oxygen vacancies. Experimental and theoretical results indicate that subsurface oxygen vacancies and low-coordinated Ti ions (Ti3+) can enhance the electrical conductivity and promote electron transfer and hydrogen desorption, which activate reduced TiO2 single crystals in the hydrogen evolution reaction in alkaline media. This study offers a rational route for developing reduced transition-metal oxides for low-cost and highly active hydrogen evolution reaction catalysts, to realize overall water splitting in alkaline media.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b00719.

  • Materials and methods and Figures S1–S18 and Table S1 as described in the text (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 89 publications.

  1. Wei Pang, Ailing Fan, Yaqi Guo, Dengkui Xie, Dianchao Gao. NiCoP with Dandelion-like Arrays Anchored on Nanowires for Electrocatalytic Overall Water Splitting. ACS Omega 2021, 6 (41) , 26822-26828. https://doi.org/10.1021/acsomega.1c01650
  2. Antonio Rubino, Robertino Zanoni, Pier G. Schiavi, Alessandro Latini, Francesca Pagnanelli. Two-Dimensional Restructuring of Cu2O Can Improve the Performance of Nanosized n-TiO2/p-Cu2O Photoelectrodes under UV–Visible Light. ACS Applied Materials & Interfaces 2021, 13 (40) , 47932-47944. https://doi.org/10.1021/acsami.1c13399
  3. Fei Rao, Gangqiang Zhu, Weibin Zhang, Yunhua Xu, Baowei Cao, Xianjin Shi, Jianzhi Gao, Yuhong Huang, Yu Huang, Mirabbos Hojamberdiev. Maximizing the Formation of Reactive Oxygen Species for Deep Oxidation of NO via Manipulating the Oxygen-Vacancy Defect Position on (BiO)2CO3. ACS Catalysis 2021, 11 (13) , 7735-7749. https://doi.org/10.1021/acscatal.1c01251
  4. Juan Miguel Jiménez, Daniel Perdolt, Thomas Berger. Reactivity of Hydrogen-Related Electron Centers in Powders, Layers, and Electrodes Consisting of Anatase TiO2 Nanocrystal Aggregates. The Journal of Physical Chemistry C 2021, 125 (25) , 13809-13818. https://doi.org/10.1021/acs.jpcc.1c01580
  5. Jayashree Swaminathan, Subbiah Ravichandran, Parthiban Palani, Mahendran Mathankumar, Subramanian Balasubramanian. Probing the Defect-Driven Tunable Photo(electro)catalytic Water-Splitting Behavior of Pulsed-Laser-Deposited Titania. Energy & Fuels 2021, 35 (5) , 4512-4523. https://doi.org/10.1021/acs.energyfuels.0c03784
  6. Lulu Zhu, Yifan Wu, Sujuan Wu, Fan Dong, Jiexiang Xia, Bin Jiang. Tuning the Active Sites of Atomically Thin Defective Bi12O17Cl2 via Incorporation of Subnanometer Clusters. ACS Applied Materials & Interfaces 2021, 13 (7) , 9216-9223. https://doi.org/10.1021/acsami.0c21454
  7. Zean Xie, Tingting Yu, Weiyu Song, Jianmei Li, Zhen Zhao, Baijun Liu, Zhenfei Gao, Dong Li. Highly Active Nanosized Anatase TiO2–x Oxide Catalysts In Situ Formed through Reduction and Ostwald Ripening Processes for Propane Dehydrogenation. ACS Catalysis 2020, 10 (24) , 14678-14693. https://doi.org/10.1021/acscatal.0c02825
  8. Shunzheng Zhao, Dongjuan Kang, Yunpeng Liu, Yanfeng Wen, Xizhou Xie, Honghong Yi, Xiaolong Tang. Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition-Metal-Doped CeO2 Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis. ACS Catalysis 2020, 10 (20) , 11739-11750. https://doi.org/10.1021/acscatal.0c02832
  9. Lei Shi, Yu Yin, Shaobin Wang, Hongqi Sun. Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catalysis 2020, 10 (12) , 6870-6899. https://doi.org/10.1021/acscatal.0c01081
  10. Zhiqian Hou, Peng Hei, Chaozhu Shu, Ruixin Zheng, Tingshuai Yang, Qiang Zhang, Jianping Long. Multifunctional Selenium Vacancy Coupling with Interface Engineering Enables High-Stability Li–O2 Battery. ACS Sustainable Chemistry & Engineering 2020, 8 (17) , 6667-6674. https://doi.org/10.1021/acssuschemeng.0c00114
  11. Sujuan Wu, Jianguo Sun, Qi Li, Zachary D. Hood, Shize Yang, Tongming Su, Rui Peng, Zili Wu, Weiwei Sun, Paul R. C. Kent, Bin Jiang, Matthew F. Chisholm. Effects of Surface Terminations of 2D Bi2WO6 on Photocatalytic Hydrogen Evolution from Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (17) , 20067-20074. https://doi.org/10.1021/acsami.0c01802
  12. Bowen Ren, Qiuyan Jin, Yinwei Li, Yan Li, Hao Cui, Chengxin Wang. Activating Titanium Dioxide as a New Efficient Electrocatalyst: From Theory to Experiment. ACS Applied Materials & Interfaces 2020, 12 (10) , 11607-11615. https://doi.org/10.1021/acsami.9b21575
  13. Quanzhen Zhang, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Yan Jun Li. Characterization and Reversible Migration of Subsurface Hydrogen on Rutile TiO2(110) by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2019, 123 (36) , 22595-22602. https://doi.org/10.1021/acs.jpcc.9b05744
  14. Chang Liu, Ai-Yong Zhang, Yang Si, Dan-Ni Pei, Han-Qing Yu. Photochemical Protection of Reactive Sites on Defective TiO2–x Surface for Electrochemical Water Treatment. Environmental Science & Technology 2019, 53 (13) , 7641-7652. https://doi.org/10.1021/acs.est.9b01307
  15. Yong Yan, Xing Cheng, Wanwan Zhang, Ge Chen, Hongyi Li, Alexander Konkin, Zaicheng Sun, Shaorui Sun, Dong Wang, Peter Schaaf. Plasma Hydrogenated TiO2/Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 885-894. https://doi.org/10.1021/acssuschemeng.8b04496
  16. Dandan Cui, Liang Wang, Yi Du, Weichang Hao, Jun Chen. Photocatalytic Reduction on Bismuth-Based p-Block Semiconductors. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 15936-15953. https://doi.org/10.1021/acssuschemeng.8b04977
  17. Shu Li, Nan Yang, Li Liao, Yanzhu Luo, Shengyao Wang, Feifei Cao, Wei Zhou, Dekang Huang, Hao Chen. Doping β-CoMoO4 Nanoplates with Phosphorus for Efficient Hydrogen Evolution Reaction in Alkaline Media. ACS Applied Materials & Interfaces 2018, 10 (43) , 37038-37045. https://doi.org/10.1021/acsami.8b13266
  18. Hassan A. Tahini, Xin Tan, Sean C. Smith. Activating Inert MXenes for Hydrogen Evolution Reaction via Anchored Metal Centers. Advanced Theory and Simulations 2021, 37 , 2100383. https://doi.org/10.1002/adts.202100383
  19. Jun Ma, Ran Long, Dong Liu, Jingxiang Low, Yujie Xiong. Defect Engineering in Photocatalytic Methane Conversion. Small Structures 2021, 117 , 2100147. https://doi.org/10.1002/sstr.202100147
  20. Peng Hu, Ruimeng Wang, Zhu Gao, Shanliang Jiang, Zhongxing Zhao, Hongbing Ji, Zhenxia Zhao. Improved interface compatibility of hollow H-Zr0.1Ti0.9O2 with UiO-66-NH2 via Zr-Ti bidirectional penetration to boost visible photocatalytic activity for acetaldehyde degradation under high humidity. Applied Catalysis B: Environmental 2021, 296 , 120371. https://doi.org/10.1016/j.apcatb.2021.120371
  21. Yanxin Li, Xiaoyan Zhang, Zhijing Wu, Hongbin Sheng, Can Li, Haiyan Li, Lixin Cao, Bohua Dong. Coupling porous Ni doped LaFeO 3 nanoparticles with amorphous FeOOH nanosheets yields an interfacial electrocatalyst for electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2021, 9 (41) , 23545-23554. https://doi.org/10.1039/D1TA05777D
  22. Chandana C. W. Kananke-Gamage, Farshid Ramezanipour. Variation of the electrocatalytic activity of isostructural oxides Sr 2 LaFeMnO 7 and Sr 2 LaCoMnO 7 for hydrogen and oxygen-evolution reactions. Dalton Transactions 2021, 50 (40) , 14196-14206. https://doi.org/10.1039/D1DT01977E
  23. Swati Parmar, Tisita Das, Bishakha Ray, Bharati Debnath, Suresh Gosavi, G. Shiva Shanker, Suwarna Datar, Sudip Chakraborty, Satishchandra Ogale. N, H Dual‐Doped Black Anatase TiO 2 Thin Films toward Significant Self‐Activation in Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media. Advanced Energy and Sustainability Research 2021, 69 , 2100137. https://doi.org/10.1002/aesr.202100137
  24. Łukasz Haryński, Jakub Karczewski, Jacek Ryl, Katarzyna Grochowska, Katarzyna Siuzdak. Rapid development of the photoresponse and oxygen evolution of TiO2 nanotubes sputtered with Cr thin films realized via laser annealing. Journal of Alloys and Compounds 2021, 877 , 160316. https://doi.org/10.1016/j.jallcom.2021.160316
  25. Yi Peng, Juntao Wang, Ying Yan, Wenlei Wang, Hongbo Xiao. Electropositive carbon sites and sulfur vacancies in SnS2/g-C3N4 for achieving adsorption and photocatalytic degradation of As(III) in stages by pH regulation. Journal of Alloys and Compounds 2021, 877 , 160292. https://doi.org/10.1016/j.jallcom.2021.160292
  26. Zibo Zhai, Wei Yan, Li Dong, Shuqi Deng, David P. Wilkinson, Xiaomin Wang, Lei Zhang, Jiujun Zhang. Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms. Journal of Materials Chemistry A 2021, 9 (36) , 20320-20344. https://doi.org/10.1039/D1TA02896K
  27. Huidong Shen, Mengmeng Yang, Leiduan Hao, Jinrui Wang, Jennifer Strunk, Zhenyu Sun. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Research 2021, 360 https://doi.org/10.1007/s12274-021-3725-0
  28. Murugesan Praveen Kumar, Govindhasamy Murugadoss, Ramalinga Viswanathan Mangalaraja, Prabhakarn Arunachalam, Manavalan Rajesh Kumar, Unalome Wetwatana Hartley, Sunitha Salla, Jothiramalingam Rajabathar, Zeid A. ALOthman, Tariq ALTalhi. Design and development of defect rich titania nanostructure for efficient electrocatalyst for hydrogen evolution reaction in an acidic electrolyte. Journal of Materials Research and Technology 2021, 14 , 2739-2750. https://doi.org/10.1016/j.jmrt.2021.07.119
  29. Antonio Rubino, Joana Almeida, Catia Magro, Pier G. Schiavi, Paula Guedes, Nazare Couto, Eduardo P. Mateus, Pietro Altimari, Maria L. Astolfi, Robertino Zanoni, Alexandra B. Ribeiro, Francesca Pagnanelli. Nanostructured TiO 2 ‐Based Hydrogen Evolution Reaction ( HER ) Electrocatalysts: A Preliminary Feasibility Study in Electrodialytic Remediation with Hydrogen Recovery. 2021,,, 227-249. https://doi.org/10.1002/9781119670186.ch10
  30. Astrid Kupferer, Alexander Holm, Andriy Lotnyk, Stephan Mändl, Stefan G. Mayr. Compositional Patterning in Carbon Implanted Titania Nanotubes. Advanced Functional Materials 2021, 31 (35) , 2104250. https://doi.org/10.1002/adfm.202104250
  31. Zhen‐Wei Wei, Hong‐Juan Wang, Chao Zhang, Kun Xu, Xiu‐Li Lu, Tong‐Bu Lu. Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angewandte Chemie 2021, 133 (30) , 16758-16763. https://doi.org/10.1002/ange.202104856
  32. Zhen‐Wei Wei, Hong‐Juan Wang, Chao Zhang, Kun Xu, Xiu‐Li Lu, Tong‐Bu Lu. Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angewandte Chemie International Edition 2021, 60 (30) , 16622-16627. https://doi.org/10.1002/anie.202104856
  33. Chunming Yang, Yuxuan Lu, Le Zhang, Zhijie Kong, Tianyi Yang, Yuqin Zou, Shuangyin Wang. Defect Engineering on CeO 2 ‐based Catalysts for Heterogeneous Catalytic Applications. Small Structures 2021, https://doi.org/10.1002/sstr.202100058
  34. Haifeng Feng, Xun Xu, Yi Du, Shi Xue Dou. Application of Scanning Tunneling Microscopy in Electrocatalysis and Electrochemistry. Electrochemical Energy Reviews 2021, 4 (2) , 249-268. https://doi.org/10.1007/s41918-020-00074-3
  35. Ruchun Li, Bihua Hu, Tongwen Yu, Zongping Shao, Yi Wang, Shuqin Song. New TiO 2 ‐Based Oxide for Catalyzing Alkaline Hydrogen Evolution Reaction with Noble Metal‐Like Performance. Small Methods 2021, 5 (6) , 2100246. https://doi.org/10.1002/smtd.202100246
  36. Hongjie Liu, Hao Fu, Yuchang Liu, Xiyong Chen, Kefu Yu, Liwei Wang. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis. Chemosphere 2021, 272 , 129534. https://doi.org/10.1016/j.chemosphere.2021.129534
  37. Shilong Jiao, Xianwei Fu, Shuangyin Wang, Yong Zhao. Perfecting electrocatalysts via imperfections: towards the large-scale deployment of water electrolysis technology. Energy & Environmental Science 2021, 14 (4) , 1722-1770. https://doi.org/10.1039/D0EE03635H
  38. Yang Chen, Zhangfeng Li, Chaofan Yang, Dong Qiu, Chengli He, Zhiyu Jiang, Xiaoli Cui. Tailored dealloying-driven, graphene-boosted defective rutile TiO 2−x for long-term lithium storage. Materials Chemistry Frontiers 2021, 5 (7) , 3226-3235. https://doi.org/10.1039/D1QM00188D
  39. Cairu Shao, Litian Lin, Lijuan Duan, Yusi Jiang, Qingyi Shao, Hongyang Cao. Nickel-enhanced electrochemical activities of shape-tailored TiO2{001} nanocrystals for water treatment: A combined experimental and DFT studies. Electrochimica Acta 2021, 376 , 138066. https://doi.org/10.1016/j.electacta.2021.138066
  40. Yunliang Liu, Peiji Deng, Ruqiang Wu, Xiaoli Zhang, Chenghua Sun, Haitao Li. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. Journal of Materials Chemistry A 2021, 9 (11) , 6694-6709. https://doi.org/10.1039/D0TA11522C
  41. Yan Zhang, Fei Ye, Wei‐Dong Z. Li. Self‐Assembled Two‐Dimensional NiO/CeO 2 Heterostructure Rich in Oxygen Vacancies as Efficient Bifunctional Electrocatalyst for Alkaline Hydrogen Evolution and Oxygen Evolution. Chemistry – A European Journal 2021, 27 (11) , 3766-3771. https://doi.org/10.1002/chem.202004271
  42. Zhaohui Xiao, Chao Xie, Yanyong Wang, Ru Chen, Shuangyin Wang. Recent advances in defect electrocatalysts: Preparation and characterization. Journal of Energy Chemistry 2021, 53 , 208-225. https://doi.org/10.1016/j.jechem.2020.04.063
  43. Qi Wang, Shan Zhang, Hanna He, Chunlin Xie, Yougen Tang, Chuanxin He, Minhua Shao, Haiyan Wang. Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry – An Asian Journal 2021, 16 (1) , 3-19. https://doi.org/10.1002/asia.202001172
  44. Jiajia Lu, Guangfu Qian, Lin Luo, Huibing He, Shibin Yin. Contributions of oxygen vacancies to the hydrogen evolution catalytic activity of tungsten oxides. International Journal of Hydrogen Energy 2021, 46 (1) , 676-682. https://doi.org/10.1016/j.ijhydene.2020.09.229
  45. Chuan Gang, Jiayi Chen, Xu Li, Bo Ma, Xudong Zhao, Yantao Chen. Cu 3 [email protected] core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution. Nanoscale 2021, 368 https://doi.org/10.1039/D1NR06125A
  46. Huanhuan Liu, Zhenhua Yan, Xiang Chen, Jinhan Li, Le Zhang, Fangming Liu, Guilan Fan, Fangyi Cheng. Electrodeposition of Pt-Decorated Ni(OH) 2 /CeO 2 Hybrid as Superior Bifunctional Electrocatalyst for Water Splitting. Research 2020, 2020 , 1-11. https://doi.org/10.34133/2020/9068270
  47. Yongpeng Lei, Qichen Wang, Shengjie Peng, Seeram Ramakrishna, Dou Zhang, Kechao Zhou. Electrospun Inorganic Nanofibers for Oxygen Electrocatalysis: Design, Fabrication, and Progress. Advanced Energy Materials 2020, 10 (45) , 1902115. https://doi.org/10.1002/aenm.201902115
  48. Jie Dai, Yinlong Zhu, Hassan A. Tahini, Qian Lin, Yu Chen, Daqin Guan, Chuan Zhou, Zhiwei Hu, Hong-Ji Lin, Ting-Shan Chan, Chien-Te Chen, Sean C. Smith, Huanting Wang, Wei Zhou, Zongping Shao. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19433-1
  49. Yanfei Fan, Yan Liu, Hongyu Cui, Wen Wang, Qiaoyan Shang, Xifeng Shi, Guanwei Cui, Bo Tang. Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies. Nanomaterials 2020, 10 (12) , 2572. https://doi.org/10.3390/nano10122572
  50. Dandan Cui, Kang Xu, Xingan Dong, Dongdong Lv, Fan Dong, Weichang Hao, Yi Du, Jun Chen. Controlled hydrogenation into defective interlayer bismuth oxychloride via vacancy engineering. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0319-9
  51. Guoxin Zhuang, Yawen Chen, Zanyong Zhuang, Yan Yu, Jiaguo Yu. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Science China Materials 2020, 63 (11) , 2089-2118. https://doi.org/10.1007/s40843-020-1305-6
  52. Yinlong Zhu, Qian Lin, Yijun Zhong, Hassan A. Tahini, Zongping Shao, Huanting Wang. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy & Environmental Science 2020, 13 (10) , 3361-3392. https://doi.org/10.1039/D0EE02485F
  53. Dileep Maarisetty, Saroj Sundar Baral. Defect engineering in photocatalysis: formation, chemistry, optoelectronics, and interface studies. Journal of Materials Chemistry A 2020, 8 (36) , 18560-18604. https://doi.org/10.1039/D0TA04297H
  54. Feiran Zhang, Wenjie Wang, Zhi Li, Yikun Kang, Lu Wang, Yang Gao, Lulu Chen, Xiao Zhang, Weiyu Song, Jian Liu, Haodong Tang. The surface structure of β-NiOOH (001) under reaction conditions and its effect on OER activity: An ab initio study. Molecular Catalysis 2020, 493 , 111082. https://doi.org/10.1016/j.mcat.2020.111082
  55. Shuxian Zou, Romain Berthelot, Bruno Boury, Pierre Hubert Mutin, Nicolas Brun. TinO2n−1 Suboxide Phases in TiO2/C Nanocomposites Engineered by Non-hydrolytic Sol–Gel with Enhanced Electrocatalytic Properties. Nanomaterials 2020, 10 (9) , 1789. https://doi.org/10.3390/nano10091789
  56. Quan Xiao, Yanan Wang, Zhi-Jian Zhao, Chunlei Pei, Sai Chen, Lijun Gao, Rentao Mu, Qiang Fu, Jinlong Gong. Defect-mediated reactivity of Pt/TiO2 catalysts: the different role of titanium and oxygen vacancies. Science China Chemistry 2020, 63 (9) , 1323-1330. https://doi.org/10.1007/s11426-020-9798-2
  57. Fan Yang, Ruizhuang Yang, Lin Yan, Xiaolin Liu, Xuan Luo, Lin Zhang. In situ growth of porous TiO 2 with controllable oxygen vacancies on an atomic scale for highly efficient photocatalytic water splitting. Catalysis Science & Technology 2020, 10 (16) , 5659-5665. https://doi.org/10.1039/D0CY00666A
  58. Jing-Bo Tan, Jing-Qi Wu, Jia-Wei Zhao, Ling-Jie Xie, Gao-Ren Li. Highly dispersed ultrafine Ni particles embedded into MOF-74 arrays by partial carbonization for highly efficient hydrogen evolution. Materials Advances 2020, 1 (5) , 1212-1219. https://doi.org/10.1039/D0MA00253D
  59. Jiaqi Cheng, Pu Liu, Ting Peng, Qinglei Liu, Wenshu Chen, Bowen Liu, Yang Yuan, Wang Zhang, Fang Song, Jiajun Gu, Di Zhang. Mechanically alloyed NiTiO 3 /transition metal heterostructures: introducing oxygen vacancies for exceptionally enhanced hydrogen evolution reaction activity. Journal of Materials Chemistry A 2020, 8 (30) , 14908-14914. https://doi.org/10.1039/D0TA05030J
  60. Yumin Da, Xiaopeng Li, Cheng Zhong, Yida Deng, Xiaopeng Han, Wenbin Hu. Advanced Characterization Techniques for Identifying the Key Active Sites of Gas‐Involved Electrocatalysts. Advanced Functional Materials 2020, 30 (35) , 2001704. https://doi.org/10.1002/adfm.202001704
  61. Yanmei Huang, Yu Yu, Yifu Yu, Bin Zhang. Oxygen Vacancy Engineering in Photocatalysis. Solar RRL 2020, 4 (8) , 2000037. https://doi.org/10.1002/solr.202000037
  62. Shilin Zhang, Xin Wen, Mei Long, Jiajia Xi, Jinqing Hu, Aidong Tang. Fabrication of CuO/Cu/TiO2 nanotube arrays modified electrode for detection of formaldehyde. Journal of Alloys and Compounds 2020, 829 , 154568. https://doi.org/10.1016/j.jallcom.2020.154568
  63. Shu-Chao Sun, Fei-Xiang Ma, Yang Li, Li-Wei Dong, Huan Liu, Chun-Ming Jiang, Bo Song, Liang Zhen, Cheng-Yan Xu. Sulfur vacancies promoting Fe-doped Ni 3 S 2 nanopyramid arrays as efficient bifunctional electrocatalysts for overall water splitting. Sustainable Energy & Fuels 2020, 4 (7) , 3326-3333. https://doi.org/10.1039/D0SE00344A
  64. Mohamed M. Ibrahim, Amine Mezni, Mohammed Alsawat, Tushar Kumeria, Arwa Alrooqi, Abdallah A. Shaltout, Sameh I. Ahmed, Rabah Boukherroub, Mohammed A. Amin, Tariq Altalhi. Crystalline ZnO and ZnO / TiO 2 nanoparticles derived from tert ‐butyl N‐(2 mercaptoethyl)carbamatozinc( II ) chelate: Electrocatalytic studies for H 2 generation in alkaline electrolytes. International Journal of Energy Research 2020, 44 (8) , 6725-6744. https://doi.org/10.1002/er.5410
  65. Jin Yan, Lei Dai, Penghui Shi, Jinchen Fan, Yulin Min, Qunjie Xu. Band engineering of mesoporous TiO 2 with tunable defects for visible-light hydrogen generation. CrystEngComm 2020, 22 (23) , 4030-4038. https://doi.org/10.1039/D0CE00707B
  66. Zhong Su, Jiahua Liu, Meng Li, Yuxuan Zhu, Shangshu Qian, Mouyi Weng, Jiaxin Zheng, Yulin Zhong, Feng Pan, Shanqing Zhang. Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochemical Energy Reviews 2020, 3 (2) , 286-343. https://doi.org/10.1007/s41918-020-00064-5
  67. Mohsin Abbas, Tanveer ul Haq, Salman Noshear Arshad, Muhammad Zaheer. Fabrication of cobalt doped titania for enhanced oxygen evolution reaction. Molecular Catalysis 2020, 488 , 110894. https://doi.org/10.1016/j.mcat.2020.110894
  68. Lin-Fei Gu, Jun-Jia Chen, Tao Zhou, Xue-Feng Lu, Gao-Ren Li. Engineering cobalt oxide by interfaces and pore architectures for enhanced electrocatalytic performance for overall water splitting. Nanoscale 2020, 12 (20) , 11201-11208. https://doi.org/10.1039/D0NR02030C
  69. Hongjin Li, Sujuan Wu, Zachary D. Hood, Jianguo Sun, Biao Hu, Chuanhui Liang, Shize Yang, Yunfan Xu, Bin Jiang. Atomic defects in ultra-thin mesoporous TiO2 enhance photocatalytic hydrogen evolution from water splitting. Applied Surface Science 2020, 513 , 145723. https://doi.org/10.1016/j.apsusc.2020.145723
  70. Lei Ran, Jungang Hou, Shuyan Cao, Zhuwei Li, Yanting Zhang, Yunzhen Wu, Bo Zhang, Panlong Zhai, Licheng Sun. Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar RRL 2020, 4 (4) , 1900487. https://doi.org/10.1002/solr.201900487
  71. Yunxuan Zhao, Shuai Zhang, Run Shi, Geoffrey I.N. Waterhouse, Junwang Tang, Tierui Zhang. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Materials Today 2020, 34 , 78-91. https://doi.org/10.1016/j.mattod.2019.10.022
  72. Lulu Chen, Haeseong Jang, Min Gyu Kim, Qing Qin, Xien Liu, Jaephil Cho. Fe x Ni y /CeO 2 loaded on N-doped nanocarbon as an advanced bifunctional electrocatalyst for the overall water splitting. Inorganic Chemistry Frontiers 2020, 7 (2) , 470-476. https://doi.org/10.1039/C9QI01251F
  73. Junwei Chen, Fangmu Wang, Xiaopeng Qi, Hui Yang, Bojun Peng, Liang Xu, Zongliang Xiao, Xinmei Hou, Tongxiang Liang. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions. Electrochimica Acta 2019, 326 , 134979. https://doi.org/10.1016/j.electacta.2019.134979
  74. Haiyan Liang, Hongjuan Xi, Shaoqiong Liu, Xuemei Zhang, Haiqing Liu. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale 2019, 11 (39) , 18183-18190. https://doi.org/10.1039/C9NR06222J
  75. Yajun Zhang, Zhongfei Xu, Guiyu Li, Xiaojuan Huang, Weichang Hao, Yingpu Bi. Direct Observation of Oxygen Vacancy Self‐Healing on TiO 2 Photocatalysts for Solar Water Splitting. Angewandte Chemie 2019, 131 (40) , 14367-14371. https://doi.org/10.1002/ange.201907954
  76. Yajun Zhang, Zhongfei Xu, Guiyu Li, Xiaojuan Huang, Weichang Hao, Yingpu Bi. Direct Observation of Oxygen Vacancy Self‐Healing on TiO 2 Photocatalysts for Solar Water Splitting. Angewandte Chemie International Edition 2019, 58 (40) , 14229-14233. https://doi.org/10.1002/anie.201907954
  77. Yuanzhen Zhou, Rongrong Cui, Yuan Dang, Yang Li, Yue Zou. Doping controlled oxygen vacancies of ZnWO4 as a novel and effective sensing platform for carbendazim and biomolecule. Sensors and Actuators B: Chemical 2019, 296 , 126680. https://doi.org/10.1016/j.snb.2019.126680
  78. Yudong Xue, Zachary S. Fishman, Yunting Wang, Zhenhua Pan, Xin Shen, Rito Yanagi, Gregory S. Hutchings, Mingzhao Liu, Shili Zheng, Yi Zhang, Eric I. Altman, Shu Hu. Hydrogen evolution activity tuning via two-dimensional electron accumulation at buried interfaces. Journal of Materials Chemistry A 2019, 7 (36) , 20696-20705. https://doi.org/10.1039/C9TA07123G
  79. Chien-Hong Chen, Tzung-Wen Chiou, Han-Chun Chang, Wei-Liang Li, Chi-Yen Tung, Wen-Feng Liaw. An organic ligand promoting the electrocatalytic activity of cobalt oxide for the hydrogen evolution reaction. Sustainable Energy & Fuels 2019, 3 (9) , 2205-2210. https://doi.org/10.1039/C9SE00371A
  80. Bin Chang, Zizheng Ai, Dong Shi, Yueyao Zhong, Kang Zhang, Yongliang Shao, Lei Zhang, Jianxing Shen, Yongzhong Wu, Xiaopeng Hao. p–n tungsten oxide homojunctions for Vis-NIR light-enhanced electrocatalytic hydrogen evolution. Journal of Materials Chemistry A 2019, 7 (33) , 19573-19580. https://doi.org/10.1039/C9TA06589J
  81. Mohamed M. Ibrahim, Amine Mezni, Mohammed Alsawat, Tushar Kumeria, Manash R. Das, Shaykha Alzahly, Ali Aldalbahi, Karolina Gornicka, Jacek Ryl, Mohammed A. Amin, Tariq Altalhi. Enhanced hydrogen evolution reaction on highly stable titania‐supported PdO and Eu 2 O 3 nanocomposites in a strong alkaline solution. International Journal of Energy Research 2019, 43 (10) , 5367-5383. https://doi.org/10.1002/er.4629
  82. Qichen Wang, Yongpeng Lei, Dingsheng Wang, Yadong Li. Defect engineering in earth-abundant electrocatalysts for CO 2 and N 2 reduction. Energy & Environmental Science 2019, 12 (6) , 1730-1750. https://doi.org/10.1039/C8EE03781G
  83. Chengliang Mao, Jiaxian Wang, Yunjie Zou, Hao Li, Guangming Zhan, Jie Li, Jincai Zhao, Lizhi Zhang. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry 2019, 21 (11) , 2852-2867. https://doi.org/10.1039/C9GC01010F
  84. Xin Zhang, Yufei Zhao, Yunxuan Zhao, Run Shi, Geoffrey I. N. Waterhouse, Tierui Zhang. A Simple Synthetic Strategy toward Defect‐Rich Porous Monolayer NiFe‐Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials 2019, 9 (24) , 1900881. https://doi.org/10.1002/aenm.201900881
  85. Qixing Xia, Zhongping Yao, Dongjie Zhang, Dongqi Li, Zhirong Zhang, Zhaohua Jiang. Rational synthesis of micronano dendritic [email protected] modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation. Science of The Total Environment 2019, 671 , 1056-1065. https://doi.org/10.1016/j.scitotenv.2019.03.435
  86. Yong‐Chao Zhang, Nisha Afzal, Lun Pan, Xiangwen Zhang, Ji‐Jun Zou. Structure‐Activity Relationship of Defective Metal‐Based Photocatalysts for Water Splitting: Experimental and Theoretical Perspectives. Advanced Science 2019, 6 (10) , 1900053. https://doi.org/10.1002/advs.201900053
  87. Liu Yang, Chan Xu, Fangcheng Wan, Haohan He, Haoshuang Gu, Juan Xiong. Synthesis of RGO/BiOI/ZnO composites with efficient photocatalytic reduction of aqueous Cr(VI) under visible-light irradiation. Materials Research Bulletin 2019, 112 , 154-158. https://doi.org/10.1016/j.materresbull.2018.12.019
  88. Ai-Yong Zhang, Nai-Hui Huang, Yuan-Yi He, Pin-Cheng Zhao, Jing-Wei Feng. Sulfate radicals generation and refractory pollutants removal on defective facet-tailored TiO2 with reduced matrix effects. Chemical Engineering Journal 2019, 358 , 243-252. https://doi.org/10.1016/j.cej.2018.10.035
  89. Swaminathan Jayashree, Meiyazhagan Ashokkumar. Switchable Intrinsic Defect Chemistry of Titania for Catalytic Applications. Catalysts 2018, 8 (12) , 601. https://doi.org/10.3390/catal8120601