Surface-Electronic-State-Modulated, Single-Crystalline (001) TiO2 Nanosheets for Sensitive Electrochemical Sensing of Heavy-Metal Ions

View Author Information
Key Laboratory of Environmental Optics and Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
*E-mail: [email protected]. Tel.: +86-551-65591142. Fax: +86-551-65592420 (J.-H.L.).
*E-mail: [email protected]. Tel.: +86-551-65591142. Fax: +86-551-65592420 (X.-J.H.).
Cite this: Anal. Chem. 2017, 89, 6, 3386–3394
Publication Date (Web):February 21, 2017
https://doi.org/10.1021/acs.analchem.6b04023
Copyright © 2017 American Chemical Society
Article Views
1723
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

Intrinsically low conductivity and poor reactivity restrict many semiconductors from electrochemical detection. Usually, metal- and carbon-based modifications of semiconductors are necessary, making them complex, expensive, and unstable. Here, for the first time, we present a surface-electronic-state-modulation-based concept applied to semiconductors. This concept enables pure semiconductors to be directly available for ultrasensitive electrochemical detection of heavy-metal ions without any modifications. As an example, a defective single-crystalline (001) TiO2 nanosheet exhibits high electrochemical performance toward Hg(II), including a sensitivity of 270.83 μA μM–1 cm–2 and a detection limit of 0.017 μM, which is lower than the safety standard (0.03 μM) of drinking water established by the World Health Organization (WHO). It has been confirmed that the surface oxygen vacancy adsorbs an O2 molecule while the Ti3+ donates an electron, forming the O2•– species that facilitate adsorption of Hg(II) and serve as active sites for electron transfer. These findings not only extend the electrochemical sensing applications of pure semiconductors but also stimulate new opportunities for investigating atom-level electrochemical behaviors of semiconductors by surface electronic-state modulation.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.6b04023.

  • Morphology and the statistical analysis of the size and distribution; nitrogen adsorption–desorption isotherms; the corresponding fast Fourier transform patterns; DSC analysis; the ratio of F to Ti element of TiO2 samples; optimal experimental conditions; calculation of electrically active area of electrodes; comparison of electrochemical sensitivities; morphology and structure of TiO2 nanoparticles; stability and anti-interference ability studies; normalized Ti K-edge absorption curves; EXAFS analysis; existence of oxygen vacancy and Ti3+; Ti 2p spectrum; photographs; normalized Hg L3-edge absorption curves in the relevant- and post-edge regions; comparison on the electrochemical performance of different electrodes used for Hg(II) detection; results of EXAFS analysis for TiO2 sample (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 66 publications.

  1. Changchun Fan, Long Chen, Rong Jiang, Jiahui Ye, Haoquan Li, Yulin Shi, Yun Luo, Gang Wang, Juan Hou, Xuhong Guo. ZnFe2O4 Nanoparticles for Electrochemical Determination of Trace Hg(II), Pb(II), Cu(II), and Glucose. ACS Applied Nano Materials 2021, 4 (4) , 4026-4036. https://doi.org/10.1021/acsanm.1c00379
  2. Saeideh Alipoori, Hadi Rouhi, Emily Linn, Hannah Stumpfl, Hadi Mokarizadeh, Milad Rabbani Esfahani, Amanda Koh, Steven T. Weinman, Evan K. Wujcik. Polymer-Based Devices and Remediation Strategies for Emerging Contaminants in Water. ACS Applied Polymer Materials 2021, 3 (2) , 549-577. https://doi.org/10.1021/acsapm.0c01171
  3. Agne Sulciute, Keita Nishimura, Evgeniia Gilshtein, Federico Cesano, Guido Viscardi, Albert G. Nasibulin, Yutaka Ohno, Simas Rackauskas. ZnO Nanostructures Application in Electrochemistry: Influence of Morphology. The Journal of Physical Chemistry C 2021, 125 (2) , 1472-1482. https://doi.org/10.1021/acs.jpcc.0c08459
  4. Anju Kumari, Shobith M Shanbogh, Iranna Udachyan, Sakthivel Kandaiah, Amit Roy, Vaibhav Varade, Anjaneyulu Ponnam. Interface-Driven Multifunctionality in Two-Dimensional TiO2 Nanosheet/Poly(Dimercaptothiadiazole-Triazine) Hybrid Resistive Random Access Memory Device. ACS Applied Materials & Interfaces 2020, 12 (50) , 56568-56578. https://doi.org/10.1021/acsami.0c16451
  5. Pei-Hua Li, Zong-Yin Song, Meng Yang, Shi-Hua Chen, Xiang-Yu Xiao, Wanchun Duan, Li-Na Li, Xing-Jiu Huang. Electrons in Oxygen Vacancies and Oxygen Atoms Activated by Ce3+/Ce4+ Promote High-Sensitive Electrochemical Detection of Pb(II) over Ce-Doped α-MoO3 Catalysts. Analytical Chemistry 2020, 92 (24) , 16089-16096. https://doi.org/10.1021/acs.analchem.0c03725
  6. Yao Lu, Shuai Hu, Lijun Xiong, Lishan Yang, Jun Wang, Yuanhui Pan, Shuangshuang Zhao, Yahui Yang, Chenghuan Huang, Jian Zhu, Wen-Yi Zhou, Youyuan Zhou. Insights on the Activation and Stabilization of NCA Cathode Interface: Surface Chemical State Modulations of Aluminum-Mediated Li0.73CoO2 Coatings. ACS Sustainable Chemistry & Engineering 2020, 8 (39) , 14975-14984. https://doi.org/10.1021/acssuschemeng.0c05229
  7. Muxin Lu, Yajuan Deng, Yi Luo, Junping Lv, Tianbao Li, Juan Xu, Shu-Wei Chen, Jinyi Wang. Graphene Aerogel–Metal–Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Analytical Chemistry 2019, 91 (1) , 888-895. https://doi.org/10.1021/acs.analchem.8b03764
  8. Wen-Yi Zhou, Shan-Shan Li, Jie-Yao Song, Min Jiang, Tian-Jia Jiang, Jin-Yun Liu, Jin-Huai Liu, Xing-Jiu Huang. High Electrochemical Sensitivity of TiO2–x Nanosheets and an Electron-Induced Mutual Interference Effect toward Heavy Metal Ions Demonstrated Using X-ray Absorption Fine Structure Spectra. Analytical Chemistry 2018, 90 (7) , 4328-4337. https://doi.org/10.1021/acs.analchem.7b02315
  9. Dan-Ni Pei, Ai-Yong Zhang, Xiao-Qiang Pan, Yang Si, Han-Qing Yu. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. Analytical Chemistry 2018, 90 (5) , 3165-3173. https://doi.org/10.1021/acs.analchem.7b04466
  10. Lingyue Liu, Shaoming Shu, Guozhu Zhang, Shantang Liu. Highly Selective Sensing of C2H6O, HCHO, and C3H6O Gases by Controlling SnO2 Nanoparticle Vacancies. ACS Applied Nano Materials 2018, 1 (1) , 31-37. https://doi.org/10.1021/acsanm.7b00150
  11. Shan-Shan Li, Wen-Yi Zhou, Yi-Xiang Li, Min Jiang, Zheng Guo, Jin-Huai Liu, and Xing-Jiu Huang . Noble-Metal-Free Co0.6Fe2.4O4 Nanocubes Self-Assembly Monolayer for Highly Sensitive Electrochemical Detection of As(III) Based on Surface Defects. Analytical Chemistry 2018, 90 (2) , 1263-1272. https://doi.org/10.1021/acs.analchem.7b04025
  12. Chang Liu, Ai-Yong Zhang, Yang Si, Dan-Ni Pei, and Han-Qing Yu . Photochemical Anti-Fouling Approach for Electrochemical Pollutant Degradation on Facet-Tailored TiO2 Single Crystals. Environmental Science & Technology 2017, 51 (19) , 11326-11335. https://doi.org/10.1021/acs.est.7b04105
  13. Qingfeng Zhai, Huanhuan Xing, Xiaowei Zhang, Jing Li, and Erkang Wang . Enhanced Electrochemiluminescence Behavior of Gold–Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II). Analytical Chemistry 2017, 89 (14) , 7788-7794. https://doi.org/10.1021/acs.analchem.7b01897
  14. Chong Wang, Tianai Zhang, Lifeng Yin, Chengsheng Ni, JiuPai Ni, Li-An Hou. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti3+ self-doping TiO2 nanotube arrays anode. Chemosphere 2022, 286 , 131804. https://doi.org/10.1016/j.chemosphere.2021.131804
  15. Jing Ru, Xuemei Wang, Xinglan Cui, Fangbing Wang, Hong Ji, Xinzhen Du, Xiaoquan Lu. GaOOH-modified metal-organic frameworks UiO-66-NH2: Selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method. Talanta 2021, 234 , 122679. https://doi.org/10.1016/j.talanta.2021.122679
  16. Navdeep Kajal, Vishavjeet Singh, Ritu Gupta, Sanjeev Gautam. Metal organic frameworks for electrochemical sensor applications: A review. Environmental Research 2021, 37 , 112320. https://doi.org/10.1016/j.envres.2021.112320
  17. Aliakbar Saadati, Naimeh Naseri. Morphology control in oxygen-rich nanotubular titania for enzyme-free glucose detection. Surfaces and Interfaces 2021, 155 , 101590. https://doi.org/10.1016/j.surfin.2021.101590
  18. Shan-Shan Li, Qian-Qian Xu, Jian-Tao Xu, Ge Yan, Yong-Xing Zhang, Su-Wen Li, Li-Chang Yin. Engineering Co2+/Co3+ redox activity of Ni-mediated porous Co3O4 nanosheets for superior Hg(II) electrochemical sensing: Insight into the effect of valence change cycle and oxygen vacancy on electroanalysis. Sensors and Actuators B: Chemical 2021, 16 , 131095. https://doi.org/10.1016/j.snb.2021.131095
  19. Wen-Yi Zhou, Rong Sun, Shan-Shan Li, Yuzheng Guo, Wei Shen, Jun Wang, Francis Leonard Deepak, Ying Li, Zhongchang Wang. Engineering surface electron and active site at electrochemical sensing interface of CN vacancy-mediated Prussian blue analogue for analysis of heavy metal ions. Applied Surface Science 2021, 564 , 150131. https://doi.org/10.1016/j.apsusc.2021.150131
  20. Yinhui Yi, Yuzhi Ma, Fengxiang Ai, Yixuan Xia, Huiyu Lin, Gangbing Zhu. Novel methodology for anodic stripping voltammetric sensing of heavy-metal ions using Ti 3 C 2 T x nanoribbons. Chemical Communications 2021, 57 (63) , 7790-7793. https://doi.org/10.1039/D1CC02560K
  21. Yachao Hao, Chong Zhang, Wentao Wang, Jing Wang, Shuhang Chen, Hongyan Xu, Serge Zhuiykov. Self-Assembled Co 3 O 4 /GO Composites for Excellent Electrochemical Detection of Heavy-Metal Ions. Journal of The Electrochemical Society 2021, 168 (8) , 083503. https://doi.org/10.1149/1945-7111/ac1eb5
  22. Cheng Tian, Lei Zhao, Jin Zhu, Shusheng Zhang. Ultrasensitive detection of trace Hg2+ by SERS aptasensor based on dual recycling amplification in water environment. Journal of Hazardous Materials 2021, 416 , 126251. https://doi.org/10.1016/j.jhazmat.2021.126251
  23. Ravinder Kaushik, Pankaj Kumar Singh, Aditi Halder. Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catalysis Today 2021, 10 https://doi.org/10.1016/j.cattod.2021.07.004
  24. Huan Zhang, Zhen Jin, Min-Da Xu, Yong Zhang, Jian Huang, Hui Cheng, Xiu-Fang Wang, Zhuo-Lin Zheng, Yi Ding. Enhanced Isopropanol Sensing Performance of the CdS Nanoparticle Decorated ZnO Porous Nanosheets-Based Gas Sensors. IEEE Sensors Journal 2021, 21 (12) , 13041-13047. https://doi.org/10.1109/JSEN.2021.3054654
  25. Yi-Kun Li, Ting Yang, Ming-Li Chen, Jian-Hua Wang. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Critical Reviews in Analytical Chemistry 2021, 51 (4) , 353-372. https://doi.org/10.1080/10408347.2020.1736505
  26. Noor Aini Bohari, Shafiquzzaman Siddiquee, Suryani Saallah, Mailin Misson, Sazmal Effendi Arshad. Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO. Cosmetics 2021, 8 (1) , 17. https://doi.org/10.3390/cosmetics8010017
  27. Quan Li, Lei Chen, Chunyu Guo, Xin Liu, Dezhi Han, Wentai Wang. A dual-template defective 3DOMM-TiO2-x for enhanced non-enzymatic electrochemical glucose determination. Journal of Materials Science 2021, 56 (4) , 3414-3429. https://doi.org/10.1007/s10853-020-05470-0
  28. Juan Xia, Qi Wang, Meng Yang, Hai Wu. Reliable electroanalysis of Hg(II) in water via flower-like porous MnCo2O4: Excellent multilayer adsorption and (Mn, Co)(II)/(Mn, Co)(III) cycles. Sensors and Actuators B: Chemical 2021, 326 , 129008. https://doi.org/10.1016/j.snb.2020.129008
  29. Vellaichamy Balakumar, Ramalingam Manivannan. Metal oxide-graphitic carbon nitride nanocomposite-modified electrochemical sensors for toxic chemicals. 2021,,, 263-292. https://doi.org/10.1016/B978-0-12-820727-7.00005-7
  30. Qi Wang, Baker Rhimi, Hui Wang, Chuanyi Wang. Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. Applied Surface Science 2020, 530 , 147286. https://doi.org/10.1016/j.apsusc.2020.147286
  31. Min Jiang, Ming-Jun Ma, Chu-Hong Lin, Meng Yang, Li Fang, Jin-Huai Liu, Nan-Jing Zhao, Xing-Jiu Huang. Uniform manganese-loaded titanium dioxide nanotube arrays for accurate detection of trace Cd2+ in water, soil and tea: Enhanced stability and sensitivity. Chemical Engineering Journal 2020, 400 , 125972. https://doi.org/10.1016/j.cej.2020.125972
  32. Shan-Shan Li, Xing-Liang Cheng, Qian-Qian Xu, Wen-Yi Zhou, Yongxing Zhang, Meng Yang. Engineering multi-shell Mn-Co oxide for ultrasensitive electroanalysis of Pb(II) in mining subsidence area water with promotion of adsorption and electron mediation: Behaviors and mechanisms of Mn(II)/Mn(III) and Co(II)/Co(III) cycles. Electrochimica Acta 2020, 360 , 136991. https://doi.org/10.1016/j.electacta.2020.136991
  33. Jingguo Yu, Jiajia Han, Pinghua Li, Zhenzhong Huang, Shouhui Chen. Simultaneous Determination of Cd 2+ , Cu 2+ , Pb 2+ and Hg 2+ Based on 1,4‐Benzenedithiol‐2,5‐diamino‐hydrochloride‐1,3,5‐triformylbenzene Covalent‐Organic Frameworks. ChemistrySelect 2020, 5 (40) , 12345-12352. https://doi.org/10.1002/slct.202003417
  34. Yu-Feng Sun, Jing-Jing Li, Feng Xie, Yan Wei, Meng Yang. Ruthenium-loaded cerium dioxide nanocomposites with rich oxygen vacancies promoted the highly sensitive electrochemical detection of Hg(II). Sensors and Actuators B: Chemical 2020, 320 , 128355. https://doi.org/10.1016/j.snb.2020.128355
  35. Li Chen, Zhonggang Liu, Zheng Guo, Xing-Jiu Huang. Regulation of intrinsic physicochemical properties of metal oxide nanomaterials for energy conversion and environmental detection applications. Journal of Materials Chemistry A 2020, 8 (34) , 17326-17359. https://doi.org/10.1039/D0TA05539E
  36. Zirong Qin, Jinyan Zhang, Ying Liu, Jingtao Wu, Guangli Li, Jun Liu, Quanguo He. A Simple but Efficient Voltammetric Sensor for Simultaneous Detection of Tartrazine and Ponceau 4R Based on TiO2/Electro-Reduced Graphene Oxide Nanocomposite. Chemosensors 2020, 8 (3) , 70. https://doi.org/10.3390/chemosensors8030070
  37. Meng Yang, Pei‐Hua Li, Shi‐Hua Chen, Xiang‐Yu Xiao, Xiang‐Hu Tang, Chu‐Hong Lin, Xing‐Jiu Huang, Wen‐Qing Liu. Nanometal Oxides with Special Surface Physicochemical Properties to Promote Electrochemical Detection of Heavy Metal Ions. Small 2020, 16 (25) , 2001035. https://doi.org/10.1002/smll.202001035
  38. Siti Khatijah Md Saad, Nabilah Alias, Muhamad Adam Ramli, Nur Adliha Abdullah, Nurul Ain Abd Malek, Mohd Mustaqim Rosli, Akrajas Ali Umar. A two-dimensional crystal growth in anatase titania nanostructures driven by trigonal hydronium ions. RSC Advances 2020, 10 (29) , 16886-16891. https://doi.org/10.1039/D0RA01437K
  39. Alexander V. Vorontsov, Héctor Valdés, Panagiotis G. Smirniotis, Yaron Paz. Recent Advancements in the Understanding of the Surface Chemistry in TiO2 Photocatalysis. Surfaces 2020, 3 (1) , 72-92. https://doi.org/10.3390/surfaces3010008
  40. Min Jiang, Ming-Jun Ma, Meng Yang, Li Fang, Yi-Xiang Li, Nan-Jing Zhao, Xing-Jiu Huang. Highly sensitive and stable analysis of trace arsenic(III) and mercury(II) in water by Low-pulse-energy (15 mJ) laser-induced breakdown spectroscopy assisted by active controllable spark discharge and electrochemical enrichment. Sensors and Actuators B: Chemical 2020, 305 , 127486. https://doi.org/10.1016/j.snb.2019.127486
  41. Guangli Li, Jingtao Wu, Hongguang Jin, Yonghui Xia, Jun Liu, Quanguo He, Dongchu Chen. Titania/Electro-Reduced Graphene Oxide Nanohybrid as an Efficient Electrochemical Sensor for the Determination of Allura Red. Nanomaterials 2020, 10 (2) , 307. https://doi.org/10.3390/nano10020307
  42. Zongna Yu, Ruxangul Jamal, Ruanye Zhang, Wenli Zhang, Yinqiang Yan, Yingcheng Liu, Yi Ge, Tursun Abdiryim. PEDOT-Type Conducting Polymers/Black TiO 2 Composites for Electrochemical Determination of Cd 2+ and Pb 2+. Journal of The Electrochemical Society 2020, 167 (6) , 067514. https://doi.org/10.1149/1945-7111/ab8188
  43. Jiang-yuan Qiu, Jian-hua Chen, Bi-yuan Xiao, Xing-xing Li, Ting Wan, Fang-hong Qin, Yan Mi, Zai-yin Huang. Oxygen Deficient TiO2−x with Dual Reaction Sites for Activation of H2O2 to Degrade Organic Pollutants. Catalysis Letters 2020, 150 (1) , 222-233. https://doi.org/10.1007/s10562-019-02920-6
  44. Yukun Zhu, Junzhi Li, Chung-Li Dong, Jun Ren, Yu-Cheng Huang, Daming Zhao, Rongsheng Cai, Daixing Wei, Xianfeng Yang, Chunxiao Lv, Wolfgang Theis, Yuyu Bu, Wei Han, Shaohua Shen, Dongjiang Yang. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental 2019, 255 , 117764. https://doi.org/10.1016/j.apcatb.2019.117764
  45. Jianjun Liao, Zui Tao, Shiwei Lin. Theoretical and experimental insights into the electrochemical heavy metal ion sensing with nonconductive nanomaterials. Current Opinion in Electrochemistry 2019, 17 , 1-6. https://doi.org/10.1016/j.coelec.2019.04.006
  46. Hongqi Huang, Li Chen, Shiqi Wang, Ping Kang, Xuxiu Chen, Zheng Guo, Xing-Jiu Huang. Electrochemical monitoring of persistent toxic substances using metal oxide and its composite nanomaterials: Design, preparation, and application. TrAC Trends in Analytical Chemistry 2019, 119 , 115636. https://doi.org/10.1016/j.trac.2019.115636
  47. Lvesheng Sun, Shunxin Cao, Yun Huang, Yiming Zhang, Youhong Xiao, Guojun Dong, Yu Su. VO X supported on TiO 2 –Ce 0.9 Zr 0.1 O 2 core–shell structure catalyst for NH 3 -SCR of NO. RSC Advances 2019, 9 (52) , 30340-30349. https://doi.org/10.1039/C9RA05024H
  48. Somayeh Dianat, Abdolhamid Hatefi-Mehrjardi, Kourosh Mahmoodzadeh, Somayeh Kakhki. Electrocatalytic determination of Cd 2+ and Pb 2+ using an l -cysteine tungstophosphate self-assembled monolayer on a polycrystalline gold electrode. New Journal of Chemistry 2019, 43 (36) , 14417-14425. https://doi.org/10.1039/C9NJ03459E
  49. Xiang-Yu Xiao, Shi-Hua Chen, Shan-Shan Li, Jian Wang, Wen-Yi Zhou, Xing-Jiu Huang. Synergistic catalysis of N vacancies and ∼5 nm Au nanoparticles promoted the highly sensitive electrochemical determination of lead( ii ) using an Au/N-deficient-C 3 N 4 nanocomposite. Environmental Science: Nano 2019, 6 (6) , 1895-1908. https://doi.org/10.1039/C9EN00114J
  50. Yang Si, Ai-Yong Zhang, Chang Liu, Dan-Ni Pei, Han-Qing Yu. Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO2 single crystals. Water Research 2019, 157 , 30-39. https://doi.org/10.1016/j.watres.2019.03.088
  51. Chang Xie, Zhiwu Yu, Wei Tong, Khurram Shehzad, Weihong Xu, Junfeng Wang, Jinhuai Liu. Insights into the Fluorescence Sensing Mechanism of Scandium‐Based Metal‐Organic Frameworks by Solid‐State NMR Spectroscopy. ChemistrySelect 2019, 4 (18) , 5291-5299. https://doi.org/10.1002/slct.201900821
  52. Huilan Shi, Fudan Zhu, Xian Zhou, Hui Li, Fengchun Yang, Xin Zhang, Jingtao Liu. Large scale fabrication of disposable carbon cloth electrochemical sensors for simultaneous determination of heavy metal ion. Journal of Electroanalytical Chemistry 2019, 840 , 328-337. https://doi.org/10.1016/j.jelechem.2019.04.001
  53. Xiuzhen Zheng, Jinghui Wang, Jianjun Liu, Ziqun Wang, Shifu Chen, Xianliang Fu. Photocatalytic degradation of benzene over different morphology BiPO4: Revealing the significant contribution of high–energy facets and oxygen vacancies. Applied Catalysis B: Environmental 2019, 243 , 780-789. https://doi.org/10.1016/j.apcatb.2018.11.029
  54. Zhendong Liu, Xiaona Liu, Qifang Lu, Qinyu Wang, Zhen Ma. TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers 2019, 96 , 214-222. https://doi.org/10.1016/j.jtice.2018.11.013
  55. Zhaoyu Qi, Heng Dong, Han Yu, Xi Zhang, Hongbing Yu. In-situ electrochemical DeNOx under mild conditions depending on perovskite-modified gas diffusion electrode. Chemical Engineering Journal 2019, 358 , 666-678. https://doi.org/10.1016/j.cej.2018.10.073
  56. Elisangela P. Da Silva, Manuel E.G. Winkler, Willyan M. Giufrida, Lucio Cardozo-Filho, Christian G. Alonso, Jardel B.O. Lopes, Adley F. Rubira, Rafael Silva. Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. Journal of Colloid and Interface Science 2019, 535 , 245-254. https://doi.org/10.1016/j.jcis.2018.09.098
  57. Shanmugam Manivannan, Yeji Seo, Dong-Ku Kang, Kyuwon Kim. Colorimetric and optical Hg( ii ) ion sensor developed with conjugates of M13-bacteriophage and silver nanoparticles. New Journal of Chemistry 2018, 42 (24) , 20007-20014. https://doi.org/10.1039/C8NJ04496A
  58. Qianqian Huang, Yun Hu, Guangying He, Chunjing Lin, Chaohai Wei. Photocatalytic oxidation of nitrogen oxides over {001}TiO2: the influence of F− ions. Environmental Science and Pollution Research 2018, 25 (35) , 35342-35351. https://doi.org/10.1007/s11356-018-3435-7
  59. Min Jiang, Hui-Ru Chen, Shan-Shan Li, Rui Liang, Jin-Huai Liu, Yang Yang, Yue-Jin Wu, Meng Yang, Xing-Jiu Huang. The selective capture of Pb 2+ in rice phloem sap using glutathione-functionalized gold nanoparticles/multi-walled carbon nanotubes: enhancing anti-interference electrochemical detection. Environmental Science: Nano 2018, 5 (11) , 2761-2771. https://doi.org/10.1039/C8EN00879E
  60. Sandeep Gupta, Rini Singh, M. D. Anoop, Vaibhav Kulshrestha, Divesh N. Srivastava, Kanad Ray, S. L. Kothari, Kamlendra Awasthi, Manoj Kumar. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Applied Physics A 2018, 124 (11) https://doi.org/10.1007/s00339-018-2161-9
  61. Zheng Cheng, Zhenyuan Bai, Yu Dai, Longbo Luo, Xiangyang Liu. Benzimidazole-containing aramid nanofiber for naked-eye detection of heavy metal ions. The Analyst 2018, 143 (21) , 5225-5233. https://doi.org/10.1039/C8AN01484A
  62. Jianjun Liao, Fan Yang, Cai-Zhuang Wang, Shiwei Lin. The crystal facet-dependent electrochemical performance of TiO2 nanocrystals for heavy metal detection: Theoretical prediction and experimental proof. Sensors and Actuators B: Chemical 2018, 271 , 195-202. https://doi.org/10.1016/j.snb.2018.05.067
  63. Wen-Yi Zhou, Xing-Jiu Huang. Facet and Phase-dependent Electroanalysis Performance of Nanocrystals in PTS Monitoring: Demonstrated by Density Functional Theory X-ray Absorption Fine Structure Spectroscopy. 2018,,, 195-261. https://doi.org/10.1002/9783527344109.ch6
  64. Bowen Cheng, Lin Zhou, Lili Lu, Jiyang Liu, Xiaoping Dong, Fengna Xi, Peng Chen. Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sensors and Actuators B: Chemical 2018, 259 , 364-371. https://doi.org/10.1016/j.snb.2017.12.083
  65. Wen-Yi Zhou, Shan-Shan Li, Xiang-Yu Xiao, Shi-Hua Chen, Jin-Huai Liu, Xing-Jiu Huang. Defect- and phase-engineering of Mn-mediated MoS 2 nanosheets for ultrahigh electrochemical sensing of heavy metal ions: chemical interaction-driven in situ catalytic redox reactions. Chemical Communications 2018, 54 (67) , 9329-9332. https://doi.org/10.1039/C8CC04575E
  66. Pawan Kumar, Ki-Hyun Kim, Vasudha Bansal, Theodore Lazarides, Naresh Kumar. Progress in the sensing techniques for heavy metal ions using nanomaterials. Journal of Industrial and Engineering Chemistry 2017, 54 , 30-43. https://doi.org/10.1016/j.jiec.2017.06.010