Challenges in Co-Alloyed Titanium Oxynitrides, a Promising Class of Photochemically Active Materials

View Author Information
Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
Cite this: Chem. Mater. 2015, 27, 21, 7207–7217
Publication Date (Web):October 8, 2015
https://doi.org/10.1021/acs.chemmater.5b02357
Copyright © 2015 American Chemical Society
Article Views
1499
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

We present a perspective on recent developments in modified TiO2 photocatalysts for visible light-driven photochemistry with an emphasis on water splitting. We focus on doped and alloyed TiO2 and in particular address the synergistic effects observed in materials with both transition metal cations and nonmetal anions. Several reports have demonstrated absorption of longer wavelengths (λ = 500–600 nm) by codoped materials compared to the absorption edge of TiO2. We review these advances against the backdrop of well-established doped TiO2 research, suggesting on the basis of compositional analysis and wavelength-resolved measurements of photon conversion efficiency that the increase in visible light absorption is likely due to absorption between defect states rather than true band gap narrowing. We draw a distinction between codoped and co-alloyed materials, stressing the attractive electronic structure of the latter. In highlighting recent literature, data examining the rate of photochemical water splitting or magnitude of anodic current as they depend on the wavelength of incident light are emphasized. Finally, areas for further research are highlighted, particularly in the synthesis of co-alloyed compositions of TiO2.

Cited By


This article is cited by 28 publications.

  1. Jihua Zhang, Panluo Deng, Mingsen Deng, Hujun Shen, Zhenzhen Feng, Hang Li. Hybrid Density Functional Theory Study of Native Defects and Nonmetal (C, N, S, and P) Doping in a Bi2WO6 Photocatalyst. ACS Omega 2020, 5 (45) , 29081-29091. https://doi.org/10.1021/acsomega.0c03685
  2. Nikhil Reddy Mucha, Jacob Som, Jonghyun Choi, Surabhi Shaji, Ram K. Gupta, Harry M. Meyer, Corson L. Cramer, Amy M. Elliott, Dhananjay Kumar. High-Performance Titanium Oxynitride Thin Films for Electrocatalytic Water Oxidation. ACS Applied Energy Materials 2020, 3 (9) , 8366-8374. https://doi.org/10.1021/acsaem.0c00988
  3. Hajime Wagata, Kenta Sakakibara, Kenta Kawashima, Mirabbos Hojamberdiev, Kunio Yubuta, Katsuya Teshima. Alkali Metal Chloride Flux Growth of Ilmenite-Type ZnTiO3 and Subsequent Nitrogen Doping for Visible-Light-Driven Water Oxidation Catalysis. ACS Applied Energy Materials 2019, 2 (11) , 7762-7771. https://doi.org/10.1021/acsaem.9b00815
  4. Dileka Abeysinghe, Sara E. Skrabalak. Toward Shape-Controlled Metal Oxynitride and Nitride Particles for Solar Energy Applications. ACS Energy Letters 2018, 3 (6) , 1331-1344. https://doi.org/10.1021/acsenergylett.8b00518
  5. Heechae Choi, Dongbin Shin, Byung Chul Yeo, Taeseup Song, Sang Soo Han, Noejung Park, and Seungchul Kim . Simultaneously Controllable Doping Sites and the Activity of a W–N Codoped TiO2 Photocatalyst. ACS Catalysis 2016, 6 (5) , 2745-2753. https://doi.org/10.1021/acscatal.6b00104
  6. Huogen Yu, Xiao Huang, Ping Wang, and Jiaguo Yu . Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst. The Journal of Physical Chemistry C 2016, 120 (7) , 3722-3730. https://doi.org/10.1021/acs.jpcc.6b00126
  7. Pablo Jiménez-Calvo, Valérie Caps, Valérie Keller. Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges. Renewable and Sustainable Energy Reviews 2021, 149 , 111095. https://doi.org/10.1016/j.rser.2021.111095
  8. Zhenquan Li, Yi Li, Cong Wang, Mengshen Zhang, Lu Huang, Jianming Lai, Linjun Wang, Jianming Li, Xu Jin, Weiguang Yang. Construction of a TiO2 heterostructure nanowire with a sulfurized shell via a simple sulfurization process for enhanced photoelectrochemical water oxidation. Journal of Alloys and Compounds 2021, 858 , 158375. https://doi.org/10.1016/j.jallcom.2020.158375
  9. Nikolaos Diamantopoulos, Alexandros Barnasas, Christos. Garoufalis, Dimitrios Anyfantis, Nikolaos Bouropoulos, Panagiotis Poulopoulos, Sotirios Baskoutas. Band Gap Measurements of Nano-Meter Sized Rutile Thin Films. Nanomaterials 2020, 10 (12) , 2379. https://doi.org/10.3390/nano10122379
  10. Nikhil R. Mucha, Jacob Som, Surabhi Shaji, Svitlana Fialkova, Prakash R. Apte, Balamurugan Balasubramanian, Jeffrey E. Shield, Mark Anderson, Dhananjay Kumar. Electrical and optical properties of titanium oxynitride thin films. Journal of Materials Science 2020, 55 (12) , 5123-5134. https://doi.org/10.1007/s10853-019-04278-x
  11. M. Sakar, R. Mithun Prakash, Kiran Shinde, Geetha R. Balakrishna. Revisiting the materials and mechanism of metal oxynitrides for photocatalysis. International Journal of Hydrogen Energy 2020, 45 (13) , 7691-7705. https://doi.org/10.1016/j.ijhydene.2019.04.222
  12. Marianna Bellardita, Roberto Fiorenza, Leonardo Palmisano, Salvatore Scirè. Photocatalytic and photothermocatalytic applications of cerium oxide-based materials. 2020,,, 109-167. https://doi.org/10.1016/B978-0-12-815661-2.00004-9
  13. Jian Zhao, Pengyao Han, Shengnan Tian, Haiting Shi, Jiahuan He, Changfa Xiao. Polypyrrole/cadmium sulfide hollow fiber with high performance contaminant removal and photocatalytic activity fabricated by layer-by-layer deposition and fiber-sacrifice template approach. Journal of Colloid and Interface Science 2019, 557 , 94-102. https://doi.org/10.1016/j.jcis.2019.08.095
  14. Kamini Gupta, Jatinder Kumar, R. P. Singh, Anjana Pandey, Priya Rai, Ashutosh Pandey. Standardised nanostructured Ta/N-TiO 2 For environmental contaminants: an efficient visible light induced photochemical quencher for dyes. Materials Technology 2019, 34 (13) , 765-775. https://doi.org/10.1080/10667857.2019.1628331
  15. Aya A. Saleh, Mahmoud Farag, Nageh K. Allam. Correlation between microstructural defects and photoelectrochemical performance of 1D Ti–Nb composite oxide photoanodes for solar water splitting. International Journal of Hydrogen Energy 2019, 44 (45) , 24418-24429. https://doi.org/10.1016/j.ijhydene.2019.07.219
  16. Marianna Bellardita, Elisa Isabel García‐López, Giuseppe Marcì, Giorgio Nasillo, Leonardo Palmisano. Photocatalytic Solar Light H 2 Production by Aqueous Glucose Reforming. European Journal of Inorganic Chemistry 2018, 2018 (41) , 4522-4532. https://doi.org/10.1002/ejic.201800663
  17. Luca Rimoldi, Eleonora Pargoletti, Daniela Meroni, Ermelinda Falletta, Giuseppina Cerrato, Francesca Turco, Giuseppe Cappelletti. Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catalysis Today 2018, 313 , 40-46. https://doi.org/10.1016/j.cattod.2017.12.017
  18. Khaled Soussi, Shashank Mishra, Erwann Jeanneau, Arnaud Mantoux, Stéphane Daniele. Synthesis, characterization and thermal transport properties of heteroleptic N-alkyl triazenide complexes of titanium(IV) and niobium(V). Polyhedron 2018, 152 , 84-89. https://doi.org/10.1016/j.poly.2018.06.023
  19. Chinh-Chien Nguyen, Duc Trung Nguyen, Trong-On Do. A novel route to synthesize C/Pt/TiO2 phase tunable anatase–Rutile TiO2 for efficient sunlight-driven photocatalytic applications. Applied Catalysis B: Environmental 2018, 226 , 46-52. https://doi.org/10.1016/j.apcatb.2017.12.038
  20. Juliana Ferreira de Brito, Francesco Tavella, Chiara Genovese, Claudio Ampelli, Maria Valnice Boldrin Zanoni, Gabriele Centi, Siglinda Perathoner. Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Applied Catalysis B: Environmental 2018, 224 , 136-145. https://doi.org/10.1016/j.apcatb.2017.09.071
  21. Thomas Favet, Dris Ihiawakrim, Valérie Keller, Thomas Cottineau. Anions and cations distribution in M 5+ /N 3- co-alloyed TiO 2 nanotubular structures for photo-electrochemical water splitting. Materials Science in Semiconductor Processing 2018, 73 , 22-29. https://doi.org/10.1016/j.mssp.2017.05.018
  22. Lexuan Zhong, James J. Brancho, Stuart Batterman, Bart M. Bartlett, Christopher Godwin. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental 2017, 216 , 122-132. https://doi.org/10.1016/j.apcatb.2017.05.047
  23. Yang Yang, Fei Teng, Yandong Kan, Liming Yang, Zailun Liu, Wenhao Gu, An Zhang, Weiyi Hao, Yiran Teng. Investigation of the charges separation and transfer behavior of BiOCl/BiF3 heterojunction. Applied Catalysis B: Environmental 2017, 205 , 412-420. https://doi.org/10.1016/j.apcatb.2016.12.062
  24. Yitao Wu, Yinyan Gong, Jiaqi Liu, Zhen Zhang, Yan Xu, Hui Ren, Can Li, Lengyuan Niu. B and Y co-doped TiO2 photocatalyst with enhanced photodegradation efficiency. Journal of Alloys and Compounds 2017, 695 , 1462-1469. https://doi.org/10.1016/j.jallcom.2016.10.284
  25. T. Cottineau, H. Cachet, V. Keller, E. M. M. Sutter. Influence of the anatase/rutile ratio on the charge transport properties of TiO 2 -NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy. Physical Chemistry Chemical Physics 2017, 19 (46) , 31469-31478. https://doi.org/10.1039/C7CP06270B
  26. James J. Brancho, Aaron D. Proctor, Shobhana Panuganti, Bart M. Bartlett. Urea-glass preparation of titanium niobium nitrides and subsequent oxidation to photoactive titanium niobium oxynitrides. Dalton Transactions 2017, 46 (36) , 12081-12087. https://doi.org/10.1039/C7DT03077K
  27. Zhihua Liu, Jing Zhang, Tiantian Hong, Xuerong Zheng, Keying Guo, Zhifeng Liu. High-efficiency nanorod-nanosheet arrays sandwich photoelectrode for photoelectrochemical water splitting. International Journal of Hydrogen Energy 2016, 41 (31) , 13359-13367. https://doi.org/10.1016/j.ijhydene.2016.05.107
  28. James J. Brancho, Bart M. Bartlett. ChemInform Abstract: Challenges in Co-Alloyed Titanium Oxynitrides, a Promising Class of Photochemically Active Materials.. ChemInform 2016, 47 (1) https://doi.org/10.1002/chin.201601211