Unraveling the Origin of Visible Light Capture by Core–Shell TiO2 Nanotubes

View Author Information
Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Joint Centre for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu 215123, Peoples’ Republic of China
§ Department of Mechanical and Material Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Department of Physics, Tamkang University, New Taipei City 25137, Taiwan, The Republic of China
# Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
Cite this: Chem. Mater. 2016, 28, 12, 4467–4475
Publication Date (Web):May 24, 2016
https://doi.org/10.1021/acs.chemmater.6b01673
Copyright © 2016 American Chemical Society
Article Views
1359
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

A black TiO2 nanotube (NT) heterostructure with an anatase-core and an amorphous-shell has been synthesized by NH3 annealing of amorphous NT grown by the anodization of a Ti substrate. Remarkable photoabsorption behavior of these black TiO2 NTs is observed: strong absorption throughout the entire optical wavelength region from ultraviolet to near-infrared. X-ray absorption near-edge structure (XANES), X-ray photoelectron spectroscopy (XPS) and resonant inelastic X-ray scattering (RIXS) have been used to elucidate the origin of this spectacular light capture phenomenon. Surface-sensitive XANES recorded in total electron yield and XPS show that the surface layer is amorphous with a chemical composition approaching that of Ti4O7. Bulk-sensitive XANES using X-ray partial fluorescence yield and Ti 2p RIXS confirm the presence of a rich amount of Ti3+ in the crystalline bulk (core of the NT with anatase structure) of black TiO2 NTs, which exhibits a dispersive d-d energy loss at ∼2 eV corresponding to the broad visible light absorption at ∼600 nm. Our results suggest that the extraordinary photoabsorption behavior of these black TiO2 NTs is due to the stabilization of Ti3+ in this special N-doped core–shell assembly having structure varying between TiO2 (bulk anatase) and Ti4O7 (surface, amorphous).

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b01673.

  • SEM results (Figure S1), absorbance after air aging (Figure S2), O K-edge XANES analysis (Figure S3), overlay of Ti L3,2-edge and O K-edge XANES (Figure S4), XPS fitting results of Ti 2p (Figure S5) and O 1s (Figure S6), N K-edge XANES analysis (Figure S7), and C 1s XPS spectra of as-grown and annealed samples (Figure S8) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 35 publications.

  1. Junggou Kwon, Kyoungjun Choi, Murielle Schreck, Tian Liu, Elena Tervoort, Markus Niederberger. Gas-Phase Nitrogen Doping of Monolithic TiO2 Nanoparticle-Based Aerogels for Efficient Visible Light-Driven Photocatalytic H2 Production. ACS Applied Materials & Interfaces 2021, 13 (45) , 53691-53701. https://doi.org/10.1021/acsami.1c12579
  2. Qing-He Shang, Jing-Nan Liu, Wan-Zhong Lang, Xi Yan, Xiao-Jing Guo, Ya-Jun Guo. Improved Catalytic Activity and Chemical Stability of Defective TiO2 Catalysts by Doping Rare Earth Metal Sc for Propane Dehydrogenation. Industrial & Engineering Chemistry Research 2021, 60 (35) , 12811-12820. https://doi.org/10.1021/acs.iecr.1c01568
  3. Chun-Feng Li, Xiaojing Guo, Qing-He Shang, Xi Yan, Cuilan Ren, Wan-Zhong Lang, Ya-Jun Guo. Defective TiO2 for Propane Dehydrogenation. Industrial & Engineering Chemistry Research 2020, 59 (10) , 4377-4387. https://doi.org/10.1021/acs.iecr.9b06759
  4. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  5. Jun Li, Chang-Hai Liu, Mohammad Norouzi Banis, Daniel Vaccarello, Zhi-Feng Ding, Sui-Dong Wang, and Tsun-Kong Sham . Revealing the Synergy of Mono/Bimetallic PdPt/TiO2 Heterostructure for Enhanced Photoresponse Performance. The Journal of Physical Chemistry C 2017, 121 (44) , 24861-24870. https://doi.org/10.1021/acs.jpcc.7b08144
  6. Jun Li, Jian Liu, Qian Sun, Mohammad Norouzi Banis, Xueliang Sun, and Tsun-Kong Sham . Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO2 Nanotubes. The Journal of Physical Chemistry C 2017, 121 (21) , 11773-11782. https://doi.org/10.1021/acs.jpcc.7b01106
  7. Kan Zhang and Jong Hyeok Park . Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. The Journal of Physical Chemistry Letters 2017, 8 (1) , 199-207. https://doi.org/10.1021/acs.jpclett.6b02289
  8. Cheng-Hao Chuang, Chieh-Ming Chen, Yu-Cheng Shao, Ping-Hung Yeh, Chih-Ming Chang, Way-Faung Pong, Mukes Kapilashrami, Per-Anders Glans, Sheraz Gul, Gongming Wang, Yat Li, Jin Zhang, Jun Miyawaki, Hideharu Niwa, Yoshihisa Harada, Jin-Ming Chen, Jinghua Guo. Electronic surface reconstruction of TiO 2 nanocrystals revealed by resonant inelastic x-ray scattering. Journal of Vacuum Science & Technology A 2021, 39 (6) , 063204. https://doi.org/10.1116/6.0001247
  9. Xin Wang, Yin Liu, Meng Zhang, Dong Zhai, Yufeng Wang, Hui Zhuang, Bing Ma, Yu Qu, Xiaopeng Yu, Jingge Ma, Hongshi Ma, Qingqiang Yao, Chengtie Wu. 3D Printing of Black Bioceramic Scaffolds with Micro/Nanostructure for Bone Tumor‐Induced Tissue Therapy. Advanced Healthcare Materials 2021, 10 (21) , 2101181. https://doi.org/10.1002/adhm.202101181
  10. KAZI RAHMAN, Asit kumar Kar. Oxygen Vacancy and Adsorbed Superoxides Dependent Photocatalytic Activity of TiO2 Quantum Dot Thin Films for Degradation of Methylene Blue with Variation of Precursor Concentration. ECS Journal of Solid State Science and Technology 2021, https://doi.org/10.1149/2162-8777/ac1d25
  11. Meng Shen, Lingxia Zhang, Jianlin Shi. Defect Engineering of Photocatalysts towards Elevated CO 2 Reduction Performance. ChemSusChem 2021, 14 (13) , 2635-2654. https://doi.org/10.1002/cssc.202100677
  12. Yong Yan, Chunyue Liu, Hanwen Jian, Xing Cheng, Ting Hu, Dong Wang, Lu Shang, Ge Chen, Peter Schaaf, Xiayan Wang, Erjun Kan, Tierui Zhang. Substitutionally Dispersed High‐Oxidation CoO x Clusters in the Lattice of Rutile TiO 2 Triggering Efficient CoTi Cooperative Catalytic Centers for Oxygen Evolution Reactions. Advanced Functional Materials 2021, 31 (9) , 2009610. https://doi.org/10.1002/adfm.202009610
  13. Dandan Wang, Qiuju Li, Wei Miao, Ying Liu, Ningjie Du, Shun Mao. One-pot synthesis of ultrafine NiO loaded and Ti3+ in-situ doped TiO2 induced by cyclodextrin for efficient visible-light photodegradation of hydrophobic pollutants. Chemical Engineering Journal 2020, 402 , 126211. https://doi.org/10.1016/j.cej.2020.126211
  14. Rab Nawaz, Chong Fai Kait, Ho Yeek Chia, Mohamed Hasnain Isa, Lim Wen Huei. Structural elucidation of core–shell TiO2 nanomaterials for environmental pollutants removal: A focused mini review. Environmental Technology & Innovation 2020, 19 , 101007. https://doi.org/10.1016/j.eti.2020.101007
  15. T.S. Rajaraman, Sachin P. Parikh, Vimal G. Gandhi. Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal 2020, 389 , 123918. https://doi.org/10.1016/j.cej.2019.123918
  16. Xue Wang, Ziyun Wang, F. Pelayo García de Arquer, Cao-Thang Dinh, Adnan Ozden, Yuguang C. Li, Dae-Hyun Nam, Jun Li, Yi-Sheng Liu, Joshua Wicks, Zitao Chen, Miaofang Chi, Bin Chen, Ying Wang, Jason Tam, Jane Y. Howe, Andrew Proppe, Petar Todorović, Fengwang Li, Tao-Tao Zhuang, Christine M. Gabardo, Ahmad R. Kirmani, Christopher McCallum, Sung-Fu Hung, Yanwei Lum, Mingchuan Luo, Yimeng Min, Aoni Xu, Colin P. O’Brien, Bello Stephen, Bin Sun, Alexander H. Ip, Lee J. Richter, Shana O. Kelley, David Sinton, Edward H. Sargent. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy 2020, 5 (6) , 478-486. https://doi.org/10.1038/s41560-020-0607-8
  17. Haiyang Hu, Yan Lin, Yun Hang Hu. Synthesis, structures and applications of single component core-shell structured TiO2: A review. Chemical Engineering Journal 2019, 375 , 122029. https://doi.org/10.1016/j.cej.2019.122029
  18. Peng Bai, Xinli Tong, Yiqi Gao, Pengfei Guo. Oxygen-free water-promoted selective photocatalytic oxidative coupling of amines. Catalysis Science & Technology 2019, 9 (20) , 5803-5811. https://doi.org/10.1039/C9CY01311C
  19. Lulu Fang, Jinjun Chen, Miao Zhang, Xishun Jiang, Zhaoqi Sun. Introduction of Ti3+ ions into heterostructured TiO2 nanotree arrays for enhanced photoelectrochemical performance. Applied Surface Science 2019, 490 , 1-6. https://doi.org/10.1016/j.apsusc.2019.05.326
  20. Wenhan Kong, Yusheng Niu, Mengli Liu, Kaixiang Zhang, Gengfang Xu, Yao Wang, Xiwei Wang, Yuanhong Xu, Jinghong Li. One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots. Inorganic Chemistry Communications 2019, 105 , 151-157. https://doi.org/10.1016/j.inoche.2019.04.033
  21. Di Wu, Chen Li, Dashuai Zhang, Lili Wang, Xiaopeng Zhang, Zaifeng Shi, Qiang Lin. Photocatalytic improvement of Y 3+ modified TiO 2 prepared by a ball milling method and application in shrimp wastewater treatment. RSC Advances 2019, 9 (26) , 14609-14620. https://doi.org/10.1039/C9RA02307K
  22. Mengkun Tian, Chenze Liu, Jingxuan Ge, David Geohegan, Gerd Duscher, Gyula Eres. Recent progress in characterization of the core–shell structure of black titania. Journal of Materials Research 2019, 34 (07) , 1138-1153. https://doi.org/10.1557/jmr.2019.46
  23. Zhu Zhu, Ye Zhang, Yibo Zhang, Yanli Shang, Xueji Zhang, Yongqiang Wen. Preparation of [email protected] Nanofibers for Fruit Packaging Materials with Efficient Photocatalytic Degradation of Ethylene. Materials 2019, 12 (6) , 896. https://doi.org/10.3390/ma12060896
  24. Aaron Kirkey, Jun Li, T.K. Sham. Low temperature amorphous to anatase phase transition of titanium oxide nanotubes. Surface Science 2019, 680 , 68-74. https://doi.org/10.1016/j.susc.2018.10.012
  25. Gang Ou, Yushuai Xu, Bo Wen, Rui Lin, Binghui Ge, Yan Tang, Yuwei Liang, Cheng Yang, Kai Huang, Di Zu, Rong Yu, Wenxing Chen, Jun Li, Hui Wu, Li-Min Liu, Yadong Li. Tuning defects in oxides at room temperature by lithium reduction. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03765-0
  26. Xiaolan Kang, Ying Han, Xuezhi Song, Zhenquan Tan. A facile photoassisted route to synthesis N, F-codoped oxygen-deficient TiO2 with enhanced photocatalytic performance under visible light irradiation. Applied Surface Science 2018, 434 , 725-734. https://doi.org/10.1016/j.apsusc.2017.10.226
  27. Hao Zhang, Jinmeng Cai, Yating Wang, Moqing Wu, Ming Meng, Ye Tian, Xingang Li, Jing Zhang, Lirong Zheng, Zheng Jiang, Jinlong Gong. Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets. Applied Catalysis B: Environmental 2018, 220 , 126-136. https://doi.org/10.1016/j.apcatb.2017.08.046
  28. Li Cheng Kao, Yifan Ye, Yi-Sheng Liu, Chung Li Dong, Jinghua Guo, Sofia Ya Hsuan Liou. A facile route for the synthesis of heterogeneous crystal structures in hierarchical architectures with vacancy-driven defects via the oriented attachment growth mechanism. Journal of Materials Chemistry A 2018, 6 (23) , 10663-10673. https://doi.org/10.1039/C8TA01027G
  29. Xunhua Zhao, Sencer Selcuk, Annabella Selloni. Formation and stability of reduced Ti O x layers on anatase Ti O 2 ( 101 ) : Identification of a novel T i 2 O 3 phase. Physical Review Materials 2018, 2 (1) https://doi.org/10.1103/PhysRevMaterials.2.015801
  30. Yongzheng Shi, Dongzhi Yang, Yuan Li, Jin Qu, Zhong-Zhen Yu. Fabrication of [email protected] 2 /Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Applied Surface Science 2017, 426 , 622-629. https://doi.org/10.1016/j.apsusc.2017.06.302
  31. J. Li, A. Balaji, T.K. Sham. Tracking the morphology and phase transformations of anodic iron oxide nanotubes using X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 2017, 220 , 109-113. https://doi.org/10.1016/j.elspec.2016.11.009
  32. Jingnan Song, Maojun Zheng, Xiaoliang Yuan, Qiang Li, Faze Wang, Liguo Ma, Yuxiu You, Shaohua Liu, Pengjie Liu, Dongkai Jiang, Li Ma, Wenzhong Shen. Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. Journal of Materials Science 2017, 52 (12) , 6976-6986. https://doi.org/10.1007/s10853-017-0930-z
  33. Jinmeng Cai, Moqing Wu, Yating Wang, Hao Zhang, Ming Meng, Ye Tian, Xingang Li, Jing Zhang, Lirong Zheng, Jinlong Gong. Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals. Chem 2017, 2 (6) , 877-892. https://doi.org/10.1016/j.chempr.2017.05.006
  34. Abhijit Kadam, Rohant Dhabbe, Dong-Su Shin, Kalyanrao Garadkar, Jinsub Park. Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method. Ceramics International 2017, 43 (6) , 5164-5172. https://doi.org/10.1016/j.ceramint.2017.01.039
  35. Adem Yar, Bircan Haspulat, Tugay Üstün, Volkan Eskizeybek, Ahmet Avcı, Handan Kamış, Slimane Achour. Electrospun TiO 2 /ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Advances 2017, 7 (47) , 29806-29814. https://doi.org/10.1039/C7RA03699J