FeCrAl as a Catalyst Support

  • Gianluca Pauletto
    Gianluca Pauletto
    Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
    Department of Chemistry, Technical University of Munich, 4 Lichtenbergstr, 85747 Garching, Germany
  • Angelo Vaccari
    Angelo Vaccari
    Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 41036 Bologna, Italy
  • Gianpiero Groppi
    Gianpiero Groppi
    Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
  • Lauriane Bricaud
    Lauriane Bricaud
    Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
    Ecole Nationale Superieure des Mines, 158 Cours Fauriel, 42023 St Etienne, France
  • Patricia Benito
    Patricia Benito
    Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 41036 Bologna, Italy
  • Daria C. Boffito
    Daria C. Boffito
    Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
  • Johannes A. Lercher
    Johannes A. Lercher
    Department of Chemistry, Technical University of Munich, 4 Lichtenbergstr, 85747 Garching, Germany
    Pacific Northwest National Laboratory, Institute for Integrated Catalysis, 902 Battelle Boulevard, Richland, Washington 99352, United States
  • , and 
  • Gregory S. Patience*
    Gregory S. Patience
    Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
    *E-mail: [email protected]. Phone: +1 514 340 4711, ext 3439. Fax: +1 514 340 4059.
Cite this: Chem. Rev. 2020, 120, 15, 7516–7550
Publication Date (Web):June 30, 2020
https://doi.org/10.1021/acs.chemrev.0c00149
Copyright © 2020 American Chemical Society
Article Views
2635
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (32 MB)

Abstract

The iron-chromium-aluminum alloy (FeCrAl) is an exceptional support for highly exothermic and endothermic reactions that operate above 700 °C in chemically aggressive environments, where low heat and mass transfer rates limit reaction yield. FeCrAl two- and three-dimensional structured networks—monoliths, foams, and fibers—maximize mass transfer rates, while their remarkable thermal conductivity minimizes hot spots and thermal gradients. Another advantage of the open FeCrAl structure is the low pressure drop due to the high void fraction and regularity of the internal path. The surface Al2O3 layer, formed after an initial thermal oxidation, supports a wide range of metal and metal oxide active phases. The aluminum oxide that adheres to the metal surface protects it from corrosive atmospheres and carbon (carburization), thus allowing FeCrAl to operate at a higher temperature. The top applications are industrial burners, in which compact knitted metal fibers distribute heat over large surface areas, and automotive tail gas converters. Future applications include producing H2 and syngas from remote natural gas in modular units. This Review summarizes the specific preparation techniques, details process operating conditions and catalyst performance of several classes of reactions, and highlights positive and challenging aspects of FeCrAl.

Cited By


This article is cited by 15 publications.

  1. F. Cazaña, N. Latorre, P. Tarifa, C.J. Royo, V. Sebastián, E. Romeo, M.A. Centeno, A. Monzón. Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature. Catalysis Today 2022, 383 , 236-246. https://doi.org/10.1016/j.cattod.2020.12.003
  2. Peng Yan, Yuxin Chen, Yi Cheng. Industrially potential [email protected] structured catalyst for oxidative dehydrogenation of ethane. Chemical Engineering Journal 2022, 427 , 131813. https://doi.org/10.1016/j.cej.2021.131813
  3. Matteo Ambrosetti, Alessandra Beretta, Gianpiero Groppi, Enrico Tronconi. A Numerical Investigation of Electrically-Heated Methane Steam Reforming Over Structured Catalysts. Frontiers in Chemical Engineering 2021, 3 https://doi.org/10.3389/fceng.2021.747636
  4. S.V. Zazhigalov, V.A. Shilov, V.N. Rogozhnikov, D.I. Potemkin, V.A. Sobyanin, A.N. Zagoruiko, P.V. Snytnikov. Modeling of hydrogen production by diesel reforming over Rh/Ce0.75Zr0.25O2‐δ‐ƞ‐Al2O3/FeCrAl wire mesh honeycomb catalytic module. Catalysis Today 2021, 378 , 240-248. https://doi.org/10.1016/j.cattod.2020.11.015
  5. Yasukazu Kobayashi, Heng Yi Teah, Nobuko Hanada. Environmentally friendly chemical synthesis of intermetallic iron aluminide submicrometer particles. Journal of Cleaner Production 2021, 316 , 128264. https://doi.org/10.1016/j.jclepro.2021.128264
  6. V.A. Shilov, V.N. Rogozhnikov, D.I. Potemkin, V.D. Belyaev, M.V. Shashkov, V.A. Sobyanin, P.V. Snytnikov. The influence of aromatic compounds on the Rh-containing structured catalyst performance in steam and autothermal reforming of diesel fuel. International Journal of Hydrogen Energy 2021, 43 https://doi.org/10.1016/j.ijhydene.2021.08.226
  7. Gianluca Pauletto, Mathilde Mendil, Nicole Libretto, Paolo Mocellin, Jeffrey T. Miller, Gregory S. Patience. Short contact time CH4 partial oxidation over Ni based catalyst at 1.5 MPa. Chemical Engineering Journal 2021, 414 , 128831. https://doi.org/10.1016/j.cej.2021.128831
  8. Gianluca Pauletto, Nicole Libretto, Daria C. Boffito, Jeffrey T. Miller, Andreas Jentys, Gregory S. Patience, Johannes A. Lercher. Ni/CeO2 promoted Ru and Pt supported on FeCrAl gauze for cycling methane catalytic partial oxidation—CPOX. Applied Catalysis B: Environmental 2021, 286 , 119849. https://doi.org/10.1016/j.apcatb.2020.119849
  9. V.N. Rogozhnikov, D.I. Potemkin, V.P. Pakharukova, V.D. Belyaev, V.V. Nedolivko, A.P. Glotov, V.A. Sobyanin, P.V. Snytnikov. Structured catalysts for the conversion of liquefied petroleum gas to hydrogen-rich gas and for anode off-gas afterburning. International Journal of Hydrogen Energy 2021, 256 https://doi.org/10.1016/j.ijhydene.2021.03.164
  10. V.A. Shilov, V.N. Rogozhnikov, S.V. Zazhigalov, D.I. Potemkin, V.D. Belyaev, M.V. Shashkov, A.N. Zagoruiko, V.A. Sobyanin, P.V. Snytnikov. Operation of Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl wire mesh honeycomb catalytic modules in diesel steam and autothermal reforming. International Journal of Hydrogen Energy 2021, 43 https://doi.org/10.1016/j.ijhydene.2021.02.092
  11. Carmen W. Moncada Quintero, Giuliana Ercolino, Abhinav Poozhikunnath, Radenka Maric, Stefania Specchia. Analysis of heat and mass transfer limitations for the combustion of methane emissions on PdO/Co3O4 coated on ceramic open cell foams. Chemical Engineering Journal 2021, 405 , 126970. https://doi.org/10.1016/j.cej.2020.126970
  12. I.V. Lukiyanchuk, M.S. Vasilyeva, A.A. Sergeev, A.V. Nepomnyashchii, M.M. Serov, B.L. Krit. Role and behavior of ultra-thin gold films on the fiber materials surface in the CO oxidation process. Journal of Alloys and Compounds 2021, 852 , 157042. https://doi.org/10.1016/j.jallcom.2020.157042
  13. V.N. Rogozhnikov, A.N. Salanov, D.I. Potemkin, A.P. Glotov, S.V. Boev, P.V. Snytnikov. Synthesis and studies of structured support Ce0.75Zr0.25O2/θ-Al2O3/FeCrAl. Materials Letters 2021, 283 , 128855. https://doi.org/10.1016/j.matlet.2020.128855
  14. Phuoc Hoang Ho, Giancosimo Sanghez de Luna, Francesca Ospitali, Giuseppe Fornasari, Angelo Vaccari, Patricia Benito. Open-cell foams coated by Ni/X/Al hydrotalcite-type derived catalysts (X = Ce, La, Y) for CO2 methanation. Journal of CO2 Utilization 2020, 42 , 101327. https://doi.org/10.1016/j.jcou.2020.101327
  15. D. I. Potemkin, P. V. Snytnikov, S. D. Badmaev, S. I. Uskov, A. M. Gorlova, V. N. Rogozhnikov, A. A. Pechenkin, A. V. Kulikov, V. A. Shilov, N. V. Ruban, V. D. Belyaev, V. A. Sobyanin. Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes. Nanotechnologies in Russia 2020, 15 (3-6) , 308-313. https://doi.org/10.1134/S1995078020030106