Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures

View Author Information
Department of Chemistry, and Centre of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
§ Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany
Department of Biochemistry and Food Chemistry, University of Turku, 20014 Turku, Finland
# Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
Cite this: Chem. Rev. 2016, 116, 5, 2886–2936
Publication Date (Web):January 26, 2016
https://doi.org/10.1021/acs.chemrev.5b00340
Copyright © 2016 American Chemical Society
Article Views
8331
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (19 MB)

Abstract

All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn–Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25–90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn–Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.

Cited By


This article is cited by 414 publications.

  1. Deepika G. Karmalkar, Mi Sook Seo, Yong-Min Lee, Youngsuk Kim, Eunsung Lee, Ritimukta Sarangi, Shunichi Fukuzumi, Wonwoo Nam. Deeper Understanding of Mononuclear Manganese(IV)–Oxo Binding Brønsted and Lewis Acids and the Manganese(IV)–Hydroxide Complex. Inorganic Chemistry 2021, 60 (22) , 16996-17007. https://doi.org/10.1021/acs.inorgchem.1c02119
  2. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  3. Ruoqing Yao, Yanxi Li, Yang Chen, Boran Xu, Changhui Chen, Chunxi Zhang. Rare-Earth Elements Can Structurally and Energetically Replace the Calcium in a Synthetic Mn4CaO4-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. Journal of the American Chemical Society 2021, 143 (42) , 17360-17365. https://doi.org/10.1021/jacs.1c09085
  4. Jing Yang, Mostafa Youssef, Bilge Yildiz. Structure, Kinetics, and Thermodynamics of Water and Its Ions at the Interface with Monoclinic ZrO2 Resolved via Ab Initio Molecular Dynamics. The Journal of Physical Chemistry C 2021, 125 (28) , 15233-15242. https://doi.org/10.1021/acs.jpcc.1c02064
  5. Guilin Ruan, Pritam Ghosh, Natalia Fridman, Galia Maayan. A Di-Copper-Peptoid in a Noninnocent Borate Buffer as a Fast Electrocatalyst for Homogeneous Water Oxidation with Low Overpotential. Journal of the American Chemical Society 2021, 143 (28) , 10614-10623. https://doi.org/10.1021/jacs.1c03225
  6. Zahra Abdi, S. Esmael Balaghi, Alla S. Sologubenko, Marc-Georg Willinger, Matthias Vandichel, Jian-Ren Shen, Suleyman I. Allakhverdiev, Greta R. Patzke, Mohammad Mahdi Najafpour. Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9494-9505. https://doi.org/10.1021/acssuschemeng.1c03539
  7. Ryland C. Forsythe, Connor P. Cox, Madeleine K. Wilsey, Astrid M. Müller. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews 2021, 121 (13) , 7568-7637. https://doi.org/10.1021/acs.chemrev.0c01069
  8. Linfeng Liang, Ke-Yu Niu, Linjie Zhang, Jiayue Tian, Kang Zhou, Xiao-Lu Wang, Xian-Ming Zhang, Maochun Hong. Engineering Oxygen Vacancies in Mesocrystalline CuO Nanosheets for Water Oxidation. ACS Applied Nano Materials 2021, 4 (6) , 6135-6144. https://doi.org/10.1021/acsanm.1c00941
  9. S. Esmael Balaghi, Somayeh Mehrabani, Younes Mousazade, Robabeh Bagheri, Alla S. Sologubenko, Zhenlun Song, Greta R. Patzke, Mohammad Mahdi Najafpour. Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy. ACS Applied Materials & Interfaces 2021, 13 (17) , 19927-19937. https://doi.org/10.1021/acsami.1c00243
  10. Mahya Salmanion, Mohammad Mahdi Najafpour. Dendrimer-Ni-Based Material: Toward an Efficient Ni–Fe Layered Double Hydroxide for Oxygen-Evolution Reaction. Inorganic Chemistry 2021, 60 (8) , 6073-6085. https://doi.org/10.1021/acs.inorgchem.1c00561
  11. Nader Akbari, Ivan Kondov, Matthias Vandichel, Pavlo Aleshkevych, Mohammad Mahdi Najafpour. Oxygen-Evolution Reaction by a Palladium Foil in the Presence of Iron. Inorganic Chemistry 2021, 60 (8) , 5682-5693. https://doi.org/10.1021/acs.inorgchem.0c03746
  12. Emanuel Ronge, Jonas Lindner, Ulrich Ross, Jens Melder, Jonas Ohms, Vladimir Roddatis, Philipp Kurz, Christian Jooss. Atom Surface Dynamics of Manganese Oxide under Oxygen Evolution Reaction-Like Conditions Studied by In Situ Environmental Transmission Electron Microscopy. The Journal of Physical Chemistry C 2021, 125 (9) , 5037-5047. https://doi.org/10.1021/acs.jpcc.0c09806
  13. Sima Heidari, S. Esmael Balaghi, Alla S. Sologubenko, Greta R. Patzke. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catalysis 2021, 11 (5) , 2511-2523. https://doi.org/10.1021/acscatal.0c03388
  14. Silvia D’Agostini, Konstantin G. Kottrup, Carla Casadevall, Ilaria Gamba, Valeria Dantignana, Alberto Bucci, Miquel Costas, Julio Lloret-Fillol, Dennis G.H. Hetterscheid. Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf)2] and Analogues. ACS Catalysis 2021, 11 (5) , 2583-2595. https://doi.org/10.1021/acscatal.0c05439
  15. Xiangyang Guo, Lifang Liu, Yu Xiao, Rashid Mehmood, Yejun Xiao, Yu Qi, Fuxiang Zhang. Water-Stable Cobalt-Based MOF for Water Oxidation in Neutral Aqueous Solution: A Case of Mimicking the Photosystem II. Inorganic Chemistry 2021, 60 (3) , 1790-1796. https://doi.org/10.1021/acs.inorgchem.0c03265
  16. Shun Tsunekawa, Futaba Yamamoto, Ke-Hsuan Wang, Masanari Nagasaka, Hayato Yuzawa, Satoru Takakusagi, Hiroshi Kondoh, Kiyotaka Asakura, Takeshi Kawai, Masaaki Yoshida. Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (43) , 23611-23618. https://doi.org/10.1021/acs.jpcc.0c05571
  17. Young Hyun Hong, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry 2020, 59 (20) , 14838-14846. https://doi.org/10.1021/acs.inorgchem.0c02254
  18. Younes Mousazade, Mohammad Reza Mohammadi, Petko Chernev, Robabeh Bagheri, Zhenlun Song, Holger Dau, Mohammad Mahdi Najafpour. Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study. Inorganic Chemistry 2020, 59 (20) , 15335-15342. https://doi.org/10.1021/acs.inorgchem.0c02305
  19. Shan-Shan Xue, Xiao-Xi Li, Yong-Min Lee, Mi Sook Seo, Yujeong Kim, Sachiko Yanagisawa, Minoru Kubo, Young-Kyo Jeon, Won-Suk Kim, Ritimukta Sarangi, Sun Hee Kim, Shunichi Fukuzumi, Wonwoo Nam. Enhanced Redox Reactivity of a Nonheme Iron(V)–Oxo Complex Binding Proton. Journal of the American Chemical Society 2020, 142 (36) , 15305-15319. https://doi.org/10.1021/jacs.0c05108
  20. Balasubramanian Jansi Rani, Ganesan Ravi, Rathinam Yuvakkumar, Balasubramaniam Saravanakumar, Mariyappan Thambidurai, Cuong Dang, Dhayalan Velauthapillai. CoNiSe2 Nanostructures for Clean Energy Production. ACS Omega 2020, 5 (24) , 14702-14710. https://doi.org/10.1021/acsomega.0c01476
  21. Mehmed Z. Ertem, Javier J. Concepcion. Oxygen Atom Transfer as an Alternative Pathway for Oxygen–Oxygen Bond Formation. Inorganic Chemistry 2020, 59 (9) , 5966-5974. https://doi.org/10.1021/acs.inorgchem.9b03751
  22. Indroneil Roy, Qi Wang, Vidhya Chakrapani. Nature of Reaction Intermediates and Origin of Bifunctionality in Manganese Oxide. The Journal of Physical Chemistry C 2020, 124 (9) , 5286-5299. https://doi.org/10.1021/acs.jpcc.0c00714
  23. S. Esmael Balaghi, C. A. Triana, Greta R. Patzke. Molybdenum-Doped Manganese Oxide as a Highly Efficient and Economical Water Oxidation Catalyst. ACS Catalysis 2020, 10 (3) , 2074-2087. https://doi.org/10.1021/acscatal.9b02718
  24. Kei Ikeda, Muhammad Haris Mahyuddin, Yoshihito Shiota, Aleksandar Staykov, Takahiro Matsumoto, Seiji Ogo, Kazunari Yoshizawa. Computational Study on the Light-Induced Oxidation of Iridium–Aqua Complex to Iridium–Oxo Complex over WO3(001) Surface. Inorganic Chemistry 2020, 59 (1) , 415-422. https://doi.org/10.1021/acs.inorgchem.9b02704
  25. Lei Wang, David W. Shaffer, Gerald F. Manbeck, Dmitry E. Polyansky, Javier J. Concepcion. High-Redox-Potential Chromophores for Visible-Light-Driven Water Oxidation at Low pH. ACS Catalysis 2020, 10 (1) , 580-585. https://doi.org/10.1021/acscatal.9b04034
  26. Zahra Zand, Payam Salimi, Mohammad Reza Mohammadi, Robabeh Bagheri, Petko Chernev, Zhenlun Song, Holger Dau, Mikaela Görlin, Mohammad Mahdi Najafpour. Nickel–Vanadium Layered Double Hydroxide under Water-Oxidation Reaction: New Findings and Challenges. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 17252-17262. https://doi.org/10.1021/acssuschemeng.9b03971
  27. Florian D. Speck, Pietro G. Santori, Frédéric Jaouen, Serhiy Cherevko. Mechanisms of Manganese Oxide Electrocatalysts Degradation during Oxygen Reduction and Oxygen Evolution Reactions. The Journal of Physical Chemistry C 2019, 123 (41) , 25267-25277. https://doi.org/10.1021/acs.jpcc.9b07751
  28. Lukas Reith, Karla Lienau, C. A. Triana, Sebastian Siol, Greta R. Patzke. Preparative History vs Driving Force in Water Oxidation Catalysis: Parameter Space Studies of Cobalt Spinels. ACS Omega 2019, 4 (13) , 15444-15456. https://doi.org/10.1021/acsomega.9b01677
  29. Prashant Kumar Gupta, Arihant Bhandari, Sulay Saha, Jishnu Bhattacharya, Raj Ganesh S. Pala. Modulating Oxygen Evolution Reactivity in MnO2 through Polymorphic Engineering. The Journal of Physical Chemistry C 2019, 123 (36) , 22345-22357. https://doi.org/10.1021/acs.jpcc.9b05823
  30. Hideaki Takahashi, Daiki Suzuoka, Shun Sakuraba, Akihiro Morita. Role of the Photosystem II as an Environment in the Oxidation Free Energy of the Mn Cluster from S1 to S2. The Journal of Physical Chemistry B 2019, 123 (33) , 7081-7091. https://doi.org/10.1021/acs.jpcb.9b03831
  31. Sachidulal Biswas, Amritaa Mitra, Sridhar Banerjee, Reena Singh, Abhishek Das, Tapan Kanti Paine, Pinaki Bandyopadhyay, Satadal Paul, Achintesh N. Biswas. A High Spin Mn(IV)-Oxo Complex Generated via Stepwise Proton and Electron Transfer from Mn(III)–Hydroxo Precursor: Characterization and C–H Bond Cleavage Reactivity. Inorganic Chemistry 2019, 58 (15) , 9713-9722. https://doi.org/10.1021/acs.inorgchem.9b00579
  32. K. L. Dimuthu M. Weerawardene, Christine M. Aikens. Theoretical Investigation of Water Oxidation Mechanism on Pure Manganese and Ca-Doped Bimetal Oxide Complexes. The Journal of Physical Chemistry A 2019, 123 (29) , 6152-6159. https://doi.org/10.1021/acs.jpca.9b02652
  33. Young Hyun Hong, Ji Won Han, Jieun Jung, Tatsuo Nakagawa, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Photocatalytic Oxygenation Reactions with a Cobalt Porphyrin Complex Using Water as an Oxygen Source and Dioxygen as an Oxidant. Journal of the American Chemical Society 2019, 141 (23) , 9155-9159. https://doi.org/10.1021/jacs.9b02864
  34. Kei Ikeda, Yuta Hori, Muhammad Haris Mahyuddin, Yoshihito Shiota, Aleksandar Staykov, Takahiro Matsumoto, Kazunari Yoshizawa, Seiji Ogo. Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. Inorganic Chemistry 2019, 58 (11) , 7274-7284. https://doi.org/10.1021/acs.inorgchem.9b00307
  35. Young Hyun Hong, Jieun Jung, Tatsuo Nakagawa, Namita Sharma, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. Journal of the American Chemical Society 2019, 141 (16) , 6748-6754. https://doi.org/10.1021/jacs.9b02517
  36. Hadi Feizi, Robabeh Bagheri, Zhenlun Song, Jian-Ren Shen, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Cobalt/Cobalt Oxide Surface for Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 6093-6105. https://doi.org/10.1021/acssuschemeng.8b06269
  37. Konstantinos D. Vogiatzis, Mikhail V. Polynski, Justin K. Kirkland, Jacob Townsend, Ali Hashemi, Chong Liu, Evgeny A. Pidko. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews 2019, 119 (4) , 2453-2523. https://doi.org/10.1021/acs.chemrev.8b00361
  38. Muniyandi Sankaralingam, Yong-Min Lee, Yuliana Pineda-Galvan, Deepika G. Karmalkar, Mi Sook Seo, So Hyun Jeon, Yulia Pushkar, Shunichi Fukuzumi, Wonwoo Nam. Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society 2019, 141 (3) , 1324-1336. https://doi.org/10.1021/jacs.8b11492
  39. Zoel Codolà, Ilaria Gamba, Ferran Acuña-Parés, Carla Casadevall, Martin Clémancey, Jean-Marc Latour, Josep M. Luis, Julio Lloret-Fillol, Miquel Costas. Design of Iron Coordination Complexes as Highly Active Homogenous Water Oxidation Catalysts by Deuteration of Oxidation-Sensitive Sites. Journal of the American Chemical Society 2019, 141 (1) , 323-333. https://doi.org/10.1021/jacs.8b10211
  40. Garold Murdachaew, Kari Laasonen. Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene. The Journal of Physical Chemistry C 2018, 122 (45) , 25882-25892. https://doi.org/10.1021/acs.jpcc.8b08519
  41. Dimitrios A. Pantazis. Missing Pieces in the Puzzle of Biological Water Oxidation. ACS Catalysis 2018, 8 (10) , 9477-9507. https://doi.org/10.1021/acscatal.8b01928
  42. Sweta Shrestha, Prabir K. Dutta. Photochemical Water Oxidation in a Buffered Tris(2,2′-bipyridyl)ruthenium–Persulfate System Using Iron(III)-Modified Potassium Manganese Oxides as Catalysts. ACS Omega 2018, 3 (9) , 11972-11981. https://doi.org/10.1021/acsomega.8b01918
  43. Claudio Saracini, Deesha D. Malik, Muniyandi Sankaralingam, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt–Oxygen Complex. Inorganic Chemistry 2018, 57 (17) , 10945-10952. https://doi.org/10.1021/acs.inorgchem.8b01571
  44. Johannes G. Vos, Tim A. Wezendonk, Adriaan W. Jeremiasse, Marc T. M. Koper. MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. Journal of the American Chemical Society 2018, 140 (32) , 10270-10281. https://doi.org/10.1021/jacs.8b05382
  45. G. L. Gutsev, K. V. Bozhenko, L. G. Gutsev, A. N. Utenyshev, S. M. Aldoshin. Dependence of Properties and Exchange Coupling Constants on the Charge in the Mn2On and Fe2On Series. The Journal of Physical Chemistry A 2018, 122 (25) , 5644-5655. https://doi.org/10.1021/acs.jpca.8b03496
  46. Yulia Pushkar, Katherine M. Davis, Mark C. Palenik. Model of the Oxygen Evolving Complex Which Is Highly Predisposed to O–O Bond Formation. The Journal of Physical Chemistry Letters 2018, 9 (12) , 3525-3531. https://doi.org/10.1021/acs.jpclett.8b00800
  47. J. H. Marks, T. B. Ward, M. A. Duncan. Photodissociation of Manganese Oxide Cluster Cations. The Journal of Physical Chemistry A 2018, 122 (13) , 3383-3390. https://doi.org/10.1021/acs.jpca.8b01441
  48. Yuchao Zhang, Hongna Zhang, Anan Liu, Chuncheng Chen, Wenjing Song, Jincai Zhao. Rate-Limiting O–O Bond Formation Pathways for Water Oxidation on Hematite Photoanode. Journal of the American Chemical Society 2018, 140 (9) , 3264-3269. https://doi.org/10.1021/jacs.7b10979
  49. Ye-Fei Li and Zhi-Pan Liu . Active Site Revealed for Water Oxidation on Electrochemically Induced δ-MnO2: Role of Spinel-to-Layer Phase Transition. Journal of the American Chemical Society 2018, 140 (5) , 1783-1792. https://doi.org/10.1021/jacs.7b11393
  50. Hamed Simchi, Kayla A. Cooley, Jonas Ohms, Lingqin Huang, Philipp Kurz, and Suzanne E. Mohney . Cosputtered Calcium Manganese Oxide Electrodes for Water Oxidation. Inorganic Chemistry 2018, 57 (2) , 785-792. https://doi.org/10.1021/acs.inorgchem.7b02717
  51. Dong Wang and Charlie O. Bruner . Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand. Inorganic Chemistry 2017, 56 (22) , 13638-13641. https://doi.org/10.1021/acs.inorgchem.7b02166
  52. Song Xu, Lukas Bucinsky, Martin Breza, J. Krzystek, Chun-Hsing Chen, Maren Pink, Joshua Telser, and Jeremy M. Smith . Ligand Substituent Effects in Manganese Pyridinophane Complexes: Implications for Oxygen-Evolving Catalysis. Inorganic Chemistry 2017, 56 (22) , 14315-14325. https://doi.org/10.1021/acs.inorgchem.7b02421
  53. Aniketa Shinde, Santosh K. Suram, Qimin Yan, Lan Zhou, Arunima K. Singh, Jie Yu, Kristin A. Persson, Jeffrey B. Neaton, and John M. Gregoire . Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Letters 2017, 2 (10) , 2307-2312. https://doi.org/10.1021/acsenergylett.7b00607
  54. Marcel Risch, Kelsey A. Stoerzinger, Binghong Han, Tom Z. Regier, Derek Peak, Sayed Youssef Sayed, Chao Wei, Zhichuan Xu, and Yang Shao-Horn . Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study. The Journal of Physical Chemistry C 2017, 121 (33) , 17682-17692. https://doi.org/10.1021/acs.jpcc.7b05592
  55. Karthika J. Kadassery, Suman Kr Dey, Anthony F. Cannella, Roshaan Surendhran, and David C. Lacy . Photochemical Water-Splitting with Organomanganese Complexes. Inorganic Chemistry 2017, 56 (16) , 9954-9965. https://doi.org/10.1021/acs.inorgchem.7b01483
  56. Zhiji Han, Kyle T. Horak, Heui Beom Lee, and Theodor Agapie . Tetranuclear Manganese Models of the OEC Displaying Hydrogen Bonding Interactions: Application to Electrocatalytic Water Oxidation to Hydrogen Peroxide. Journal of the American Chemical Society 2017, 139 (27) , 9108-9111. https://doi.org/10.1021/jacs.7b03044
  57. Cristina Tapia, Sergey Shleev, José Carlos Conesa, Antonio L. De Lacey, and Marcos Pita . Laccase-Catalyzed Bioelectrochemical Oxidation of Water Assisted with Visible Light. ACS Catalysis 2017, 7 (7) , 4881-4889. https://doi.org/10.1021/acscatal.7b01556
  58. Youxiu Lin, Qian Zhou, Dianping Tang, Reinhard Niessner, and Dietmar Knopp . Signal-On Photoelectrochemical Immunoassay for Aflatoxin B1 Based on Enzymatic Product-Etching MnO2 Nanosheets for Dissociation of Carbon Dots. Analytical Chemistry 2017, 89 (10) , 5637-5645. https://doi.org/10.1021/acs.analchem.7b00942
  59. Jann Odrobina, Julius Scholz, Andrea Pannwitz, Laia Francàs, Sebastian Dechert, Antoni Llobet, Christian Jooss, and Franc Meyer . Backbone Immobilization of the Bis(bipyridyl)pyrazolate Diruthenium Catalyst for Electrochemical Water Oxidation. ACS Catalysis 2017, 7 (3) , 2116-2125. https://doi.org/10.1021/acscatal.6b02860
  60. Jing Jiang, Lan Huang, Xiaomin Liu, and Lunhong Ai . Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (8) , 7193-7201. https://doi.org/10.1021/acsami.6b16534
  61. Masaaki Yoshida, Sho Onishi, Yosuke Mitsutomi, Futaba Yamamoto, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (1) , 255-260. https://doi.org/10.1021/acs.jpcc.6b08796
  62. Umberto Raucci, Ilaria Ciofini, Carlo Adamo, and Nadia Rega . Unveiling the Reactivity of a Synthetic Mimic of the Oxygen Evolving Complex. The Journal of Physical Chemistry Letters 2016, 7 (24) , 5015-5021. https://doi.org/10.1021/acs.jpclett.6b02144
  63. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
  64. Jianhua Bao, Lars Gundlach, Zhihao Yu, Jason B. Benedict, Robert C. Snoeberger, III, Victor S. Batista, Philip Coppens, and Piotr Piotrowiak . Hot Hole Hopping in a Polyoxotitanate Cluster Terminated with Catechol Electron Donors. The Journal of Physical Chemistry C 2016, 120 (36) , 20006-20015. https://doi.org/10.1021/acs.jpcc.6b06042
  65. Gan Wang, Min Zhang, Juan Xiang, Chenchen Hu, Chao Yang, Xintai Su, Lijuan Zhang. Controlled synthesis of 2D hetero-structured FeS2/rGO hybrids catalyst for visible-light-driven water oxidation. Journal of Alloys and Compounds 2022, 892 , 162187. https://doi.org/10.1016/j.jallcom.2021.162187
  66. Mahmoud Sayed, Feiyan Xu, Panyong Kuang, Jingxiang Low, Shengyao Wang, Liuyang Zhang, Jiaguo Yu. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25007-6
  67. Kiyoshi Fujisawa, Syuhei Sakuma, Riko Ikarugi, Anex Jose, Edward I. Solomon. Thermally stable manganese(III) peroxido complexes with hindered N3 tripodal ligands: Structures and their physicochemical properties. Journal of Inorganic Biochemistry 2021, 225 , 111597. https://doi.org/10.1016/j.jinorgbio.2021.111597
  68. Gao‐Lei Hou, Tao Yang, Mengyang Li, Jan Vanbuel, Olga V. Lushchikova, Piero Ferrari, Joost M. Bakker, Ewald Janssens. Water Splitting by C 60 ‐Supported Vanadium Single Atoms. Angewandte Chemie International Edition 2021, 39 https://doi.org/10.1002/anie.202112398
  69. Gao‐Lei Hou, Tao Yang, Mengyang Li, Jan Vanbuel, Olga V. Lushchikova, Piero Ferrari, Joost M. Bakker, Ewald Janssens. Water Splitting by C 60 ‐Supported Vanadium Single Atoms. Angewandte Chemie 2021, 39 https://doi.org/10.1002/ange.202112398
  70. Liya A. Vitukhnovskaya, Ruben A. Simonyan, Alexey Yu. Semenov, Mahir D. Mamedov. Generation of Photoelectric Responses by Photosystem II Core Complexes in the Presence of Externally Added Cytochrome c. Biochemistry (Moscow) 2021, 86 (11) , 1369-1376. https://doi.org/10.1134/S0006297921110018
  71. D. Thulasidharan, A. Arumugam, Kiran Babu Uppuluri. Research and economic perspectives on an integrated biorefinery approach for the simultaneous production of polyhydroxyalkanoates and biohydrogen. International Journal of Biological Macromolecules 2021, 37 https://doi.org/10.1016/j.ijbiomac.2021.11.025
  72. Л.А. Витухновская, Р.А. Симонян, А.Ю. Семенов, М.Д. Мамедов. Генерация фотоэлектрических ответов ядерными комплексами фотосистемы 2 в присутствии экзогенного цитохрома c. Биохимия 2021, 86 (11) , 1611-1619. https://doi.org/10.31857/S0320972521110014
  73. Emanuel Ronge, Jonas Ohms, Vladimir Roddatis, Travis Jones, Frederic Sulzmann, Axel Knop-Gericke, Robert Schlögl, Philipp Kurz, Christian Jooss, Katarzyna Skorupska. Operation of calcium-birnessite water-oxidation anodes: interactions of the catalyst with phosphate buffer anions. Sustainable Energy & Fuels 2021, 5 (21) , 5535-5547. https://doi.org/10.1039/D1SE01076J
  74. Sergii I. Shylin, James L. Pogrebetsky, Alina O. Husak, Dmytro Bykov, Andriy Mokhir, Frank Hampel, Sergiu Shova, Andrew Ozarowski, Elzbieta Gumienna-Kontecka, Igor O. Fritsky. Expanding manganese( iv ) aqueous chemistry: unusually stable water-soluble hexahydrazide clathrochelate complexes. Chemical Communications 2021, 57 (84) , 11060-11063. https://doi.org/10.1039/D1CC04870H
  75. Zi-Qiao Wu, Mei-Rong Zhang, Xiao-Yu Zhou Han-Chen, Jia-Le Yang, Yu-Heng Zhang, Wen-Hai Li. Catalyst-free [3+2] cycloaddition of azodicarbonyls and -hydroxyaryl azomethine ylides on water. Tetrahedron 2021, 99 , 132445. https://doi.org/10.1016/j.tet.2021.132445
  76. Yingdong Chen, Shujiao Yang, Hongfei Liu, Wei Zhang, Rui Cao. An unusual network of α-MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. Chinese Journal of Catalysis 2021, 42 (10) , 1724-1731. https://doi.org/10.1016/S1872-2067(21)63793-2
  77. Rafael C. Marchi, Inara Aguiar, Mariana R. Camilo, Adriano H. Braga, Eduardo S. P. Do Nascimento, Vinicius T. Santana, Otaciro R. Nascimento, Rose M. Carlos. Photochemical Properties of a Mononuclear Mn(I) Triscarbonyl Complex in Water: An Insight into Different Oxidation States. ChemistrySelect 2021, 6 (33) , 8746-8753. https://doi.org/10.1002/slct.202102283
  78. Dan Xiao, Jennifer Gregg, K. V. Lakshmi, Peter J. Bonitatibus. Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021, 11 (9) , 1068. https://doi.org/10.3390/catal11091068
  79. Xiaotong Jin, Xialiang Li, Haitao Lei, Kai Guo, Bin Lv, Hongbo Guo, Dandan Chen, Wei Zhang, Rui Cao. Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments. Journal of Energy Chemistry 2021, 115 https://doi.org/10.1016/j.jechem.2021.08.068
  80. Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Recent progress in production and usage of hydrogen peroxide. Chinese Journal of Catalysis 2021, 42 (8) , 1241-1252. https://doi.org/10.1016/S1872-2067(20)63767-6
  81. Qifa Chen, Haoyi Du, Mingtian Zhang. Buffer anion effects on water oxidation catalysis: The case of Cu(III) complex. Chinese Journal of Catalysis 2021, 42 (8) , 1338-1344. https://doi.org/10.1016/S1872-2067(20)63729-9
  82. Amirreza Valizadeh, Rahman Bikas, Pavlo Aleshkevych, Anna Kozakiewicz, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. A dinuclear iron complex as a precatalyst for water oxidation under alkaline conditions. International Journal of Hydrogen Energy 2021, 46 (58) , 29896-29904. https://doi.org/10.1016/j.ijhydene.2021.06.123
  83. Wei Zhang, Rui Cao. Switching the O–O bond-formation mechanism by controlling water activity. Chem 2021, 7 (8) , 1981-1982. https://doi.org/10.1016/j.chempr.2021.07.012
  84. Toyokazu Tanabe, Katsutoshi Nakamori, Tatsuhiro Tanikawa, Yasuo Matsubara, Futoshi Matsumoto. Ultrathin nanosheet Sn3O4 for highly effective hydrogen evolution under visible light. Journal of Photochemistry and Photobiology A: Chemistry 2021, 38 , 113486. https://doi.org/10.1016/j.jphotochem.2021.113486
  85. Mahir D. Mamedov, Georgy E. Milanovsky, Marco Malferrari, Liya A. Vitukhnovskaya, Francesco Francia, Alexey Yu. Semenov, Giovanni Venturoli. Trehalose matrix effects on electron transfer in Mn-depleted protein-pigment complexes of Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2021, 1862 (7) , 148413. https://doi.org/10.1016/j.bbabio.2021.148413
  86. Xingchen Gao, Kaixin Lu, Jianjun Chen, Jie Min, Deliang Zhu, Manlin Tan. NiCoP–CoP heterostructural nanowires grown on hierarchical Ni foam as a novel electrocatalyst for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy 2021, 46 (45) , 23205-23213. https://doi.org/10.1016/j.ijhydene.2021.03.155
  87. Carsten Walter, Prashanth W. Menezes, Matthias Driess. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chemical Science 2021, 12 (25) , 8603-8631. https://doi.org/10.1039/D1SC01901E
  88. Shujiao Yang, Shanhong Wan, Fanfan Shang, Dandan Chen, Wei Zhang, Rui Cao. Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chemical Communications 2021, 57 (50) , 6165-6168. https://doi.org/10.1039/D1CC01004B
  89. Mio Kondo, Hayato Tatewaki, Shigeyuki Masaoka. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chemical Society Reviews 2021, 50 (12) , 6790-6831. https://doi.org/10.1039/D0CS01442G
  90. Abhinandan Mahanta, Koushik Barman, Umme Solaem Akond, Sk Jasimuddin. Electrocatalytic oxidation of water using self-assembled copper( ii ) tetraaza macrocyclic complexes on a 4-(pyridine-4′-amido)benzene grafted gold electrode. New Journal of Chemistry 2021, 45 (19) , 8676-8682. https://doi.org/10.1039/D1NJ00630D
  91. Mingming Yin, He Miao, Ruigan Hu, Zixu Sun, Hong Li. Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources 2021, 494 , 229779. https://doi.org/10.1016/j.jpowsour.2021.229779
  92. Mahya Salmanion, Mohammad Mahdi Najafpour. Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions. International Journal of Hydrogen Energy 2021, 46 (37) , 19245-19253. https://doi.org/10.1016/j.ijhydene.2021.03.107
  93. Qingxin Zhang, Yabo Wang, Yanzhi Wang, Shujiao Yang, Xuan Wu, Bin Lv, Ni Wang, Yimei Gao, Xiaoran Xu, Haitao Lei, Rui Cao. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. Chinese Chemical Letters 2021, 117 https://doi.org/10.1016/j.cclet.2021.04.048
  94. Maylis Orio, Dimitrios A. Pantazis. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chemical Communications 2021, 57 (33) , 3952-3974. https://doi.org/10.1039/D1CC00705J
  95. Feifei Li, Haoqiang Ai, Changmin Shi, Kin Ho Lo, Hui Pan. Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction. International Journal of Hydrogen Energy 2021, 46 (24) , 12886-12896. https://doi.org/10.1016/j.ijhydene.2021.01.096
  96. Jing Guo, Chuanmin Ding, Zili Ma, Lichao Ma, Junwen Wang, Ju Shangguan, Qinbo Yuan, Ming Zhao, Yanchun Li, Mingyi Wang, Kan Zhang. Highly dispersed and stable Pt clusters encapsulated within ZSM-5 with aid of sodium ion for partial oxidation of methane. Fuel 2021, 289 , 119839. https://doi.org/10.1016/j.fuel.2020.119839
  97. Naama Gluz, George Christou, Galia Maayan. The Role of the −OH Groups within Mn 12 Clusters in Electrocatalytic Water Oxidation. Chemistry – A European Journal 2021, 27 (19) , 6034-6043. https://doi.org/10.1002/chem.202100151
  98. Yuji Mikata, Yasuko Kuroda, Kyoko Naito, Kana Murakami, Chihiro Yamamoto, Shoko Yabe, Shizuka Yonemura, Arimasa Matsumoto, Hajime Katano. Structure and electrochemical properties of (μ-O) 2 Mn 2 ( iii , iii ) and (μ-O) 2 Mn 2 ( iii , iv ) complexes supported by pyridine-, quinoline-, isoquinoline- and quinoxaline-based tetranitrogen ligands. Dalton Transactions 2021, 50 (12) , 4133-4144. https://doi.org/10.1039/D1DT00184A
  99. Dimitrios A. Pantazis. Natural and Artificial Photosynthesis. 2021,,, 41-76. https://doi.org/10.1002/9783527825073.ch3
  100. Prashanth W. Menezes, Carsten Walter, Biswarup Chakraborty, Jan Niklas Hausmann, Ivelina Zaharieva, Achidi Frick, Elizabeth Hauff, Holger Dau, Matthias Driess. Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. Advanced Materials 2021, 33 (9) , 2004098. https://doi.org/10.1002/adma.202004098
Load more citations