Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment

View Author Information
Linde + Robinson Laboratories California Institute of Technology 1200 E. California Blvd. MC 131-24 Pasadena, California 91125, United States
Cite this: Environ. Sci. Technol. 2016, 50, 21, 11888–11894
Publication Date (Web):September 20, 2016
https://doi.org/10.1021/acs.est.6b03540
Copyright © 2016 American Chemical Society
Article Views
3572
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

Efficient, inexpensive, and stable electrode materials are key components of commercially viable electrochemical wastewater treatment system. In this study, blue-black TiO2 nanotube array (BNTA) electrodes are prepared by electrochemical self-doping. The 1-D structure, donor state density, and Fermi energy level position are critical for maintaining the semimetallic functionality of the BNTA. The structural strength of the BNTA is enhanced by surface crack minimization, reinforcement of the BNTA-Ti metal interface, and stabilized by a protective overcoating with nanoparticulate TiO2 (Ti/EBNTA). Ti/EBNTA electrodes are employed as both anodes and cathodes with polarity switching at a set frequency. Oxidants are generated at the anode, while the doping levels are regenerated along with byproduct reduction at the cathode. The estimated maximum electrode lifetime is 16 895 h. Ti/EBNTA has comparable hydroxyl radical production activity (6.6 × 10–14 M) with boron-doped diamond (BDD, 7.4 × 10–14 M) electrodes. The chlorine production rate follows a trend with respective to electrode type of Ti/EBNTA > BDD > IrO2. Ti/EBNTA electrodes operated in a bipolar mode have a minimum energy consumption of 62 kWh/kg COD, reduced foam formation due to less gas bubble production, minimum scale formation, and lower chlorate production levels (6 mM vs 18 mM for BDD) during electrolytic wastewater treatment.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b03540.

  • BNTA characterizations such as cyclic voltammeties, and FESEM images. Results of electrochemical BA degradation, the electrolysis of 30 mM NaCl solution, and wastewater are also enclosed. The SI text includes a calculation of the band structure, width of the space charge layer, and lifetime estimation (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 111 publications.

  1. Heng Dong, Weilai Yu, Michael R. Hoffmann. Mixed Metal Oxide Electrodes and the Chlorine Evolution Reaction. The Journal of Physical Chemistry C 2021, 125 (38) , 20745-20761. https://doi.org/10.1021/acs.jpcc.1c05671
  2. Yi Zhang, Yang Yang, Shasha Yang, Estefanny Quispe-Cardenas, Michael R. Hoffmann. Application of Heterojunction Ni–Sb–SnO2 Anodes for Electrochemical Water Treatment. ACS ES&T Engineering 2021, 1 (8) , 1236-1245. https://doi.org/10.1021/acsestengg.1c00122
  3. Woonghee Lee, Teayoung Lee, Seok Kim, Sungho Bae, Jeyong Yoon, Kangwoo Cho. Descriptive Role of Pt/PtOx Ratio on the Selective Chlorine Evolution Reaction under Polarity Reversal as Studied by Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces 2021, 13 (29) , 34093-34101. https://doi.org/10.1021/acsami.1c06187
  4. Siwen Wang, Shasha Yang, Estefanny Quispe, Hannah Yang, Charles Sanfiorenzo, Shane W. Rogers, Kaihang Wang, Yang Yang, Michael R. Hoffmann. Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO2 Nanotube Arrays. ACS ES&T Engineering 2021, 1 (3) , 612-622. https://doi.org/10.1021/acsestengg.1c00011
  5. Guan Zhang, Juzhuan Ruan, Tingting Du. Recent Advances on Photocatalytic and Electrochemical Oxidation for Ammonia Treatment from Water/Wastewater. ACS ES&T Engineering 2021, 1 (3) , 310-325. https://doi.org/10.1021/acsestengg.0c00186
  6. Xiaoyang Meng, Zefang Chen, Can Wang, Weiqiu Zhang, Kaihang Zhang, Shiqing Zhou, Jinming Luo, Nian Liu, Dandan Zhou, Duo Li, John Crittenden. Development of a Three-Dimensional Electrochemical System Using a Blue TiO2/SnO2–Sb2O3 Anode for Treating Low-Ionic-Strength Wastewater. Environmental Science & Technology 2019, 53 (23) , 13784-13793. https://doi.org/10.1021/acs.est.9b05488
  7. Chang Liu, Ai-Yong Zhang, Yang Si, Dan-Ni Pei, Han-Qing Yu. Photochemical Protection of Reactive Sites on Defective TiO2–x Surface for Electrochemical Water Treatment. Environmental Science & Technology 2019, 53 (13) , 7641-7652. https://doi.org/10.1021/acs.est.9b01307
  8. Jonghun Lim, Yang Yang, Michael R. Hoffmann. Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO2 Nanotubes for the Removal of Organic Pollutants. Environmental Science & Technology 2019, 53 (12) , 6972-6980. https://doi.org/10.1021/acs.est.9b01449
  9. Shuzhao Pei, Chao Shen, Chenghu Zhang, Nanqi Ren, Shijie You. Characterization of the Interfacial Joule Heating Effect in the Electrochemical Advanced Oxidation Process. Environmental Science & Technology 2019, 53 (8) , 4406-4415. https://doi.org/10.1021/acs.est.8b06773
  10. Felipe F. Hudari, Guilherme G. Bessegato, Flávio C. Bedatty Fernandes, Maria V. B. Zanoni, Paulo R. Bueno. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry 2018, 90 (12) , 7651-7658. https://doi.org/10.1021/acs.analchem.8b01501
  11. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  12. Min Seok Koo, Kangwoo Cho, Jeyong Yoon, and Wonyong Choi . Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environmental Science & Technology 2017, 51 (11) , 6590-6598. https://doi.org/10.1021/acs.est.7b00774
  13. Xuemei Zhou, Ning Liu, and Patrik Schmuki . Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catalysis 2017, 7 (5) , 3210-3235. https://doi.org/10.1021/acscatal.6b03709
  14. Chong Wang, Tianai Zhang, Lifeng Yin, Chengsheng Ni, JiuPai Ni, Li-An Hou. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti3+ self-doping TiO2 nanotube arrays anode. Chemosphere 2022, 286 , 131804. https://doi.org/10.1016/j.chemosphere.2021.131804
  15. Yongyong Hao, Hongrui Ma, Federica Proietto, Alessandro Galia, Onofrio Scialdone. Electrochemical treatment of wastewater contaminated by organics and containing chlorides: Effect of operative parameters on the abatement of organics and the generation of chlorinated by-products. Electrochimica Acta 2022, 402 , 139480. https://doi.org/10.1016/j.electacta.2021.139480
  16. Xingxin Liu, Chol Nam Song, Yuxin Zhang, Li Sha, Yiming Li, Shuting Zhang. Electrochemical pretreatment of coking wastewater by Ti/BTN/RuO2-IrO2-TiO2: Selectivity of chloridion oxidation and multi-response optimization. Separation and Purification Technology 2021, 276 , 119229. https://doi.org/10.1016/j.seppur.2021.119229
  17. Jiachao Yao, Yu Mei, Zeyu Wang, Jun Chen, Dzmitry Hrynsphan, Tatsiana Savitskaya. Utilizing Spent Batteries to Fabricate Ni/ZnO-MnO 2 Electrodes for Electrochemical Ammonia Oxidation. Journal of The Electrochemical Society 2021, 168 (12) , 126505. https://doi.org/10.1149/1945-7111/ac3abb
  18. Yanghua Duan, David L. Sedlak. An electrochemical advanced oxidation process for the treatment of urban stormwater. Water Research X 2021, 13 , 100127. https://doi.org/10.1016/j.wroa.2021.100127
  19. Xuedong Du, Mehmet A. Oturan, Minghua Zhou, Nacer Belkessa, Pei Su, Jingju Cai, Clément Trellu, Emmanuel Mousset. Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Applied Catalysis B: Environmental 2021, 296 , 120332. https://doi.org/10.1016/j.apcatb.2021.120332
  20. Peng Chen, Yi Mu, Ying Chen, Lei Tian, Xun-Heng Jiang, Jian-Ping Zou, Sheng-Lian Luo. Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds. Chemosphere 2021, 157 , 132817. https://doi.org/10.1016/j.chemosphere.2021.132817
  21. Kaixuan Wang, Kun Zhao, Xin Qin, Shuo Chen, Hongtao Yu, Xie Quan. Treatment of organic wastewater by a synergic electrocatalysis process with Ti3+ self-doped TiO2 nanotube arrays electrode as both cathode and anode. Journal of Hazardous Materials 2021, 54 , 127747. https://doi.org/10.1016/j.jhazmat.2021.127747
  22. Fan Zhang, Weilai Wang, Lei Xu, Chengzhi Zhou, Yanglong Sun, Junfeng Niu. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti3+ self-doped TiO2 nanotube arrays anode. Chemosphere 2021, 278 , 130465. https://doi.org/10.1016/j.chemosphere.2021.130465
  23. Wen Zhang, Mingming Gao, Fei Miao, Xiaoyan Wu, Shuguang Wang, Xinhua Wang. A permeable electrochemical reactive barrier for underground water remediation using TiO2/graphite composites as heterogeneous electrocatalysts without releasing of chemical substances. Journal of Hazardous Materials 2021, 418 , 126318. https://doi.org/10.1016/j.jhazmat.2021.126318
  24. Xuefeng Liu, Shijie You, Nanqi Ren, Hao Zhou, Jinna Zhang. Complete solar-driven dual-photoelectrode fuel cell for water purification and power generation in the presence of peroxymonosulfate. Journal of Hazardous Materials 2021, 416 , 125682. https://doi.org/10.1016/j.jhazmat.2021.125682
  25. Pengxiang Qiu, Ningxuan Xue, Ziwen Cheng, Xuan Kai, Yujing Zeng, Mingyi Xu, Shuai Zhang, Chenmin Xu, Fengling Liu, Zhaobing Guo. The cooperation of photothermal conversion, photocatalysis and sulfate radical-based advanced oxidation process on few-layered graphite modified graphitic carbon nitride. Chemical Engineering Journal 2021, 417 , 127993. https://doi.org/10.1016/j.cej.2020.127993
  26. Xingxin Liu, Luofu Min, Xiaoyan Yu, Zhuo Zhou, Li Sha, Shuting Zhang. Changes of photoelectrocatalytic, electrocatalytic and pollutant degradation properties during the growth of β-PbO2 into black titanium oxide nanoarrays. Chemical Engineering Journal 2021, 417 , 127996. https://doi.org/10.1016/j.cej.2020.127996
  27. Chenmin Xu, Huan He, Zhe Xu, Chengdu Qi, Shiyin Li, Lili Ma, Pengxiang Qiu, Shaogui Yang. Modification of graphitic carbon nitride by elemental boron cocatalyst with high-efficient charge transfer and photothermal conversion. Chemical Engineering Journal 2021, 417 , 129203. https://doi.org/10.1016/j.cej.2021.129203
  28. Khairul Anwar Mohamad Said, Ahmad Fauzi Ismail, Zulhairun Abdul Karim, Mohd Sohaimi Abdullah, Asif Hafeez. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Safety and Environmental Protection 2021, 151 , 257-289. https://doi.org/10.1016/j.psep.2021.05.015
  29. Wamda Faisal Elmobarak, Bassim H. Hameed, Fares Almomani, Ahmad Zuhairi Abdullah. A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021, 11 (7) , 782. https://doi.org/10.3390/catal11070782
  30. Yangyuan Ji, Junfeng Niu, Dong Xu, Kaixuan Wang, Jacob Brejcha, Seunghyo Jeon, David M Warsinger. Efficient electrocatalysis for denitrification by using TiO2 nanotube arrays cathode and adding chloride ions. Chemosphere 2021, 274 , 129706. https://doi.org/10.1016/j.chemosphere.2021.129706
  31. Jiaqi Sun, Lifen Liu, Fenglin Yang. Electro-enhanced chlorine-mediated ammonium nitrogen removal triggered by an optimized catalytic anode for sustainable saline wastewater treatment. Science of The Total Environment 2021, 776 , 146035. https://doi.org/10.1016/j.scitotenv.2021.146035
  32. Huijiao Wang, Zhongyi Li, Fengyuan Zhang, Yuxiang Wang, Xian Zhang, Jianbing Wang, Xuwen He. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater. Separation and Purification Technology 2021, 266 , 118600. https://doi.org/10.1016/j.seppur.2021.118600
  33. Hualiang Feng, Zefang Chen, Xiaojun Wang, Shaohua Chen, John Crittenden. Electrochemical advanced oxidation for treating ultrafiltration effluent of a landfill leachate system: Impacts of organics and inorganics and economic evaluation. Chemical Engineering Journal 2021, 413 , 127492. https://doi.org/10.1016/j.cej.2020.127492
  34. Pengxiang Qiu, Ziwen Cheng, Ningxuan Xue, Yujing Zeng, Xuan Kai, Shuai Zhang, Chenmin Xu, Fengling Liu, Zhaobing Guo. The synergistic effect in metal-free graphene oxide coupled graphitic carbon nitride/light/peroxymonosulfate system: Photothermal effect and catalyst stability. Carbon 2021, 178 , 81-91. https://doi.org/10.1016/j.carbon.2021.02.088
  35. Youhai Liu, Haomin Song, Zongmin Bei, Lyu Zhou, Chao Zhao, Boon S. Ooi, Qiaoqiang Gan. Ultra-thin dark amorphous TiOx hollow nanotubes for full spectrum solar energy harvesting and conversion‡. Nano Energy 2021, 84 , 105872. https://doi.org/10.1016/j.nanoen.2021.105872
  36. Xingxin Liu, Xiaoyan Yu, Li Sha, Yuqian Wang, Zhuo Zhou, Shuting Zhang. The preparation of black titanium oxide nanoarray via coking fluorinated wastewater and application on coking wastewater treatment. Chemosphere 2021, 270 , 128609. https://doi.org/10.1016/j.chemosphere.2020.128609
  37. Yang Yu, Huachang Jin, Qian Li, Xuejiao Zhang, Yue Zhang, Xueming Chen. Pseudocapacitive Ti/RuO2-IrO2-RhOx electrodes with high bipolar stability for phenol degradation. Separation and Purification Technology 2021, 263 , 118395. https://doi.org/10.1016/j.seppur.2021.118395
  38. Teayoung Lee, Woonghee Lee, Seongsoo Kim, Changha Lee, Kangwoo Cho, Choonsoo Kim, Jeyong Yoon. High chlorine evolution performance of electrochemically reduced TiO 2 nanotube array coated with a thin RuO 2 layer by the self-synthetic method. RSC Advances 2021, 11 (20) , 12107-12116. https://doi.org/10.1039/D0RA09623G
  39. Fengling Liu, Haoxuan Chen, Chenmin Xu, Linlin Wang, Pengxiang Qiu, Shuo Gao, Jiawei Zhu, Shuai Zhang, Zhaobing Guo. Monoclinic dibismuth tetraoxide ( m -Bi 2 O 4 ) for piezocatalysis: new use for neglected materials. Chemical Communications 2021, 57 (22) , 2740-2743. https://doi.org/10.1039/D0CC07064E
  40. Chao Yang, Shanshan Shang, Xiao-yan Li. Fabrication of sulfur-doped TiO2 nanotube array as a conductive interlayer of PbO2 anode for efficient electrochemical oxidation of organic pollutants. Separation and Purification Technology 2021, 258 , 118035. https://doi.org/10.1016/j.seppur.2020.118035
  41. Di Pang, Yue Liu, Haiou Song, Duozhe Chen, Weiqing Zhu, Rumeng Liu, Hu Yang, Aimin Li, Shupeng Zhang. Trace Ti3+- and N-codoped TiO2 nanotube array anode for significantly enhanced electrocatalytic degradation of tetracycline and metronidazole. Chemical Engineering Journal 2021, 405 , 126982. https://doi.org/10.1016/j.cej.2020.126982
  42. Yingying Jiang, Haitao Zhao, Jie Liang, Luochao Yue, Tingshuai Li, Yonglan Luo, Qian Liu, Siyu Lu, Abdullah M. Asiri, Zhengjun Gong, Xuping Sun. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochemistry Communications 2021, 123 , 106912. https://doi.org/10.1016/j.elecom.2020.106912
  43. Robert Brüninghoff, Ainoa Paradelo Rodríguez, Ronald P.H. Jong, Jacobus M. Sturm, Uwe Breuer, Caroline Lievens, Adriaan W. Jeremiasse, Guido Mul, Bastian Mei. Electrochemical preparation of defect-engineered titania: Bulk doping versus surface contamination. Applied Surface Science 2021, 539 , 148136. https://doi.org/10.1016/j.apsusc.2020.148136
  44. Dengji Yu, Yunfang Zhang, Fang Wang, Jun Dai. Preparation of ZnO/two-layer self-doped black TiO 2 nanotube arrays and their enhanced photochemical properties. RSC Advances 2021, 11 (4) , 2307-2314. https://doi.org/10.1039/D0RA09099A
  45. So Young Yang, Jiyeon Park, Hye Won Jeong, Hyunwoong Park. Electrocatalytic activities of electrochemically reduced tubular titania arrays loaded with cobalt ions in flow-through processes. Chemical Engineering Journal 2021, 404 , 126410. https://doi.org/10.1016/j.cej.2020.126410
  46. Min Chen, Xin Zhao, Can Wang, Shuang Pan, Cong Zhang, Yingcai Wang. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode: Degradation performance, energy efficiency and toxicity assessment. Journal of Hazardous Materials 2021, 401 , 123295. https://doi.org/10.1016/j.jhazmat.2020.123295
  47. Jingju Cai, Minghua Zhou, Xuedong Du, Xin Xu. Enhanced mechanism of 2,4-dichlorophenoxyacetic acid degradation by electrochemical activation of persulfate on Blue-TiO2 nanotubes anode. Separation and Purification Technology 2021, 254 , 117560. https://doi.org/10.1016/j.seppur.2020.117560
  48. Lei Xu, Junfeng Niu, Hongbin Xie, Xiao Ma, Yunqing Zhu, John Crittenden. Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode. Journal of Hazardous Materials 2021, 402 , 123530. https://doi.org/10.1016/j.jhazmat.2020.123530
  49. Amir Ahmadi, Tingting Wu. Towards full cell potential utilization during water purification using Co/Bi/TiO2 nanotube electrodes. Electrochimica Acta 2020, 364 , 137272. https://doi.org/10.1016/j.electacta.2020.137272
  50. Min Chen, Shuang Pan, Cong Zhang, Can Wang, Weiqiu Zhang, Zefang Chen, Xin Zhao, Yingxin Zhao. Electrochemical oxidation of reverse osmosis concentrates using enhanced TiO2-NTA/SnO2-Sb anodes with/without PbO2 layer. Chemical Engineering Journal 2020, 399 , 125756. https://doi.org/10.1016/j.cej.2020.125756
  51. Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control. Frontiers of Environmental Science & Engineering 2020, 14 (5) https://doi.org/10.1007/s11783-020-1264-7
  52. Yijie Liu, Tong Sun, Qing Su, Yizhen Tang, Xing Xu, Muhammad Akram, Bo Jiang. Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer. Journal of Colloid and Interface Science 2020, 575 , 254-264. https://doi.org/10.1016/j.jcis.2020.04.092
  53. Nikita Denisov, Shanshan Qin, Gihoon Cha, JeongEun Yoo, Patrik Schmuki. Photoelectrochemical properties of “increasingly dark” TiO2 nanotube arrays. Journal of Electroanalytical Chemistry 2020, 872 , 114098. https://doi.org/10.1016/j.jelechem.2020.114098
  54. Lei Yang, Xian-Ping Shu, Meng-Yuan Fu, Hao-Yu Wang, Qin-Yu Zhu, Jie Dai. Molybdenum–titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film. Dalton Transactions 2020, 49 (30) , 10516-10522. https://doi.org/10.1039/D0DT01959C
  55. Marilia Moura de Salles Pupo, José Miguel Albahaca Oliva, Katlin Ivon Barrios Eguiluz, Giancarlo Richard Salazar-Banda, Jelena Radjenovic. Characterization and comparison of Ti/TiO2-NT/SnO2–SbBi, Ti/SnO2–SbBi and BDD anode for the removal of persistent iodinated contrast media (ICM). Chemosphere 2020, 253 , 126701. https://doi.org/10.1016/j.chemosphere.2020.126701
  56. Soliu O. Ganiyu, Carlos A. Martínez-Huitle, Manuel A. Rodrigo. Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental 2020, 270 , 118857. https://doi.org/10.1016/j.apcatb.2020.118857
  57. Amir Ahmadi, Bernhard Vogler, Yang Deng, Tingting Wu. Removal of meropenem from environmental matrices by electrochemical oxidation using Co/Bi/TiO 2 nanotube electrodes. Environmental Science: Water Research & Technology 2020, 6 (8) , 2197-2208. https://doi.org/10.1039/D0EW00184H
  58. Min Chen, Can Wang, Xin Zhao, Yingcai Wang, Weiqiu Zhang, Zefang Chen, Xiaoyang Meng, Jinming Luo, John Crittenden. Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO2-nanotubes array. Environment International 2020, 140 , 105813. https://doi.org/10.1016/j.envint.2020.105813
  59. Dan Zhi, Jia Zhang, Jianbing Wang, Lin Luo, Yuzhou Zhou, Yaoyu Zhou. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2–IrO2 anodes. Journal of Environmental Management 2020, 265 , 110571. https://doi.org/10.1016/j.jenvman.2020.110571
  60. Kaixuan Wang, Yang Li, Junxiong Huang, Lei Xu, Lifeng Yin, Yangyuan Ji, Chong Wang, Zesheng Xu, Junfeng Niu. Insights into electrochemical decomposition mechanism of lipopolysaccharide using TiO2 nanotubes arrays electrode. Journal of Hazardous Materials 2020, 391 , 122259. https://doi.org/10.1016/j.jhazmat.2020.122259
  61. Jianfang Zhang, Yujing Tian, Tianyu Zhang, Zhengyuan Li, Xiaojie She, Yucheng Wu, Yan Wang, Jingjie Wu. Confinement of Intermediates in Blue TiO 2 Nanotube Arrays Boosts Reaction Rate of Nitrogen Electrocatalysis. ChemCatChem 2020, 12 (10) , 2760-2767. https://doi.org/10.1002/cctc.202000006
  62. Siwen Wang, Yanzhe Zhu, Yang Yang, Jing Li, Michael R. Hoffmann. Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples. Electrochimica Acta 2020, 338 , 135864. https://doi.org/10.1016/j.electacta.2020.135864
  63. Zheng-Yang Huo, Ye Du, Zhuo Chen, Yin-Hu Wu, Hong-Ying Hu. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. Water Research 2020, 173 , 115581. https://doi.org/10.1016/j.watres.2020.115581
  64. Dan Zhi, Jianbing Wang, Yaoyu Zhou, Zirui Luo, Yuqing Sun, Zhonghao Wan, Lin Luo, Daniel C.W. Tsang, Dionysios D. Dionysiou. Development of ozonation and reactive electrochemical membrane coupled process: Enhanced tetracycline mineralization and toxicity reduction. Chemical Engineering Journal 2020, 383 , 123149. https://doi.org/10.1016/j.cej.2019.123149
  65. Ali Balati, Akanksha Matta, Kelly Nash, Heather J. Shipley. Heterojunction of vertically aligned MoS2 layers to Hydrogenated Black TiO2 and Rutile Based Inorganic Hollow Microspheres for the highly enhanced visible light arsenic photooxidation. Composites Part B: Engineering 2020, 185 , 107785. https://doi.org/10.1016/j.compositesb.2020.107785
  66. Xuefeng Liu, Hao Zhou, Shuzhao Pei, Shupo Xie, Shijie You. Oxygen-deficient WO3−x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination. Chemical Engineering Journal 2020, 381 , 122740. https://doi.org/10.1016/j.cej.2019.122740
  67. Farbod Sharif, Edward P.L. Roberts. Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye. Chemosphere 2020, 241 , 125020. https://doi.org/10.1016/j.chemosphere.2019.125020
  68. Farbod Sharif, Edward P. L. Roberts. Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts 2020, 10 (2) , 263. https://doi.org/10.3390/catal10020263
  69. Shuaishuai Lu, Fengling Liu, Pengxiang Qiu, Man Qiao, Yafei Li, Ziwen Cheng, Ningxuan Xue, Xiaokang Hou, Chenmin Xu, Yubing Xiang, Fengping Peng, Zhaobing Guo. Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application. Chemical Engineering Journal 2020, 379 , 122382. https://doi.org/10.1016/j.cej.2019.122382
  70. Xin Xu, Jingju Cai, Minghua Zhou, Xuedong Du, Ying Zhang. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO2 nanotube arrays with formic acid as electrolyte. Journal of Hazardous Materials 2020, 382 , 121096. https://doi.org/10.1016/j.jhazmat.2019.121096
  71. Seong Eun Heo, Hyun Woo Lim, Deok Ki Cho, Ik Jae Park, Hyunki Kim, Chan Woo Lee, Sang Hyun Ahn, Jin Young Kim. Anomalous potential dependence of conducting property in black titania nanotube arrays for electrocatalytic chlorine evolution. Journal of Catalysis 2020, 381 , 462-467. https://doi.org/10.1016/j.jcat.2019.11.030
  72. Zirui Luo, Yangzhuo He, Dan Zhi, Lin Luo, Yuqing Sun, Eakalak Khan, Lei Wang, Yutao Peng, Yaoyu Zhou, Daniel C.W. Tsang. Current progress in treatment techniques of triclosan from wastewater: A review. Science of The Total Environment 2019, 696 , 133990. https://doi.org/10.1016/j.scitotenv.2019.133990
  73. Siew Yee Lim, Cheryl Suwen Law, Lina Liu, Marijana Markovic, Carina Hedrich, Robert H. Blick, Andrew D. Abell, Robert Zierold, Abel Santos. Electrochemical Engineering of Nanoporous Materials for Photocatalysis: Fundamentals, Advances, and Perspectives. Catalysts 2019, 9 (12) , 988. https://doi.org/10.3390/catal9120988
  74. Sung Pil Hong, Seonghwan Kim, Nayeong Kim, Jeyong Yoon, Choonsoo Kim. A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. Korean Journal of Chemical Engineering 2019, 36 (11) , 1753-1766. https://doi.org/10.1007/s11814-019-0365-0
  75. Jingju Cai, Minghua Zhou, Yuwei Pan, Xuedong Du, Xiaoye Lu. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode. Applied Catalysis B: Environmental 2019, 257 , 117902. https://doi.org/10.1016/j.apcatb.2019.117902
  76. Kangwoo Cho, Seonggeun Lee, Hyeonjeong Kim, Hyung-Eun Kim, Aseom Son, Eun-ju Kim, Mengkai Li, Zhimin Qiang, Seok Won Hong. Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays. Applied Catalysis B: Environmental 2019, 257 , 117910. https://doi.org/10.1016/j.apcatb.2019.117910
  77. Min Chen, Can Wang, Yingcai Wang, Xiaoyang Meng, Zefang Chen, Weiqiu Zhang, George Tan. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode. Electrochimica Acta 2019, 323 , 134779. https://doi.org/10.1016/j.electacta.2019.134779
  78. Pang, Mackevica, Tian, Feng, Li, Baun. Release of Ag/ZnO Nanomaterials and Associated Risks of a Novel Water Sterilization Technology. Water 2019, 11 (11) , 2276. https://doi.org/10.3390/w11112276
  79. Di Liu, Yong-guang Bi. Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. Advanced Powder Technology 2019, 30 (10) , 2169-2177. https://doi.org/10.1016/j.apt.2019.06.032
  80. Amir Ahmadi, Tingting Wu. Electrocatalytic reduction of nitrobenzene using TiO2 nanotube electrodes with different morphologies: Kinetics, mechanism, and degradation pathways. Chemical Engineering Journal 2019, 374 , 1241-1252. https://doi.org/10.1016/j.cej.2019.06.020
  81. Weijian Duan, Ge Li, Zhenchao Lei, Tonghe Zhu, Yuzhou Xue, Chaohai Wei, Chunhua Feng. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research 2019, 161 , 126-135. https://doi.org/10.1016/j.watres.2019.05.104
  82. Chenghao Mo, Huixian Wei, Tongjun Wang. Fabrication of a self‐doped TiO 2 nanotube array electrode for electrochemical degradation of methyl orange. Journal of the Chinese Chemical Society 2019, 66 (7) , 740-747. https://doi.org/10.1002/jccs.201800456
  83. Ling Gan, Yifan Wu, Haiou Song, Chang Lu, Shupeng Zhang, Aimin Li. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols. Chemosphere 2019, 226 , 329-339. https://doi.org/10.1016/j.chemosphere.2019.03.135
  84. Athanasios Chatzitakis, Sabrina Sartori. Recent Advances in the Use of Black TiO 2 for Production of Hydrogen and Other Solar Fuels. ChemPhysChem 2019, 20 (10) , 1272-1281. https://doi.org/10.1002/cphc.201801094
  85. Guilherme G. Bessegato, Maria Valnice Boldrin Zanoni, Germano Tremiliosi-Filho, Cleber A. Lindino. Evidences of the Electrochemical Production of Sulfate Radicals at Cathodically Polarized TiO2 Nanotubes Electrodes. Electrocatalysis 2019, 10 (3) , 272-276. https://doi.org/10.1007/s12678-019-00525-6
  86. Yuan Fu, Xin Liu, Guanyi Chen. Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin. Results in Physics 2019, 12 , 405-411. https://doi.org/10.1016/j.rinp.2018.11.084
  87. So Young Yang, Hye Won Jeong, Byeong-ju Kim, Dong Suk Han, Wonyong Choi, Hyunwoong Park. Electrocatalytic cogeneration of reactive oxygen species for synergistic water treatment. Chemical Engineering Journal 2019, 358 , 497-503. https://doi.org/10.1016/j.cej.2018.09.192
  88. Ai-Yong Zhang, Nai-Hui Huang, Yuan-Yi He, Pin-Cheng Zhao, Jing-Wei Feng. Sulfate radicals generation and refractory pollutants removal on defective facet-tailored TiO2 with reduced matrix effects. Chemical Engineering Journal 2019, 358 , 243-252. https://doi.org/10.1016/j.cej.2018.10.035
  89. Cody E. Finke, Stefan T. Omelchenko, Justin T. Jasper, Michael F. Lichterman, Carlos G. Read, Nathan S. Lewis, Michael R. Hoffmann. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO 2. Energy & Environmental Science 2019, 12 (1) , 358-365. https://doi.org/10.1039/C8EE02351D
  90. Peng Li, Zhun Bao, Guanghui Wang, Pengfei Xu, Xuegang Wang, Zhipeng Liu, Yadan Guo, Jing Deng, Weimin Zhang. Ternary semiconductor metal oxide blends grafted [email protected] hybrid as dimensionally stable anode active layer for photoelectrochemical oxidation of organic compounds: Design strategies and photoelectric synergistic mechanism. Journal of Hazardous Materials 2019, 362 , 336-347. https://doi.org/10.1016/j.jhazmat.2018.09.041
  91. Yang Yang, Lin Lin, Leda Katebian Tse, Heng Dong, Shaokun Yu, Michael R. Hoffmann. Membrane-separated electrochemical latrine wastewater treatment. Environmental Science: Water Research & Technology 2019, 5 (1) , 51-59. https://doi.org/10.1039/C8EW00698A
  92. Yin Jing, Soroush Almassi, Shafigh Mehraeen, Robert J. LeSuer, Brian P. Chaplin. The roles of oxygen vacancies, electrolyte composition, lattice structure, and doping density on the electrochemical reactivity of Magnéli phase TiO 2 anodes. Journal of Materials Chemistry A 2018, 6 (46) , 23828-23839. https://doi.org/10.1039/C8TA03719A
  93. Pedro J. J. Alvarez, Candace K. Chan, Menachem Elimelech, Naomi J. Halas, Dino Villagrán. Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology 2018, 13 (8) , 634-641. https://doi.org/10.1038/s41565-018-0203-2
  94. Mengqiao Hu, Zipeng Xing, Yan Cao, Zhenzi Li, Xu Yan, Ziyuan Xiu, Tianyu Zhao, Shilin Yang, Wei Zhou. Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Applied Catalysis B: Environmental 2018, 226 , 499-508. https://doi.org/10.1016/j.apcatb.2017.12.069
  95. Yuxuan Zhang, Wen Zeng, Hong Ye, Yanqiong Li. Enhanced carbon monoxide sensing properties of TiO2 with exposed (0 0 1) facet: A combined first-principle and experimental study. Applied Surface Science 2018, 442 , 507-516. https://doi.org/10.1016/j.apsusc.2018.02.036
  96. Jianbing Wang, Dan Zhi, Hao Zhou, Xuwen He, Dayi Zhang. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Research 2018, 137 , 324-334. https://doi.org/10.1016/j.watres.2018.03.030
  97. Yan Shi, Zhuoxin Lu, Lili Guo, Zhida Wang, Changqing Guo, Hongyi Tan, Changfeng Yan. Fabrication of IrO 2 decorated vertical aligned self-doped TiO 2 nanotube arrays for oxygen evolution in water electrolysis. International Journal of Hydrogen Energy 2018, 43 (19) , 9133-9143. https://doi.org/10.1016/j.ijhydene.2018.03.214
  98. Sasmita Nayak, Brian P. Chaplin. Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes. Electrochimica Acta 2018, 263 , 299-310. https://doi.org/10.1016/j.electacta.2018.01.034
  99. Brian P. Chaplin. Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment. 2018,,, 451-494. https://doi.org/10.1016/B978-0-12-813160-2.00017-1
  100. Yifan Gao, Jinna Zhang, Xuefeng Bai, Shijie You. Monolithic ceramic electrode for electrochemical deactivation of Microcystis aeruginosa. Electrochimica Acta 2018, 259 , 410-418. https://doi.org/10.1016/j.electacta.2017.10.127
Load all citations