Sulfate Radical-Induced Disinfection of Pathogenic Escherichia coli O157:H7 via Iron-Activated Persulfate

View Author Information
Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
*E-mail: [email protected]. Phone: (951) 827-2076. Fax: (951) 827-5696.
Cite this: Environ. Sci. Technol. Lett. 2017, 4, 4, 154–160
Publication Date (Web):March 6, 2017
https://doi.org/10.1021/acs.estlett.7b00035
Copyright © 2017 American Chemical Society
Article Views
1619
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Sulfate radical (SO4•–) has been increasingly applied as an efficient oxidant for water treatment in recent years. This study investigated the disinfection efficacy of SO4•– on Escherichia coli O157:H7, i.e., a pathogenic strain of E. coli on the U.S. Environmental Protection Agency’s Contaminant Candidate List. SO4•– was generated via persulfate (S2O82–) activation using ferrous iron (Fe2+). Results showed that S2O82– activation and subsequent SO4•– exposure induced the loss of pathogenic E. coli viability. The disinfection, kinetics exhibited an induction phase followed by a rapid first-order decay phase. Dosages of S2O82– and Fe2+ significantly impacted the duration of the induction phase and the rate of disinfection; on the other hand, the solution pH preferentially impacted the induction time, and the dosage of Fe3+-reducing agent hydroxylamine (NH2OH) impacted the rate of disinfection. The disinfection kinetics depended on the CT equivalence of total SO4•– exposure. Results showed that SO4•– exposure initiated the loss of E. coli O157:H7 cell viability 5 times faster than HO exposure did. This unique feature of SO4•– is possibly associated with its highly selective reactivity with electron-rich moieties on the surface of E. coli O157:H7 cell membranes.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.estlett.7b00035.

  • Description of sulfate radical chemistry and figures showing persulfate activation (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 45 publications.

  1. Joseph P. Wood, Alden Charles Adrion. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. Environmental Science & Technology 2019, 53 (8) , 4045-4062. https://doi.org/10.1021/acs.est.8b05274
  2. Long Chen, Min Tang, Chuan Chen, Mingguang Chen, Kai Luo, Jing Xu, Danna Zhou, and Feng Wu . Efficient Bacterial Inactivation by Transition Metal Catalyzed Auto-Oxidation of Sulfite. Environmental Science & Technology 2017, 51 (21) , 12663-12671. https://doi.org/10.1021/acs.est.7b03705
  3. Mehdi Ahmadi, Rozhan Feizi. Hydrogen Peroxide/Zero-ValentIron/Persulfate Approach for Sunset Yellow Dye Degradation: Operating Parameters and Synergistic Effect. Environmental Processes 2021, 8 (4) , 1533-1548. https://doi.org/10.1007/s40710-021-00541-z
  4. Mina Sabri, Aziz Habibi-Yangjeh, Shima Rahim Pouran, Chundong Wang. Titania-activated persulfate for environmental remediation: the-state-of-the-art. Catalysis Reviews 2021, 194 , 1-56. https://doi.org/10.1080/01614940.2021.1996776
  5. Xiaoge Wu, Lei Yan, Guofeng Xu, Xiaozhi Wang, JuanJuan Wang, Dionysios D. Dionysiou. High frequency ultrasonication enhances iron-catalyzed sulphate inactivation of Escherichia coli and Staphylococcus aureus. Chemical Engineering Journal Advances 2021, 8 , 100170. https://doi.org/10.1016/j.ceja.2021.100170
  6. Jialin Liang, Xiaojian Liao, Maoyou Ye, Zhijie Guan, Zhihua Mo, Xian Yang, Shaosong Huang, Shuiyu Sun. Dewaterability improvement and environmental risk mitigation of waste activated sludge using peroxymonosulfate activated by zero-valent metals: Fe0 vs. Al0. Chemosphere 2021, 280 , 130686. https://doi.org/10.1016/j.chemosphere.2021.130686
  7. Maria Clara V. M. Starling, Rondon P. de Mendonça Neto, Giovanna F.F. Pires, Pâmela Beccalli Vilela, Camila C. Amorim. Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes: Achievements and perspectives. Science of The Total Environment 2021, 786 , 147448. https://doi.org/10.1016/j.scitotenv.2021.147448
  8. Maria Clara V. M. Starling, Elizângela P. Costa, Felipe A. Souza, Elayne C. Machado, Juliana Calábria de Araujo, Camila C. Amorim. Persulfate mediated solar photo-Fenton aiming at wastewater treatment plant effluent improvement at neutral PH: emerging contaminant removal, disinfection, and elimination of antibiotic-resistant bacteria. Environmental Science and Pollution Research 2021, 28 (14) , 17355-17368. https://doi.org/10.1007/s11356-020-11802-z
  9. Yi-di Chen, Xiaoguang Duan, Xu Zhou, Rupeng Wang, Shaobin Wang, Nan-qi Ren, Shih-Hsin Ho. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. Chemical Engineering Journal 2021, 409 , 128207. https://doi.org/10.1016/j.cej.2020.128207
  10. Chi Zhang, Yi Li, Chao Wang, Xinyi Zheng. Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C3N4-based metal-free visible-light-enabled photocatalytic disinfection. Science of The Total Environment 2021, 755 , 142588. https://doi.org/10.1016/j.scitotenv.2020.142588
  11. Jing Ai, Zhiyue Wang, Dionysios D. Dionysiou, Ming Liu, Yun Deng, Mingyue Tang, Guiying Liao, Aibin Hu, Weijun Zhang. Understanding synergistic mechanisms of ferrous iron activated sulfite oxidation and organic polymer flocculation for enhancing wastewater sludge dewaterability. Water Research 2021, 189 , 116652. https://doi.org/10.1016/j.watres.2020.116652
  12. Muhammad Tariq, Jehangeer Khan. Inquest of efficient photo-assist advanced oxidation processes (AOPs) for removal of azo dye (acid yellow 17) in aqueous medium: a comprehensive study on oxidative decomposition of AY 17. SN Applied Sciences 2020, 2 (11) https://doi.org/10.1007/s42452-020-03701-2
  13. Han Cui, Jing Wang, Xiaoyu Cai, Zhen Li, Bingfeng Liu, Defeng Xing. Accelerating nutrient release and pathogen inactivation from human waste by different pretreatment methods. Science of The Total Environment 2020, 733 , 139105. https://doi.org/10.1016/j.scitotenv.2020.139105
  14. Isaac Sánchez-Montes, Irene Salmerón García, Gracia Rivas Ibañez, José Mario Aquino, María Inmaculada Polo-López, Sixto Malato, Isabel Oller. UVC-based advanced oxidation processes for simultaneous removal of microcontaminants and pathogens from simulated municipal wastewater at pilot plant scale. Environmental Science: Water Research & Technology 2020, 6 (9) , 2553-2566. https://doi.org/10.1039/D0EW00279H
  15. Zijun Dong, Feng Wang, Xiulan Song, Miao Zhang, Chengchun Jiang, Feiyun Sun, Mu Li. Fe (II)-activated persulfate oxidation effectively degrades iodoform in water: Influential factors and kinetics analysis. Arabian Journal of Chemistry 2020, 13 (4) , 5009-5017. https://doi.org/10.1016/j.arabjc.2020.01.023
  16. Siyu Wang, Jia Wei Chew, Yu Liu. An environmentally sustainable approach for online chemical cleaning of MBR with activated peroxymonosulfate. Journal of Membrane Science 2020, 600 , 117872. https://doi.org/10.1016/j.memsci.2020.117872
  17. Ruiyang Xiao, Lu Bai, Kai Liu, Yan Shi, Daisuke Minakata, Ching-Hua Huang, Richard Spinney, Rajesh Seth, Dionysios D. Dionysiou, Zongsu Wei, Peizhe Sun. Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater. Water Research 2020, 173 , 115552. https://doi.org/10.1016/j.watres.2020.115552
  18. Gang Wen, Zhuhao Chen, Qiqi Wan, Dian Zhao, Xiangqian Xu, Jingyi Wang, Kai Li, Tinglin Huang. Activation of PMS by pipe corrosion products for fungi disinfection in water: Performance and mechanisms. Chemical Engineering Journal 2020, 382 , 123003. https://doi.org/10.1016/j.cej.2019.123003
  19. Efraím A. Serna-Galvis, Lorena Salazar-Ospina, J. Natalia Jiménez, Nancy J. Pino, Ricardo A. Torres-Palma. Elimination of carbapenem resistant Klebsiella pneumoniae in water by UV-C, UV-C/persulfate and UV-C/H2O2. Evaluation of response to antibiotic, residual effect of the processes and removal of resistance gene. Journal of Environmental Chemical Engineering 2020, 8 (1) , 102196. https://doi.org/10.1016/j.jece.2018.02.004
  20. Yuanyuan Zhang, Leiyun Li, Zihan Pan, Yunjie Zhu, Yanan Shao, Yinghui Wang, Kefu Yu. Degradation of sulfamethoxazole by UV/persulfate in different water samples: Influential factors, transformation products and toxicity. Chemical Engineering Journal 2020, 379 , 122354. https://doi.org/10.1016/j.cej.2019.122354
  21. Hang Qi, Yen-Con Hung. Effectiveness of activated persulfate in removal of foodborne pathogens from romaine lettuce. Food Control 2019, 106 , 106708. https://doi.org/10.1016/j.foodcont.2019.106708
  22. Yanxiang Zhang, Huiling Liu, Xiaohu Dai, Chen Cai, Jing Wang, Yunpeng Shen, Peng Wang. Variations of physical and chemical properties in relation to erythromycin mycelial dreg dewaterability under heat-activated persulfate oxidation conditioning. Science of The Total Environment 2019, 687 , 2-9. https://doi.org/10.1016/j.scitotenv.2019.05.464
  23. Javier Moreno-Andrés, Gonzalo Farinango, Leonardo Romero-Martínez, Asunción Acevedo-Merino, Enrique Nebot. Application of persulfate salts for enhancing UV disinfection in marine waters. Water Research 2019, 163 , 114866. https://doi.org/10.1016/j.watres.2019.114866
  24. Ruiyang Xiao, Kai Liu, Lu Bai, Daisuke Minakata, Youngwoo Seo, Recep Kaya Göktaş, Dionysios D. Dionysiou, Chong-Jian Tang, Zongsu Wei, Richard Spinney. Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chemical Engineering Journal 2019, 371 , 222-232. https://doi.org/10.1016/j.cej.2019.03.296
  25. Zhen Wang, Wei Qiu, Su-yan Pang, Yang Zhou, Yuan Gao, Chaoting Guan, Jin Jiang. Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment. Chemical Engineering Journal 2019, 371 , 842-847. https://doi.org/10.1016/j.cej.2019.04.101
  26. Efraím A. Serna-Galvis, Estefanía Vélez-Peña, Paula Osorio-Vargas, J. Natalia Jiménez, Lorena Salazar-Ospina, Yina M. Guaca-González, Ricardo A. Torres-Palma. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate. Water Research 2019, 161 , 354-363. https://doi.org/10.1016/j.watres.2019.06.024
  27. Zhi Wang, Gongde Chen, Samuel Patton, Changxu Ren, Jinyong Liu, Haizhou Liu. Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment. Water Research 2019, 159 , 30-37. https://doi.org/10.1016/j.watres.2019.04.051
  28. Shumaila Kiran, Sofia Nosheen, Shazia Abrar, Sadia Javed, Nosheen Aslam, Gulnaz Afzal, Ikram Ahmad, Farhat Ijaz. Remediation of Textile Effluents via Physical and Chemical Methods for a Safe Environment. 2019,,, 191-234. https://doi.org/10.1002/9781119526599.ch8
  29. Jorge Rodríguez-Chueca, Stefanos Giannakis, Miloch Marjanovic, Mona Kohantorabi, Mohammad Reza Gholami, Dominique Grandjean, Luiz Felippe de Alencastro, César Pulgarín. Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water. Applied Catalysis B: Environmental 2019, 248 , 62-72. https://doi.org/10.1016/j.apcatb.2019.02.018
  30. Pritam Roy, Sultana Parveen, Pooja Ghosh, Kausani Ghatak, Swagata Dasgupta. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie 2019, 162 , 185-197. https://doi.org/10.1016/j.biochi.2019.04.023
  31. Ning Han, Zhengxin Yao, Heng Ye, Chi Zhang, Ping Liang, Hongqi Sun, Shaobin Wang, Shaomin Liu. Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustainable Materials and Technologies 2019, 20 , e00108. https://doi.org/10.1016/j.susmat.2019.e00108
  32. Hang Qi, Qingguo Huang, Yen-Con Hung. Efficacy of activated persulfate in pathogen inactivation: A further exploration. Food Research International 2019, 120 , 425-431. https://doi.org/10.1016/j.foodres.2019.03.012
  33. Xiang Fan, Yurou Zhou, Guan Zhang, Tongzhou Liu, Wenyi Dong. In situ photoelectrochemical activation of sulfite by MoS2 photoanode for enhanced removal of ammonium nitrogen from wastewater. Applied Catalysis B: Environmental 2019, 244 , 396-406. https://doi.org/10.1016/j.apcatb.2018.11.061
  34. Javier Moreno-Andrés, Rubén Rios Quintero, Asunción Acevedo-Merino, Enrique Nebot. Disinfection performance using a UV/persulfate system: effects derived from different aqueous matrices. Photochemical & Photobiological Sciences 2019, 18 (4) , 878-883. https://doi.org/10.1039/C8PP00304A
  35. Hongkun Ma, Lingling Zhang, Xinmei Huang, Wei Ding, Hui Jin, Zifu Li, Shikun Cheng, Lei Zheng. A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: High efficiency, mechanism and damaging effect of antibiotic resistant E. coli and genes. Chemical Engineering Journal 2019, 362 , 667-678. https://doi.org/10.1016/j.cej.2019.01.042
  36. Svetlana Popova, Galina Matafonova, Valeriy Batoev. Simultaneous atrazine degradation and E. coli inactivation by UV/S2O82-/Fe2+ process under KrCl excilamp (222 nm) irradiation. Ecotoxicology and Environmental Safety 2019, 169 , 169-177. https://doi.org/10.1016/j.ecoenv.2018.11.014
  37. Yanxiang Zhang, Huiling Liu, Yanjun Xin, Yunpeng Shen, Jing Wang, Chen Cai, Mengmeng Wang. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation. Chemical Engineering Journal 2019, 358 , 1446-1453. https://doi.org/10.1016/j.cej.2018.10.157
  38. Lingling Zhang, Hongkun Ma, Xinmei Huang, Zhengxu Yan, Wei Ding, Zifu Li, Daqiang Cang. Fast and efficient inactivation of antibiotic resistant Escherichia coli by iron electrode-activated sodium peroxydisulfate in a galvanic cell. Chemical Engineering Journal 2019, 355 , 150-158. https://doi.org/10.1016/j.cej.2018.08.065
  39. Sonia Guerra-Rodríguez, Encarnación Rodríguez, Devendra Singh, Jorge Rodríguez-Chueca. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10 (12) , 1828. https://doi.org/10.3390/w10121828
  40. Hang Qi, Qingguo Huang, Yen-Con Hung. Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes. International Journal of Food Microbiology 2018, 284 , 40-47. https://doi.org/10.1016/j.ijfoodmicro.2018.06.021
  41. Yang Zhou, Xiaolei Wang, Changyin Zhu, Dionysios D. Dionysiou, Guangchao Zhao, Guodong Fang, Dongmei Zhou. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. Water Research 2018, 142 , 208-216. https://doi.org/10.1016/j.watres.2018.06.002
  42. Danna Zhou, Long Chen, Jinjun Li, Feng Wu. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview. Chemical Engineering Journal 2018, 346 , 726-738. https://doi.org/10.1016/j.cej.2018.04.016
  43. Yuanyuan Chu, Xiaoyao Tan, Zhangfeng Shen, Pengyun Liu, Ning Han, Jian Kang, Xiaoguang Duan, Shaobin Wang, Lihong Liu, Shaomin Liu. Efficient removal of organic and bacterial pollutants by Ag-La0.8Ca0.2Fe0.94O3-δ perovskite via catalytic peroxymonosulfate activation. Journal of Hazardous Materials 2018, 356 , 53-60. https://doi.org/10.1016/j.jhazmat.2018.05.044
  44. Ikechukwu A. Ike, Karl G. Linden, John D. Orbell, Mikel Duke. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal 2018, 338 , 651-669. https://doi.org/10.1016/j.cej.2018.01.034
  45. María Inmaculada Polo-López, Samira Nahim-Granados, Pilar Fernández-Ibáñez. Homogeneous Fenton and Photo-Fenton Disinfection of Surface and Groundwater. 2018,,, 155-177. https://doi.org/10.1007/698_2017_129