Electrocatalytic Hydrogen Evolution under Densely Buffered Neutral pH Conditions

View Author Information
Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
*E-mail: [email protected]. Phone: +966 12 808 4485.
Cite this: J. Phys. Chem. C 2015, 119, 35, 20453–20458
Publication Date (Web):August 18, 2015
https://doi.org/10.1021/acs.jpcc.5b05295
Copyright © 2015 American Chemical Society
Article Views
2466
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Under buffered neutral pH conditions, solute concentrations drastically influence the hydrogen evolution reaction (HER). The iR-free HER performance as a function of solute concentration was found to exhibit a volcano-shaped trend in sodium phosphate solution at pH 5, with the maximum occurring at 2 M. A detailed microkinetic model that includes calculated activity coefficients, solution resistance, and mass-transport parameters accurately describes the measured values, clarifying that the overall HER performance is predominantly governed by mass-transport of slow phosphate ions (weak acid). In the HER at the optimum concentration of approximately 2 M sodium phosphate at pH 5, our theoretical model predicts that the concentration overpotential accounts for more than half of the required overpotential. The substantial concentration overpotential would originate from the electrolyte property, suggesting that the proper electrolyte engineering will result in an improved apparent HER performances. The significance of concentration overpotential shown in the study is critical in the advancement of electrocatalysis, biocatalysis, and photocatalysis.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b05295.

  • CVs with Ar bubbling, consideration on the HER reactant and resultant kinetic description, LSVs at various disk-rotation speeds, calculated physical parameters (activity coefficient, diffusion layer thickness and solution resistance), and calculated half-cell efficiencies under various conditions (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 46 publications.

  1. Qingran Zhang, Zachary Lau Zhe Ru, Rahman Daiyan, Priyank Kumar, Jian Pan, Xunyu Lu, Rose Amal. Surface Reconstruction Enabled Efficient Hydrogen Generation on a Cobalt–Iron Phosphate Electrocatalyst in Neutral Water. ACS Applied Materials & Interfaces 2021, 13 (45) , 53798-53809. https://doi.org/10.1021/acsami.1c14588
  2. Cheng Wang, Limin Qi. Hollow Nanosheet Arrays Assembled by Ultrafine Ruthenium–Cobalt Phosphide Nanocrystals for Exceptional pH-Universal Hydrogen Evolution. ACS Materials Letters 2021, Article ASAP.
  3. Kang Rui Garrick Lim, Albertus D. Handoko, Luke R. Johnson, Xing Meng, Ming Lin, Gomathy Sandhya Subramanian, Babak Anasori, Yury Gogotsi, Aleksandra Vojvodic, Zhi Wei Seh. 2H-MoS2 on Mo2CTx MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS Nano 2020, 14 (11) , 16140-16155. https://doi.org/10.1021/acsnano.0c08671
  4. Keisuke Obata, Liga Stegenburga, Kazuhiro Takanabe. Maximizing Hydrogen Evolution Performance on Pt in Buffered Solutions: Mass Transfer Constrains of H2 and Buffer Ions. The Journal of Physical Chemistry C 2019, 123 (35) , 21554-21563. https://doi.org/10.1021/acs.jpcc.9b05245
  5. Yong Yan, Xing Cheng, Wanwan Zhang, Ge Chen, Hongyi Li, Alexander Konkin, Zaicheng Sun, Shaorui Sun, Dong Wang, Peter Schaaf. Plasma Hydrogenated TiO2/Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 885-894. https://doi.org/10.1021/acssuschemeng.8b04496
  6. Georg Kastlunger, Per Lindgren, Andrew A. Peterson. Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces. The Journal of Physical Chemistry C 2018, 122 (24) , 12771-12781. https://doi.org/10.1021/acs.jpcc.8b02465
  7. Majid Asnavandi, Bryan H. R. Suryanto, Wanfeng Yang, Xin Bo, Chuan Zhao. Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for pH-Insensitive Hydrogen Evolution Reactions. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 2866-2871. https://doi.org/10.1021/acssuschemeng.7b02492
  8. Benedikt Lassalle-Kaiser, Andrea Zitolo, Emiliano Fonda, Marc Robert, and Elodie Anxolabéhère-Mallart . In Situ Observation of the Formation and Structure of Hydrogen-Evolving Amorphous Cobalt Electrocatalysts. ACS Energy Letters 2017, 2 (11) , 2545-2551. https://doi.org/10.1021/acsenergylett.7b00789
  9. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442. https://doi.org/10.1021/acsomega.6b00448
  10. Tatsuya Shinagawa and Kazuhiro Takanabe . New Insight into the Hydrogen Evolution Reaction under Buffered Near-Neutral pH Conditions: Enthalpy and Entropy of Activation. The Journal of Physical Chemistry C 2016, 120 (42) , 24187-24196. https://doi.org/10.1021/acs.jpcc.6b07954
  11. Hatice Kasap, Christine A. Caputo, Benjamin C. M. Martindale, Robert Godin, Vincent Wing-hei Lau, Bettina V. Lotsch, James R. Durrant, and Erwin Reisner . Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride–Molecular Ni Catalyst System. Journal of the American Chemical Society 2016, 138 (29) , 9183-9192. https://doi.org/10.1021/jacs.6b04325
  12. Tatsuya Shinagawa and Kazuhiro Takanabe . Electrolyte Engineering toward Efficient Hydrogen Production Electrocatalysis with Oxygen-Crossover Regulation under Densely Buffered Near-Neutral pH Conditions. The Journal of Physical Chemistry C 2016, 120 (3) , 1785-1794. https://doi.org/10.1021/acs.jpcc.5b12137
  13. Qianfeng Liu, Wu Qin, Zhao Yan, Jianxin Gao, Erdong Wang. Porous Ni(OH)2 permselective membrane to identify the mechanism of hydrogen evolution reaction in buffered solution. Electrochimica Acta 2022, 401 , 139444. https://doi.org/10.1016/j.electacta.2021.139444
  14. Keisuke Obata, Fatwa F. Abdi. Bubble-induced convection stabilizes the local pH during solar water splitting in neutral pH electrolytes. Sustainable Energy & Fuels 2021, 5 (15) , 3791-3801. https://doi.org/10.1039/D1SE00679G
  15. Yosuke Kageshima, Toshiki Kawanishi, Daisuke Saeki, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. Boosted Hydrogen‐Evolution Kinetics Over Particulate Lanthanum and Rhodium‐Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie 2021, 133 (7) , 3698-3704. https://doi.org/10.1002/ange.202011705
  16. Yosuke Kageshima, Toshiki Kawanishi, Daisuke Saeki, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. Boosted Hydrogen‐Evolution Kinetics Over Particulate Lanthanum and Rhodium‐Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie International Edition 2021, 60 (7) , 3654-3660. https://doi.org/10.1002/anie.202011705
  17. Yuanlin Xu, Chen Wang, Yunhui Huang, Jing Fu. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80 , 105545. https://doi.org/10.1016/j.nanoen.2020.105545
  18. Fuxi Bao, Erno Kemppainen, Iris Dorbandt, Radu Bors, Fanxing Xi, Rutger Schlatmann, Roel Krol, Sonya Calnan. Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel‐Molybdenum in Acidic, Near‐Neutral, and Alkaline Conditions. ChemElectroChem 2021, 8 (1) , 195-208. https://doi.org/10.1002/celc.202001436
  19. Kayla E. Clary, Metin Karayilan, Keelee C. McCleary-Petersen, Haley A. Petersen, Richard S. Glass, Jeffrey Pyun, Dennis L. Lichtenberger. Increasing the rate of the hydrogen evolution reaction in neutral water with protic buffer electrolytes. Proceedings of the National Academy of Sciences 2020, 117 (52) , 32947-32953. https://doi.org/10.1073/pnas.2012085117
  20. Keisuke Obata, Roel van de Krol, Michael Schwarze, Reinhard Schomäcker, Fatwa F. Abdi. In situ observation of pH change during water splitting in neutral pH conditions: impact of natural convection driven by buoyancy effects. Energy & Environmental Science 2020, 13 (12) , 5104-5116. https://doi.org/10.1039/D0EE01760D
  21. Takahiro Naito, Tatsuya Shinagawa, Takeshi Nishimoto, Kazuhiro Takanabe. Water Electrolysis in Saturated Phosphate Buffer at Neutral pH. ChemSusChem 2020, 13 (22) , 5921-5933. https://doi.org/10.1002/cssc.202001886
  22. Zheng Zhou, Zengxia Pei, Li Wei, Shenlong Zhao, Xian Jian, Yuan Chen. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy & Environmental Science 2020, 13 (10) , 3185-3206. https://doi.org/10.1039/D0EE01856B
  23. Byeongyoon Kim, Taekyung Kim, Kwangyeol Lee, Jinghong Li. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem 2020, 7 (17) , 3578-3589. https://doi.org/10.1002/celc.202000734
  24. Valentín Briega-Martos, Adolfo Ferre-Vilaplana, Enrique Herrero, Juan M. Feliu. Why the activity of the hydrogen oxidation reaction on platinum decreases as pH increases. Electrochimica Acta 2020, 354 , 136620. https://doi.org/10.1016/j.electacta.2020.136620
  25. Suchada Sirisomboonchai, Xiumin Li, Nutthaphak Kitiphatpiboon, Rinrada Channoo, Shasha Li, Yufei Ma, Suwadee Kongparakul, Chanatip Samart, Abuliti Abudula, Guoqing Guan. Fabrication of CuO x [email protected] x nanosheets [email protected] electrocatalysts: crucial roles of defect modification and valence states for overall water electrolysis. Journal of Materials Chemistry A 2020, 8 (32) , 16463-16476. https://doi.org/10.1039/D0TA04172F
  26. Jayaraman Theerthagiri, Seung Jun Lee, Arun Prasad Murthy, Jagannathan Madhavan, Myong Yong Choi. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Current Opinion in Solid State and Materials Science 2020, 24 (1) , 100805. https://doi.org/10.1016/j.cossms.2020.100805
  27. Tatsuya Shinagawa, Keisuke Obata, Kazuhiro Takanabe. Switching of Kinetically Relevant Reactants for the Aqueous Cathodic Process Determined by Mass‐transport Coupled with Protolysis. ChemCatChem 2019, 11 (24) , 5961-5968. https://doi.org/10.1002/cctc.201901459
  28. Frauke Kracke, Andrew Barnabas Wong, Karen Maegaard, Joerg S. Deutzmann, McKenzie A. Hubert, Christopher Hahn, Thomas F. Jaramillo, Alfred M. Spormann. Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0145-0
  29. Keisuke Obata, Yuuki Shinohara, Shinichi Tanabe, Ichitaro Waki, Konstantinos Kotsovos, Kazuhiro Ohkawa, Kazuhiro Takanabe. A Stand‐Alone Module for Solar‐Driven H 2 Production Coupled with Redox‐Mediated Sulfide Remediation. Energy Technology 2019, 7 (10) , 1900575. https://doi.org/10.1002/ente.201900575
  30. Arun Prasad Murthy, Durai Govindarajan, Jayaraman Theerthagiri, Jagannathan Madhavan, Kuppusami Parasuraman. Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media. Electrochimica Acta 2018, 283 , 1525-1533. https://doi.org/10.1016/j.electacta.2018.07.094
  31. Arun Prasad Murthy, Jagannathan Madhavan, Kadarkarai Murugan. Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. Journal of Power Sources 2018, 398 , 9-26. https://doi.org/10.1016/j.jpowsour.2018.07.040
  32. Wenbin Zhang, Peng Chen, Shengyou Chen, Yuyang Wei. Electrolyte sensitivity of TEMPO mediated methanol and glycine electrooxidation. Journal of Electroanalytical Chemistry 2018, 815 , 130-133. https://doi.org/10.1016/j.jelechem.2018.03.018
  33. Mengxin Chen, Yang Liu, Chengcheng Li, Ang Li, Xiaoxia Chang, Wei Liu, Yun Sun, Tuo Wang, Jinlong Gong. Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy & Environmental Science 2018, 11 (8) , 2025-2034. https://doi.org/10.1039/C7EE03650G
  34. Xunyu Lu, Jian Pan, Emma Lovell, Tze Hao Tan, Yun Hau Ng, Rose Amal. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy & Environmental Science 2018, 11 (7) , 1898-1910. https://doi.org/10.1039/C8EE00976G
  35. Arun Prasad Murthy, Jayaraman Theerthagiri, Jagannathan Madhavan, Kadarkarai Murugan. Enhancement of hydrogen evolution activities of low-cost transition metal electrocatalysts in near-neutral strongly buffered aerobic media. Electrochemistry Communications 2017, 83 , 6-10. https://doi.org/10.1016/j.elecom.2017.08.011
  36. Yuko Yonezawa, Hiro Minamimoto, Fumika Nagasawa, Mai Takase, Satoshi Yasuda, Kei Murakoshi. In-situ electrochemical surface-enhanced Raman scattering observation of molecules accelerating the hydrogen evolution reaction. Journal of Electroanalytical Chemistry 2017, 800 , 7-12. https://doi.org/10.1016/j.jelechem.2017.04.049
  37. Kazuhiro Takanabe. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting. 2017,,, 891-906. https://doi.org/10.1002/9783527699827.ch33
  38. Carolin Urban, Falk Harnisch. Deterioration of Aqueous n- Octanoate Electrolysis with Electrolytic Conductivity Collapse Caused by the Formation of n -Octanoic Acid/ n -Octanoate Agglomerates. ChemElectroChem 2017, 4 (6) , 1378-1389. https://doi.org/10.1002/celc.201700069
  39. Tatsuya Shinagawa, Kazuhiro Takanabe. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering. ChemSusChem 2017, 10 (7) , 1318-1336. https://doi.org/10.1002/cssc.201601583
  40. Tatsuya Shinagawa, Zhen Cao, Luigi Cavallo, Kazuhiro Takanabe. Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces. Journal of Energy Chemistry 2017, 26 (2) , 259-269. https://doi.org/10.1016/j.jechem.2016.07.007
  41. Vitali Grozovski, Soma Vesztergom, Gyözö G. Láng, Peter Broekmann. Electrochemical Hydrogen Evolution: H + or H 2 O Reduction? A Rotating Disk Electrode Study. Journal of The Electrochemical Society 2017, 164 (11) , E3171-E3178. https://doi.org/10.1149/2.0191711jes
  42. Giovanni Valenti, Alessandro Boni, Michele Melchionna, Matteo Cargnello, Lucia Nasi, Giovanni Bertoni, Raymond J. Gorte, Massimo Marcaccio, Stefania Rapino, Marcella Bonchio, Paolo Fornasiero, Maurizio Prato, Francesco Paolucci. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13549
  43. Ela Nurlaela, Ahmed Ziani, Kazuhiro Takanabe. Tantalum nitride for photocatalytic water splitting: concept and applications. Materials for Renewable and Sustainable Energy 2016, 5 (4) https://doi.org/10.1007/s40243-016-0083-z
  44. Hiroyuki Kaneko, Tsutomu Minegishi, Mamiko Nakabayashi, Naoya Shibata, Yongbo Kuang, Taro Yamada, Kazunari Domen. A Novel Photocathode Material for Sunlight-Driven Overall Water Splitting: Solid Solution of ZnSe and Cu(In,Ga)Se 2. Advanced Functional Materials 2016, 26 (25) , 4570-4577. https://doi.org/10.1002/adfm.201600615
  45. Yosuke Kageshima, Tatsuya Shinagawa, Takaaki Kuwata, Josuke Nakata, Tsutomu Minegishi, Kazuhiro Takanabe, Kazunari Domen. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24633
  46. Sebastian S. Neubauer, Ralf K. Krause, Bernhard Schmid, Dirk M. Guldi, Günter Schmid. Overpotentials and Faraday Efficiencies in CO 2 Electrocatalysis-the Impact of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate. Advanced Energy Materials 2016, 6 (9) , 1502231. https://doi.org/10.1002/aenm.201502231