Effect of Oxygen Content on the Photoelectrochemical Activity of Crystallographically Preferred Oriented Porous Ta3N5 Nanotubes

View Author Information
Instituto de Física, UFRGS, Av Bento Goncalves 9500 PO Box -15051 91501-970, POA-RS, Brazil
Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560−970, SP Brazil
§ Instituto de Quimica, UFRGS, Av Bento Goncalves 9500 PO Box -15051 91501-970, POA-RS, Brazil
Department of Chemistry, University of Victoria, Victoria, BC V8W 3 V6, Canada
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
*E-mail: [email protected]. Phone: +55-51-33086498.
Cite this: J. Phys. Chem. C 2015, 119, 34, 19906–19914
Publication Date (Web):July 31, 2015
https://doi.org/10.1021/acs.jpcc.5b05475
Copyright © 2015 American Chemical Society
Article Views
1235
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (1)»

Abstract

Crystallographically preferred oriented porous Ta3N5 nanotubes (NTs) were synthesized by thermal nitridation of vertically oriented, thick-walled Ta2O5 NTs, strongly adhered to the substrate. The adherence on the substrate and the wall thickness of the Ta2O5 NTs were fine-tuned by anodization, thereby helping to preserve their tubular morphology for nitridation at higher temperatures. Samples were studied by scanning electron microscopy, high-resolution electron microscopy, X-ray diffraction, Rietveld refinements, ultraviolet–visible spectrophotometry, X-ray photoelectron spectroscopy, photoluminescence spectra, and electrochemical techniques. Oxygen content in the structure of porous Ta3N5 NTs strongly influenced their photoelectrochemical activity. Structural analyses revealed that the nitridation temperature has crystallographically controlled the preferential orientation along the (110) direction, reduced the oxygen content in the crystalline structure and the tubular matrix, and increased the grain size. The preferred oriented porous Ta3N5 NTs optimized by the nitridation temperature presented an enhanced photocurrent of 7.4 mA cm–2 at 1.23 V vs RHE under AM 1.5 (1 Sun) illumination. Hydrogen production was evaluated by gas chromatography, resulting in 32.8 μmol of H2 in 1 h from the pristine porous Ta3N5 NTs. Electrochemical impedance spectroscopy has shown an effect of nitridation temperature on the interfacial charge transport resistance at the semiconductor–liquid interface; however, the flat band of Ta3N5 NTs remained unchanged.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b05475.

  • Details of experimental methods and characterizations; SEM images, XPS spectra, LSV curves, SAED patterns, PL spectra, and Mott–Schottky plots; and tables displaying data on the geometrical dimensions of the NTs, Rietveld refinement, and PEC parameters. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 37 publications.

  1. Yanxia Ma, Keyu Zhou, Hao Dong, Xin Zhou. Effects of Adsorbing Noble Metal Single Atoms on the Electronic Structure and Photocatalytic Activity of Ta3N5. The Journal of Physical Chemistry C 2021, 125 (32) , 17600-17611. https://doi.org/10.1021/acs.jpcc.1c04054
  2. Heng Yin, Chenyi Shao, Hong Wang, Hefeng Zhang, Dongfeng Li, Xu Zong, Xiuli Wang, Can Li. Shallow Oxygen Substitution Defect to Deeper Defect Transformation Mechanism in Ta3N5 under Light Irradiation. The Journal of Physical Chemistry Letters 2021, 12 (15) , 3698-3704. https://doi.org/10.1021/acs.jpclett.1c00767
  3. Yusaku Matsui, Tetsuya Yamada, Sayaka Suzuki, Takeharu Yoshii, Hirotomo Nishihara, Katsuya Teshima. One-Step Fabrication of Homogeneous Ta3N5 Crystal Photoanodes Using TaF5 Evaporation Supply for Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2021, 4 (3) , 2690-2695. https://doi.org/10.1021/acsaem.0c03231
  4. Zili Ma, Thomas Thersleff, Arno L. Görne, Niklas Cordes, Yanbing Liu, Simon Jakobi, Anna Rokicinska, Zebulon G. Schichtl, Robert H. Coridan, Piotr Kustrowski, Wolfgang Schnick, Richard Dronskowski, Adam Slabon. Quaternary Core–Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (21) , 19077-19086. https://doi.org/10.1021/acsami.9b02483
  5. Ieva Narkeviciute and Thomas F. Jaramillo . Impact of Nanostructuring on the Photoelectrochemical Performance of Si/Ta3N5 Nanowire Photoanodes. The Journal of Physical Chemistry C 2017, 121 (49) , 27295-27302. https://doi.org/10.1021/acs.jpcc.7b08690
  6. Jinzhan Su, Yankuan Wei, and Lionel Vayssieres . Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting. The Journal of Physical Chemistry Letters 2017, 8 (20) , 5228-5238. https://doi.org/10.1021/acs.jpclett.7b00772
  7. Renato V. Gonçalves, Heberton Wender, Pedro Migowski, Adriano F. Feil, Dario Eberhardt, Jocenir Boita, Sherdil Khan, Giovanna Machado, Jairton Dupont, and Sergio R. Teixeira . Photochemical Hydrogen Production of Ta2O5 Nanotubes Decorated with NiO Nanoparticles by Modified Sputtering Deposition. The Journal of Physical Chemistry C 2017, 121 (11) , 5855-5863. https://doi.org/10.1021/acs.jpcc.6b10540
  8. Hameed Ullah, Altaf Ur Rahman, Erhon Leonetti Aragão, Fernanda Fróis Alves Barbosa, Kevin Gabriel Ramisch Pergher, Raquel Giulian, Horácio Coelho Júnior, Rubem Luis Sommer, Sherdil Khan. Homogeneous V incorporation via single-step anodization: Structural doping or heterostructure formation?. Applied Surface Science 2021, 556 , 149694. https://doi.org/10.1016/j.apsusc.2021.149694
  9. Yudai Kawase, Tomohiro Higashi, Kazunari Domen, Kazuhiro Takanabe. Recent Developments in Visible‐Light‐Absorbing Semitransparent Photoanodes for Tandem Cells Driving Solar Water Splitting. Advanced Energy and Sustainability Research 2021, 2 (7) , 2100023. https://doi.org/10.1002/aesr.202100023
  10. Sherdil Khan, Thais Lemes Ruwer, Niqab Khan, Ariadne Köche, Rhys W. Lodge, Horácio Coelho-Júnior, Rubem L. Sommer, Marcos J. Leite Santos, Célia F. Malfatti, Carlos P. Bergmann, Jesum Alves Fernandes. Revealing the true impact of interstitial and substitutional nitrogen doping in TiO 2 on photoelectrochemical applications. Journal of Materials Chemistry A 2021, 9 (20) , 12214-12224. https://doi.org/10.1039/D0TA11494D
  11. Yingfei Hu, Huiting Huang, Jianyong Feng, Wei Wang, Hangmin Guan, Zhaosheng Li, Zhigang Zou. Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar RRL 2021, 5 (4) , 2100100. https://doi.org/10.1002/solr.202100100
  12. Kaiqi Xu, Athanasios Chatzitakis, Sanne Risbakk, Mingyi Yang, Paul Hoff Backe, Mathieu Grandcolas, Magnar Bjørås, Truls Norby. High performance and toxicity assessment of Ta3N5 nanotubes for photoelectrochemical water splitting. Catalysis Today 2021, 361 , 57-62. https://doi.org/10.1016/j.cattod.2019.12.031
  13. Chu‐Wei Hsu, Keisuke Awaya, Masayuki Tsushida, Tetsuya Sato, Michio Koinuma, Shintaro Ida. Preparation of Ta 3 N 5 Nanosheet by Nitridation of Monolayer Tantalum Oxide Nanosheet. ChemistrySelect 2020, 5 (43) , 13761-13765. https://doi.org/10.1002/slct.202004129
  14. Xian Zhang, Huilin Guo, Guojun Dong, Yajun Zhang, Gongxuan Lu, Yingpu Bi. Homostructural Ta3N5 nanotube/nanoparticle photoanodes for highly efficient solar-driven water splitting. Applied Catalysis B: Environmental 2020, 277 , 119217. https://doi.org/10.1016/j.apcatb.2020.119217
  15. Zirui Lou, Yingchen Yang, Yichen Wang, Chao Qin, Rong Liang, Yanwen Wang, Zhizhen Ye, Liping Zhu. LaCl3 flux mediated Ta3N5 planar photoanode for solar water oxidation. Chemical Engineering Journal 2020, 396 , 125161. https://doi.org/10.1016/j.cej.2020.125161
  16. T. N. Ravishankar, M. de O. Vaz, S. R. Teixeira. The effects of surfactant in the sol–gel synthesis of CuO/TiO 2 nanocomposites on its photocatalytic activities under UV-visible and visible light illuminations. New Journal of Chemistry 2020, 44 (5) , 1888-1904. https://doi.org/10.1039/C9NJ05246A
  17. Taifeng Wang, Atsushi Arakaki, David Kisailus. Template-free synthesis of Ta 3 N 5 hollow nanospheres as a visible-light-driven photocatalyst. Journal of Physics Communications 2019, 3 (7) , 075010. https://doi.org/10.1088/2399-6528/ab3233
  18. Joshua J. Bown, Alister J. Page. Vacancy diffusion barriers in TaON and Ta 3 N 5 water-splitting photocatalysts. Journal of Materials Chemistry A 2019, 7 (21) , 13029-13035. https://doi.org/10.1039/C9TA02280E
  19. Zhiliang Wang, Lianzhou Wang. Photoelectrode for water splitting: Materials, fabrication and characterization. Science China Materials 2018, 61 (6) , 806-821. https://doi.org/10.1007/s40843-018-9240-y
  20. Shaomang Wang, Yuan Guan, Lei Lu, Zhan Shi, Shicheng Yan, Zhigang Zou. Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4. Applied Catalysis B: Environmental 2018, 224 , 10-16. https://doi.org/10.1016/j.apcatb.2017.10.043
  21. Renato V. Gonçalves, Heberton Wender, Sherdil Khan, Mauricio A. Melo. Photocatalytic Water Splitting by Suspended Semiconductor Particles. 2018,,, 107-140. https://doi.org/10.1007/978-3-319-62800-4_3
  22. Thiago A. S. Soares, Lilian C. Holanda, Rhauane A. Galvão, Renato V. Gonçalves, Massiliano Bestetti, Éder J. Kinast, Érico Teixeira-Neto, Ângela A. Teixeira-Neto, Sherdil Khan, Sérgio R. Teixeira, Luciano C. Almeida, Giovanna Machado. Syntheses and structural understanding of a Ti–Ta alloy-based nanotubular oxide photocatalyst. CrystEngComm 2018, 20 (37) , 5583-5591. https://doi.org/10.1039/C8CE00743H
  23. Alexander Bervian, Eliane Coser, Sidnei Antonio Pianaro, Cesar Aguzzoli, Alexandre Pedott, Sherdil Khan, Célia de Fraga Malfatti. Application of Taguchi Method to Study Morphological Evolution of TiO2 Nanotubes Obtained Via Anodization Process. Materials Research 2018, 21 (2) https://doi.org/10.1590/1980-5373-mr-2017-0784
  24. Ieva Narkeviciute, Thomas F. Jaramillo. Effects of Ta 3 N 5 Morphology and Composition on the Performance of Si‐Ta 3 N­ 5 Photoanodes. Solar RRL 2017, 1 (11) , 1700121. https://doi.org/10.1002/solr.201700121
  25. Yangyang He, Yonggang Yang. Helical Mesoporous Tantalum Oxide Nanotubes: Formation, Optical Activity, and Applications. The Chemical Record 2017, 17 (11) , 1146-1155. https://doi.org/10.1002/tcr.201700012
  26. Alexander Bervian, Eliane Coser, Sherdil Khan, Sidnei Antonio Pianaro, Cesar Aguzzoli, Jossano Saldanha Marcuzzo, Mauricio Ribeiro Baldan, Célia de Fraga Malfatti. Evolution of TiO2 Nanotubular Morphology Obtained in Ethylene Glycol/Glycerol Mixture and its Photoelectrochemical Performance. Materials Research 2017, 20 (4) , 962-972. https://doi.org/10.1590/1980-5373-mr-2016-0878
  27. Jesum A. Fernandes, Emerson C. Kohlrausch, Sherdil Khan, Rafael C. Brito, Guilherme J. Machado, Sérgio R. Teixeira, Jairton Dupont, Marcos J. Leite Santos. Effect of anodisation time and thermal treatment temperature on the structural and photoelectrochemical properties of TiO 2 nanotubes. Journal of Solid State Chemistry 2017, 251 , 217-223. https://doi.org/10.1016/j.jssc.2017.04.025
  28. Silvia Montolio, Gabriel Abarca, Raúl Porcar, Jairton Dupont, María Isabel Burguete, Eduardo García-Verdugo, Santiago V. Luis. Hierarchically structured polymeric ionic liquids and polyvinylpyrrolidone mat-fibers fabricated by electrospinning. Journal of Materials Chemistry A 2017, 5 (20) , 9733-9744. https://doi.org/10.1039/C7TA02447A
  29. Sherdil Khan, Marcos J. L. Santos, Célia F. Malfatti, Jairton Dupont, Sérgio R. Teixeira. Pristine Ta 3 N 5 Nanotubes: Trap-Driven High External Biasing Perspective in Semiconductor/Electrolyte Interfaces. Chemistry - A European Journal 2016, 22 (51) , 18501-18511. https://doi.org/10.1002/chem.201603246
  30. Thammadihalli N. Ravishankar , Mauricio de O. Vaz, S. Khan, T. Ramakrishnappa , Sergio R. Teixeira, Geetha. R. Balakrishna, G. Nagaraju, J. Dupont. Ionic Liquid Assisted Hydrothermal Syntheses of TiO 2 /CuO Nano-Composites for Enhanced Photocatalytic Hydrogen Production from Water. ChemistrySelect 2016, 1 (10) , 2199-2206. https://doi.org/10.1002/slct.201600068
  31. Jian Zhang, Qiaoxia Zhang, Lianhui Wang, Xing’ao Li, Wei Huang. Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep27241
  32. Yinghao Xie, Yawei Wang, Zuofeng Chen, Xiaoxiang Xu. Role of Oxygen Defects on the Photocatalytic Properties of Mg-Doped Mesoporous Ta 3 N 5. ChemSusChem 2016, 9 (12) , 1403-1412. https://doi.org/10.1002/cssc.201600193
  33. Jiajia Wang, Aibin Ma, Zhaosheng Li, Jinghua Jiang, Jianyong Feng, Zhigang Zou. Theoretical study on the surface stabilities, electronic structures and water adsorption behavior of the Ta 3 N 5 (110) surface. Physical Chemistry Chemical Physics 2016, 18 (11) , 7938-7945. https://doi.org/10.1039/C5CP07958F
  34. T. N. Ravishankar, M. de Oliveira Vaz, S. Khan, T. Ramakrishnappa, S. R. Teixeira, Geetha R. Balakrishna, G. Nagaraju, J. Dupont. Enhanced photocatalytic hydrogen production from Y 2 O 3 /TiO 2 nano-composites: a comparative study on hydrothermal synthesis with and without an ionic liquid. New Journal of Chemistry 2016, 40 (4) , 3578-3587. https://doi.org/10.1039/C5NJ03711E
  35. Jesum A. Fernandes, Sherdil Khan, Fabio Baum, Emerson C. Kohlrausch, José Augusto Lucena dos Santos, Daniel L. Baptista, Sergio R. Teixeira, Jairton Dupont, Marcos J. Leite Santos. Synergizing nanocomposites of CdSe/TiO 2 nanotubes for improved photoelectrochemical activity via thermal treatment. Dalton Transactions 2016, 45 (24) , 9925-9931. https://doi.org/10.1039/C6DT00235H
  36. Sherdil Khan, Maximiliano J. M. Zapata, Marcelo B. Pereira, Renato V. Gonçalves, Lukas Strizik, Jairton Dupont, Marcos J. L. Santos, Sérgio R. Teixeira. Structural, optical and photoelectrochemical characterizations of monoclinic Ta 3 N 5 thin films. Physical Chemistry Chemical Physics 2015, 17 (37) , 23952-23962. https://doi.org/10.1039/C5CP03645C
  37. Sherdil Khan, Sérgio Ribeiro Teixeira, Marcos Jose Leite Santos. Controlled thermal nitridation resulting in improved structural and photoelectrochemical properties from Ta 3 N 5 nanotubular photoanodes. RSC Advances 2015, 5 (125) , 103284-103291. https://doi.org/10.1039/C5RA17227F