Effect of Sodium Content on the Reversible Lithium Intercalation into Sodium-Deficient Cobalt–Nickel–Manganese Oxides NaxCo1/3Ni1/3Mn1/3O2 (0.38 ≤ x ≤ 0.75) with a P3 Type of Structure

View Author Information
Institute of General and Inorganic Chemistry, Institute of Catalysis, and §Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
*Fax +359 2 8705024; Tel +359 2 979 3915; e-mail [email protected] (R.S.).
Cite this: J. Phys. Chem. C 2016, 120, 7, 3654–3668
Publication Date (Web):February 1, 2016
Copyright © 2016 American Chemical Society
Article Views
Read OnlinePDF (3 MB)


Layered lithium transition metal oxides with optimized nickel–manganese content are nowadays of primary interest as electrode materials for lithium ion batteries, since they are able to deliver a high capacity at a low cost. Herein we report a new class of less expensive cathode materials, which comprise sodium-deficient cobalt–nickel–manganese oxides NaxCo1/3Ni1/3Mn1/3O2 characterized with a layered structure and broad concentration range of sodium solubility. NaxCo1/3Ni1/3Mn1/3O2 oxides are obtained by thermal decomposition of mixed acetate–oxalate precursors, followed by thermal annealing between 700 and 800 °C. In the concentration range of 0.33 < x ≤ 0.75, NaxCo1/3Ni1/3Mn1/3O2 oxides assume a layered structure with a three-layer stacking (i.e., P3 type of structure). Based on electron paramagnetic resonance spectroscopy operating in the X-band (9.4 GHz), it is found that the charge compensation of Na deficiency is achieved by preferential oxidation of Ni2+ to Ni3+ and Ni4+, while Co and Mn ions retain their oxidation state of 3+ and 4+ within the whole concentration range. The electrochemical performance of NaxCo1/3Ni1/3Mn1/3O2 in model lithium cells is simply controlled by the amount of sodium content in the pristine compositions: a higher reversible capacity is achieved for sodium-rich oxides (i.e., 0.75 ≥ x ≥ 0.67), while sodium-poor oxides (i.e., 0.38 ≤ x ≤ 0.50) display a lower reversible capacity and improved cycling stability. The mechanism of the lithium intercalation into NaxCo1/3Ni1/3Mn1/3O2 is discussed on the basis of ex situ XRD, HRTEM, and X-ray photoelectron spectroscopy analyses.

Cited By

This article is cited by 27 publications.

  1. Chong Zhao, Chao Li, Hui Liu, Qing Qiu, Fushan Geng, Ming Shen, Wei Tong, Jingxin Li, Bingwen Hu. Coexistence of (O2)n− and Trapped Molecular O2 as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. Journal of the American Chemical Society 2021, 143 (44) , 18652-18664. https://doi.org/10.1021/jacs.1c08614
  2. Mariya Kalapsazova, Hristo Rasheev, Ekaterina Zhecheva, Alia Tadjer, Radostina Stoyanova. Insights into the Function of Electrode and Electrolyte Materials in a Hybrid Lithium–Sodium Ion Cell. The Journal of Physical Chemistry C 2019, 123 (18) , 11508-11521. https://doi.org/10.1021/acs.jpcc.9b01993
  3. Da Tie, Guofeng Gao, Fang Xia, Ruyun Yue, Qingjie Wang, Ruijuan Qi, Bo Wang, Yufeng Zhao. Modulating the Interlayer Spacing and Na+/Vacancy Disordering of P2-Na0.67MnO2 for Fast Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Interfaces 2019, 11 (7) , 6978-6985. https://doi.org/10.1021/acsami.8b19134
  4. Benoit Mortemard de Boisse, Dany Carlier, Marie Guignard, Elodie Guerin, Mathieu Duttine, Alain Wattiaux, Claude Delmas. Influence of Mn/Fe Ratio on Electrochemical and Structural Properties of P2-NaxMn1–yFeyO2 Phases as Positive Electrode Material for Na-Ion Batteries. Chemistry of Materials 2018, 30 (21) , 7672-7681. https://doi.org/10.1021/acs.chemmater.8b02953
  5. Manikandan Palanisamy, Hyun Woo Kim, Seongwoo Heo, Eungje Lee, and Youngsik Kim . Insights into the Dual-Electrode Characteristics of Layered Na0.5Ni0.25Mn0.75O2 Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (12) , 10618-10625. https://doi.org/10.1021/acsami.6b15355
  6. Maria L. Kalapsazova, Ekaterina N. Zhecheva, Georgi T. Tyuliev, Diana D. Nihtianova, Lyuben Mihaylov, and Radostina K. Stoyanova . Effects of the Particle Size Distribution and of the Electrolyte Salt on the Intercalation Properties of P3-Na2/3Ni1/2Mn1/2O2. The Journal of Physical Chemistry C 2017, 121 (11) , 5931-5940. https://doi.org/10.1021/acs.jpcc.6b12887
  7. Svetlana Ivanova, Ekaterina Zhecheva, Rositsa Kukeva, Diana Nihtianova, Lyuben Mihaylov, Genoveva Atanasova, and Radostina Stoyanova . Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium–Lithium Cell. ACS Applied Materials & Interfaces 2016, 8 (27) , 17321-17333. https://doi.org/10.1021/acsami.6b05075
  8. Chong Zhao, Chao Li, Qi Yang, Qing Qiu, Wei Tong, Shun Zheng, Jingyuan Ma, Ming Shen, Bingwen Hu. Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR. Energy Storage Materials 2021, 39 , 60-69. https://doi.org/10.1016/j.ensm.2021.04.007
  9. Assumpta Chinwe Nwanya, Miranda M. Ndipingwi, Ofomatah Anthony, Fabian I. Ezema, Malik Maaza, Emmanuel I. Iwuoha. Impedance studies of biosynthesized Na 0. 8 Ni 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 applied in an aqueous sodium‐ion battery. International Journal of Energy Research 2021, 45 (7) , 11123-11134. https://doi.org/10.1002/er.6594
  10. Jennifer H. Stansby, Neeraj Sharma, Damian Goonetilleke. Probing the charged state of layered positive electrodes in sodium-ion batteries: reaction pathways, stability and opportunities. Journal of Materials Chemistry A 2020, 8 (47) , 24833-24867. https://doi.org/10.1039/D0TA09553B
  11. Qi Wang, Shiyong Chu, Shaohua Guo. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries. Chinese Chemical Letters 2020, 31 (9) , 2167-2176. https://doi.org/10.1016/j.cclet.2019.12.008
  12. Kai Liu, Susheng Tan, Jisue Moon, Charl J. Jafta, Cheng Li, Takeshi Kobayashi, Hailong Lyu, Craig A. Bridges, Shuang Men, Wei Guo, Yifan Sun, Jinli Zhang, M. Parans Paranthaman, Xiao‐Guang Sun, Sheng Dai. Insights into the Enhanced Cycle and Rate Performances of the F‐Substituted P2‐Type Oxide Cathodes for Sodium‐Ion Batteries. Advanced Energy Materials 2020, 10 (19) , 2000135. https://doi.org/10.1002/aenm.202000135
  13. Andrew G. Meguerdichian, Habiba Tasnim, Lamya Tabassum, Tharindu Kankanam-Kapuge, Alireza Shirazi Amin, Md R. Shakil, Panteha Toloueinia, Laura A. Achola, William S. Willis, Steven L. Suib. Modified Solution Combustion Synthesis (SCS) of nickel oxide, NiO sphere clusters using glucans and sodium salts: Application for electrocatalytic decomposition of urea. Microporous and Mesoporous Materials 2020, 295 , 109750. https://doi.org/10.1016/j.micromeso.2019.109750
  14. Jianyin Wang, Mengchu Yang, Chong Zhao, Bei Hu, Xiaobing Lou, Fushan Geng, Wei Tong, Bingwen Hu, Chao Li. Unveiling the benefits of potassium doping on the structural integrity of Li–Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy. Physical Chemistry Chemical Physics 2019, 21 (43) , 24017-24025. https://doi.org/10.1039/C9CP04204K
  15. Ankit Goyal, Xiaodong Niu, Nam Phuong Pham Le, Nguyen Thanh Le Huynh, Van Man Tran, My Loan Phung Le, Liang Gao, Akhil Garg. Precision Manufacturing of NaNi1/3Mn1/3Co1/3O2 Cathodes: Study of Structure Evolution and Performance at Varied Calcination Temperatures. Journal of Electronic Materials 2019, 48 (8) , 5301-5309. https://doi.org/10.1007/s11664-019-07340-1
  16. M.J. Aragón, G.F. Ortiz, P. Lavela, J.L. Tirado, J.D.C. Oliveira, F.V. Motta, M.R.D. Bomio. On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. Journal of Alloys and Compounds 2019, 789 , 1035-1045. https://doi.org/10.1016/j.jallcom.2019.03.093
  17. Radostina Stoyanova, Violeta Koleva, Antonia Stoyanova. Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. The Chemical Record 2019, 19 (2-3) , 474-501. https://doi.org/10.1002/tcr.201800081
  18. Hui Chen, Zhenguo Wu, Zhuo Zheng, Tingru Chen, Xiaodong Guo, Juntao Li, Benhe Zhong. Tuning the component ratio and corresponding sodium storage properties of layer-tunnel hybrid Na0.6Mn1-Ni O2 cathode by a simple cationic Ni2+ doping strategy. Electrochimica Acta 2018, 273 , 63-70. https://doi.org/10.1016/j.electacta.2018.04.006
  19. Fangdong Hu, Xiaolei Jiang. Li-substituted P2-Na0.66Li Mn0.5Ti0.5O2 as an advanced cathode material and new “bi-functional” electrode for symmetric sodium-ion batteries. Advanced Powder Technology 2018, 29 (4) , 1049-1053. https://doi.org/10.1016/j.apt.2018.01.027
  20. Shiyong Chu, Shenying Wei, Yubo Chen, Rui Cai, Kaiming Liao, Wei Zhou, Zongping Shao. Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceramics International 2018, 44 (5) , 5184-5192. https://doi.org/10.1016/j.ceramint.2017.12.124
  21. Guofeng Gao, Da Tie, Hao Ma, Haijun Yu, Shanshan Shi, Bo Wang, Shengming Xu, Linlin Wang, Yufeng Zhao. Interface-rich mixed P2 + T phase Na x Co 0.1 Mn 0.9 O 2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. Journal of Materials Chemistry A 2018, 6 (15) , 6675-6684. https://doi.org/10.1039/C8TA00206A
  22. María José Aragón, Pedro Lavela, Gregorio Ortiz, Ricardo Alcántara, José Luis Tirado. Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries. Journal of Alloys and Compounds 2017, 724 , 465-473. https://doi.org/10.1016/j.jallcom.2017.07.044
  23. Palanisamy Manikandan, Seongwoo Heo, Hyun Woo Kim, Hu Young Jeong, Eungje Lee, Youngsik Kim. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries. Journal of Power Sources 2017, 363 , 442-449. https://doi.org/10.1016/j.jpowsour.2017.07.116
  24. Yasumasa Tomita, Noritaka Kimura, Yusuke Izumi, Juichi Arai, Yoshiumi Kohno, Kenkichiro Kobayashi. Synthesis and electrochemical properties of 4LiF-NiMn 2 O 4 composite as a cathode material for Li-ion batteries. Journal of Power Sources 2017, 354 , 34-40. https://doi.org/10.1016/j.jpowsour.2017.04.003
  25. Jingang Yang, Tingting Yuan, Biao Guo, Chunlong Dai, Yuan Liu, Guannan Li, Gang Liu, Maowen Xu. Precise preparation of layered Na 0.5 Ni 0.25 Mn 0.75 O 2 micro-sheets for 3.8 V Na-ion batteries. Chemical Communications 2017, 53 (65) , 9117-9120. https://doi.org/10.1039/C7CC04328G
  26. M. Kalapsazova, S. Ivanova, R. Kukeva, S. Simova, S. Wegner, E. Zhecheva, R. Stoyanova. Combined use of EPR and 23 Na MAS NMR spectroscopy for assessing the properties of the mixed cobalt–nickel–manganese layers of P3-Na y Co 1−2x Ni x Mn x O 2. Phys. Chem. Chem. Phys. 2017, 19 (39) , 27065-27073. https://doi.org/10.1039/C7CP04849A
  27. Bang-Kun Zou, Yu Shao, Zi-Yue Qiang, Jia-Ying Liao, Zhong-Feng Tang, Chun-Hua Chen. LiMPO4 and derived NaMPO4 (M = Mn, Fe, Mg) with excellent electrochemical properties for lithium/sodium ion batteries. Journal of Power Sources 2016, 336 , 231-239. https://doi.org/10.1016/j.jpowsour.2016.10.075