Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation

View Author Information
Department of Chemical and Environmental Engineering, Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
§ Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
*Phone: +81-93-695-3372. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2016, 120, 12, 6467–6474
Publication Date (Web):March 14, 2016
https://doi.org/10.1021/acs.jpcc.6b01481
Copyright © 2016 American Chemical Society
Article Views
2300
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Although TiO2 is generally considered to be an oxygen deficient n-type compound, the role of oxygen vacancies and Ti3+ ions on its photocatalytic activity is not fully understood. In this study, we investigated the effects of high-temperature calcination and H2 reduction treatment on the water oxidation activity of rutile TiO2 under ultraviolet irradiation. Calcination above 900 °C decreased the photocatalytic activity of the TiO2 owing to strong oxidation, but its initial activity was restored by H2 treatment at above 500 °C. Electron spin resonance (ESR) spectra showed that the high-temperature calcination created O•– radicals (trapped hole in oxygen lattice site), while the H2 reduction treatment created Ti3+ ions (trapped electron in titanium lattice site) with oxygen vacancies. Diffuse reflectance ultraviolet–visible–near-infrared (UV–vis–NIR) spectroscopy indicated an increase in the amount of electrons in shallow traps and the conduction band with H2 treatment temperature. Measurements of the sheet resistance and space charge layer capacitance of the thermally oxidized TiO2 films indicated that the H2 treatment improved the electrical conductivity owing to an increase in donor density (electron density). Thus, the increase in the photocatalytic and photoelectrochemical activities of the rutile TiO2 was attributed to donor doping by H2 reduction.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b01481.

  • SEM images, XRD patterns, UV–vis–NIR diffuse reflectance spectra of the TiO2 samples, Mott–Schottky plots, and linear sweep voltammograms measured under UV irradiation (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 104 publications.

  1. Yukari Yamazaki, Kohsuke Mori, Yasutaka Kuwahara, Hisayoshi Kobayashi, Hiromi Yamashita. Defect Engineering of Pt/TiO2–x Photocatalysts via Reduction Treatment Assisted by Hydrogen Spillover. ACS Applied Materials & Interfaces 2021, 13 (41) , 48669-48678. https://doi.org/10.1021/acsami.1c13756
  2. Jiaqi Gao, Jinbo Xue, Shufang Jia, Qianqian Shen, Xiaochao Zhang, Husheng Jia, Xuguang Liu, Qi Li, Yucheng Wu. Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H2 Evolution over Black TiO2. ACS Applied Materials & Interfaces 2021, 13 (16) , 18758-18771. https://doi.org/10.1021/acsami.1c01101
  3. Akira Yamakata, Junie Jhon M. Vequizo, Takafumi Ogawa, Kosaku Kato, Shoya Tsuboi, Naohiro Furutani, Masahiro Ohtsuka, Shunsuke Muto, Akihide Kuwabara, Yoshihisa Sakata. Core–Shell Double Doping of Zn and Ca on β-Ga2O3 Photocatalysts for Remarkable Water Splitting. ACS Catalysis 2021, 11 (4) , 1911-1919. https://doi.org/10.1021/acscatal.0c05104
  4. D. V. Zyabkin, H. P. Gunnlaugsson, J. N. Gonçalves, K. Bharuth-Ram, B. Qi, I. Unzueta, D. Naidoo, R. Mantovan, H. Masenda, S. Ólafsson, G. Peters, J. Schell, U. Vetter, A. Dimitrova, S. Krischok, P. Schaaf. Experimental and Theoretical Study of Electronic and Hyperfine Properties of Hydrogenated Anatase (TiO2): Defect Interplay and Thermal Stability. The Journal of Physical Chemistry C 2020, 124 (13) , 7511-7522. https://doi.org/10.1021/acs.jpcc.0c00085
  5. Chun-Feng Li, Xiaojing Guo, Qing-He Shang, Xi Yan, Cuilan Ren, Wan-Zhong Lang, Ya-Jun Guo. Defective TiO2 for Propane Dehydrogenation. Industrial & Engineering Chemistry Research 2020, 59 (10) , 4377-4387. https://doi.org/10.1021/acs.iecr.9b06759
  6. Baoshun Liu, Hao Wu, Xintong Zhang, Ivan P. Parkin, Xiujian Zhao. New Insight into the Role of Electron Transfer to O2 in Photocatalytic Oxidations of Acetone over TiO2 and the Effect of Au Cocatalyst. The Journal of Physical Chemistry C 2019, 123 (51) , 30958-30971. https://doi.org/10.1021/acs.jpcc.9b08107
  7. Paul Nunez, Matthias H. Richter, Brandon D. Piercy, Christopher W. Roske, Miguel Cabán-Acevedo, Mark D. Losego, Steven J. Konezny, David J. Fermin, Shu Hu, Bruce S. Brunschwig, Nathan S. Lewis. Characterization of Electronic Transport through Amorphous TiO2 Produced by Atomic Layer Deposition. The Journal of Physical Chemistry C 2019, 123 (33) , 20116-20129. https://doi.org/10.1021/acs.jpcc.9b04434
  8. Hajime Suzuki, Masanobu Higashi, Hironobu Kunioku, Ryu Abe, Akinori Saeki. Photoconductivity–Lifetime Product Correlates Well with the Photocatalytic Activity of Oxyhalides Bi4TaO8Cl and PbBiO2Cl: An Approach to Boost Their O2 Evolution Rates. ACS Energy Letters 2019, 4 (7) , 1572-1578. https://doi.org/10.1021/acsenergylett.9b00793
  9. Fumiaki Amano, Masashi Nakata, Junie Jhon M. Vequizo, Akira Yamakata. Enhanced Visible Light Response of TiO2 Codoped with Cr and Ta Photocatalysts by Electron Doping. ACS Applied Energy Materials 2019, 2 (5) , 3274-3282. https://doi.org/10.1021/acsaem.9b00126
  10. Tatsuki Shinoda, Naoya Murakami. Photoacoustic Fourier Transform Near- and Mid-Infrared Spectroscopy for Measurement of Energy Levels of Electron Trapping Sites in Titanium(IV) Oxide Photocatalyst Powders. The Journal of Physical Chemistry C 2019, 123 (19) , 12169-12175. https://doi.org/10.1021/acs.jpcc.9b02876
  11. Ayon Das Mahapatra, Amaresh Das, Shuvaraj Ghosh, Durga Basak. Defect-Assisted Broad-Band Photosensitivity with High Responsivity in Au/Self-Seeded TiO2 NR/Au-Based Back-to-Back Schottky Junctions. ACS Omega 2019, 4 (1) , 1364-1374. https://doi.org/10.1021/acsomega.8b03084
  12. Marcus Lau, Sven Reichenberger, Ina Haxhiaj, Stephan Barcikowski, Astrid M. Müller. Mechanism of Laser-Induced Bulk and Surface Defect Generation in ZnO and TiO2 Nanoparticles: Effect on Photoelectrochemical Performance. ACS Applied Energy Materials 2018, 1 (10) , 5366-5385. https://doi.org/10.1021/acsaem.8b00977
  13. Ho-Young Kang, Dae-Hyun Nam, Ki Dong Yang, Wonhyo Joo, Hoyoung Kwak, Hyung-Ho Kim, Seong-Hyeon Hong, Ki Tae Nam, Young-Chang Joo. Synthetic Mechanism Discovery of Monophase Cuprous Oxide for Record High Photoelectrochemical Conversion of CO2 to Methanol in Water. ACS Nano 2018, 12 (8) , 8187-8196. https://doi.org/10.1021/acsnano.8b03293
  14. Shunta Nishioka, Junji Hyodo, Junie Jhon M. Vequizo, Shunsuke Yamashita, Hiromu Kumagai, Koji Kimoto, Akira Yamakata, Yoshihiro Yamazaki, Kazuhiko Maeda. Homogeneous Electron Doping into Nonstoichiometric Strontium Titanate Improves Its Photocatalytic Activity for Hydrogen and Oxygen Evolution. ACS Catalysis 2018, 8 (8) , 7190-7200. https://doi.org/10.1021/acscatal.8b01379
  15. Ryo Kuriki, Tom Ichibha, Kenta Hongo, Daling Lu, Ryo Maezono, Hiroshi Kageyama, Osamu Ishitani, Kengo Oka, Kazuhiko Maeda. A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction. Journal of the American Chemical Society 2018, 140 (21) , 6648-6655. https://doi.org/10.1021/jacs.8b02822
  16. Ángel Morales-García, Oriol Lamiel-García, Rosendo Valero, and Francesc Illas . Properties of Single Oxygen Vacancies on a Realistic (TiO2)84 Nanoparticle: A Challenge for Density Functionals. The Journal of Physical Chemistry C 2018, 122 (4) , 2413-2421. https://doi.org/10.1021/acs.jpcc.7b11269
  17. Thomas Moehl, Jihye Suh, Laurent Sévery, René Wick-Joliat, and S. David Tilley . Investigation of (Leaky) ALD TiO2 Protection Layers for Water-Splitting Photoelectrodes. ACS Applied Materials & Interfaces 2017, 9 (50) , 43614-43622. https://doi.org/10.1021/acsami.7b12564
  18. Mariana C. O. Monteiro, Patrik Schmuki, and Manuela S. Killian . Tuning Anatase Surface Reactivity toward Carboxylic Acid Anchor Groups. Langmuir 2017, 33 (49) , 13913-13922. https://doi.org/10.1021/acs.langmuir.7b03044
  19. Baoshun Liu, Kai Cheng, Shengchao Nie, Xiujian Zhao, Huogen Yu, Jiaguo Yu, Akira Fujishima, and Kazuya Nakata . Ice–Water Quenching Induced Ti3+ Self-doped TiO2 with Surface Lattice Distortion and the Increased Photocatalytic Activity. The Journal of Physical Chemistry C 2017, 121 (36) , 19836-19848. https://doi.org/10.1021/acs.jpcc.7b06274
  20. Hiroaki Hirakawa, Masaki Hashimoto, Yasuhiro Shiraishi, and Takayuki Hirai . Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. Journal of the American Chemical Society 2017, 139 (31) , 10929-10936. https://doi.org/10.1021/jacs.7b06634
  21. Anton Litke, Emiel J. M. Hensen, and Jan P. Hofmann . Role of Dissociatively Adsorbed Water on the Formation of Shallow Trapped Electrons in TiO2 Photocatalysts. The Journal of Physical Chemistry C 2017, 121 (18) , 10153-10162. https://doi.org/10.1021/acs.jpcc.7b01151
  22. Hiroaki Hirakawa, Masaki Hashimoto, Yasuhiro Shiraishi, and Takayuki Hirai . Selective Nitrate-to-Ammonia Transformation on Surface Defects of Titanium Dioxide Photocatalysts. ACS Catalysis 2017, 7 (5) , 3713-3720. https://doi.org/10.1021/acscatal.7b00611
  23. Yufei Zhao, Xiaodan Jia, Guangbo Chen, Lu Shang, Geoffrey I.N. Waterhouse, Li-Zhu Wu, Chen-Ho Tung, Dermot O’Hare, and Tierui Zhang . Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society 2016, 138 (20) , 6517-6524. https://doi.org/10.1021/jacs.6b01606
  24. Ying-Ying Wang, Yan-Xin Chen, Tarek Barakat, Yu-Jia Zeng, Jing Liu, Stéphane Siffert, Bao-Lian Su. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. Journal of Energy Chemistry 2022, 66 , 529-559. https://doi.org/10.1016/j.jechem.2021.08.038
  25. Shankar Sharma, Naveen Kumar, Peter R. Makgwane, Nar Singh Chauhan, Kavitha Kumari, Manju Rani, Sanjeev Maken. TiO2/SnO2 nano-composite: New insights in synthetic, structural, optical and photocatalytic aspects. Inorganica Chimica Acta 2022, 529 , 120640. https://doi.org/10.1016/j.ica.2021.120640
  26. Xu-Dong Wang, Yu-Hua Huang, Jin-Feng Liao, Ze-Feng Wei, Wen-Guang Li, Yang-Fan Xu, Hong-Yan Chen, Dai-Bin Kuang. Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21487-8
  27. Yanhua Peng, Mengjie Geng, Jianqiang Yu, Yan Zhang, Fenghui Tian, Ya’nan Guo, Dongsheng Zhang, Xiaolong Yang, Zhuo Li, Zixin Li, Shengyue Zhang. Vacancy-induced [email protected] MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 2021, 298 , 120570. https://doi.org/10.1016/j.apcatb.2021.120570
  28. Jie Li, Dandan Cheng, Zhenglin Chen, Lixia Yang, Lingyi Zheng, Zhihui Wei, Tianzhu Ma, Jie Zhang, Yan Luo. Oxygen vacancy/Ti3+ engineered TiO2 nanotube arrays prepared by in-situ exfoliation with H2 bubbles: A visible-light-driven self-supporting photocatalyst for detoxfication of chloraphenicol. Journal of Environmental Chemical Engineering 2021, 9 (6) , 106670. https://doi.org/10.1016/j.jece.2021.106670
  29. Joel Y. Y. Loh, Geetu Sharma, Nazir P. Kherani, Geoffrey A. Ozin. Post‐Illumination Photoconductivity Enables Extension of Photo‐Catalysis after Sunset. Advanced Energy Materials 2021, 11 (41) , 2101566. https://doi.org/10.1002/aenm.202101566
  30. Naw Rutha PAW, Takuma KIMURA, Tatsuo ISHIJIMA, Yasunori TANAKA, Yusuke NAKANO, Yoshihiko UESUGI, Shiori SUEYASU, Shu WATANABE, Keitaro NAKAMURA. Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor. Plasma Science and Technology 2021, 23 (10) , 105505. https://doi.org/10.1088/2058-6272/ac0ed9
  31. Yin Xu, Giovanni Zangari. TiO2 Nanotubes Architectures for Solar Energy Conversion. Coatings 2021, 11 (8) , 931. https://doi.org/10.3390/coatings11080931
  32. Hua Guo, Aleksander Jaworski, Zheng Chen, Can Lu, Adam Slabon, Ulrich Häussermann. Barium Titanium Oxynitride from Ammonia-Free Nitridation of Reduced BaTiO3. Inorganics 2021, 9 (8) , 62. https://doi.org/10.3390/inorganics9080062
  33. Marcin Janczarek, Ewa Kowalska. Defective Dopant-Free TiO2 as an Efficient Visible Light-Active Photocatalyst. Catalysts 2021, 11 (8) , 978. https://doi.org/10.3390/catal11080978
  34. S. Jagadeesh Babu, V. Navakoteswara Rao, Dharmapura H.K. Murthy, Mahesh Shastri, Murthy M, Manjunath Shetty, K.S. Anantha Raju, Prasanna D. Shivaramu, C.S. Ananda Kumar, M.V. Shankar, Dinesh Rangappa. Significantly enhanced cocatalyst-free H2 evolution from defect-engineered Brown TiO2. Ceramics International 2021, 47 (10) , 14821-14828. https://doi.org/10.1016/j.ceramint.2020.10.026
  35. Fumiaki Amano. Photoelectrochemical Oxygen Evolution. 2021,,, 163-187. https://doi.org/10.1002/9783527825073.ch7
  36. Juanjuan Ge, Gaohui Du, Abul Kalam, Xiang Bi, Shukai Ding, Qingmei Su, Bingshe Xu, Abdullah G. Al-Sehemi. Oxygen vacancy-rich black TiO2 nanoparticles as a highly efficient catalyst for Li–O2 batteries. Ceramics International 2021, 47 (5) , 6965-6971. https://doi.org/10.1016/j.ceramint.2020.11.045
  37. Shuta Hara, Sei Kurebayashi, Genza Sanae, Shota Watanabe, Takehiro Kaneko, Takeshi Toyama, Shigeru Shimizu, Hiroki Ikake. Polycarbonate/Titania Hybrid Films with Localized Photo-Induced Magnetic-Phase Transition. Nanomaterials 2021, 11 (1) , 5. https://doi.org/10.3390/nano11010005
  38. Mei Guo, Guijun Ma. Alteration of onset potentials of Rh-doped SrTiO3 electrodes for photoelectrochemical water splitting. Journal of Catalysis 2020, 391 , 241-246. https://doi.org/10.1016/j.jcat.2020.08.029
  39. Hua Guo, Aleksander Jaworski, Zili Ma, Adam Slabon, Zoltan Bacsik, Reji Nedumkandathil, Ulrich Häussermann. Trapping of different stages of BaTiO 3 reduction with LiH. RSC Advances 2020, 10 (58) , 35356-35365. https://doi.org/10.1039/D0RA07276A
  40. Rab Nawaz, Chong Fai Kait, Ho Yeek Chia, Mohamed Hasnain Isa, Lim Wen Huei. Structural elucidation of core–shell TiO2 nanomaterials for environmental pollutants removal: A focused mini review. Environmental Technology & Innovation 2020, 19 , 101007. https://doi.org/10.1016/j.eti.2020.101007
  41. N. Narayanan, Q. Lou, A. Rawal, T. Lu, Z. Liu, J. Chen, J. Langley, H. Chen, J. Hester, N. Cox, H. Fuess, G. J. McIntyre, G. Li, D. Yu, Y. Liu. Defect structure and property consequence when small Li + ions meet BaTi O 3 . Physical Review Materials 2020, 4 (8) https://doi.org/10.1103/PhysRevMaterials.4.084412
  42. Hammad Malik, Kai Barrera, Swomitra Mohanty, Krista Carlson. Enhancing electrochemical properties of TiO2 nanotubes via engineered defect laden crystal structures. Materials Letters 2020, 273 , 127956. https://doi.org/10.1016/j.matlet.2020.127956
  43. D.E. Jain Ruth, Raja Altaf U Rahman, Manikandan Dhamodaran, Venkidu Lakshmanan, Sundarakannan Balasubramanian, Peter Schmid-Beurmann, Peng Zhou, Gopalan Srinivasan, Murugan Ramaswamy. Room temperature magnetoelectric coupling in Fe-doped sodium bismuth titanate ceramics. Journal of Alloys and Compounds 2020, 830 , 154679. https://doi.org/10.1016/j.jallcom.2020.154679
  44. Mohammad Tanhaei, Yi Ren, Ming Yang, Fabio Bussolotti, Jayce J. W. Cheng, Jisheng Pan, Sing Yang Chiam. Direct control of defects in molybdenum oxide and understanding their high CO 2 sorption performance. Journal of Materials Chemistry A 2020, 8 (25) , 12576-12585. https://doi.org/10.1039/D0TA03943H
  45. Naruki Hayashi, Kosaku Kato, Akira Yamakata. Enhancement of photoelectrochemical activity of TiO 2 electrode by particulate/dense double-layer formation. The Journal of Chemical Physics 2020, 152 (24) , 241101. https://doi.org/10.1063/5.0010121
  46. Piotr J. Barczuk, Krzysztof R. Noworyta, Miroslaw Dolata, Katarzyna Jakubow-Piotrowska, Jan Augustynski. Visible-light activation of low-cost rutile TiO2 photoanodes for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells 2020, 208 , 110424. https://doi.org/10.1016/j.solmat.2020.110424
  47. Pavel Afanasiev. MoS2 “inorganic fullerenes” combined with TiO2 in water-methanol suspensions: Highly active hydrogen production photo catalysts operating via transfer of accumulated electrons. International Journal of Hydrogen Energy 2020, 45 (29) , 14696-14712. https://doi.org/10.1016/j.ijhydene.2020.03.191
  48. P. Afanasiev. Transfer of stored electrons between TiO2 polymorphs during photocatalytic H2 production in methanol–water medium. Applied Catalysis A: General 2020, 598 , 117548. https://doi.org/10.1016/j.apcata.2020.117548
  49. Masanori Kodera, Ayako Taguchi, Takao Shimizu, Hiroki Moriwake, Hiroshi Funakubo. Fabrication and characterization of ReO 3 -type dielectric films. Journal of Materials Chemistry C 2020, 8 (14) , 4680-4684. https://doi.org/10.1039/D0TC00821D
  50. Haiyang Hu, Yan Lin, Yun Hang Hu. Core-shell structured TiO2 as highly efficient visible light photocatalyst for dye degradation. Catalysis Today 2020, 341 , 90-95. https://doi.org/10.1016/j.cattod.2019.01.077
  51. Shijia Feng, Tuo Wang, Bin Liu, Congling Hu, Lulu Li, Zhi‐Jian Zhao, Jinlong Gong. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation. Angewandte Chemie 2020, 132 (5) , 2060-2064. https://doi.org/10.1002/ange.201913295
  52. Shijia Feng, Tuo Wang, Bin Liu, Congling Hu, Lulu Li, Zhi‐Jian Zhao, Jinlong Gong. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation. Angewandte Chemie International Edition 2020, 59 (5) , 2044-2048. https://doi.org/10.1002/anie.201913295
  53. Baoshun Liu, Xiujian Zhao, Ivan P. Parkin, Kazuya Nakata. Charge carrier transfer in photocatalysis. 2020,,, 103-159. https://doi.org/10.1016/B978-0-08-102890-2.00004-X
  54. Konstantins Mantulnikovs, Péter Szirmai, Márton Kollár, Jeremy Stevens, Pavao Andričević, Anastasiia Glushkova, Lidia Rossi, Philippe Bugnon, Endre Horváth, Andrzej Sienkiewicz, László Forró, Bálint Náfrádi. Light-induced charge transfer at the CH 3 NH 3 PbI 3 /TiO 2 interface—a low-temperature photo-electron paramagnetic resonance assay. Journal of Physics: Photonics 2020, 2 (1) , 014007. https://doi.org/10.1088/2515-7647/ab6276
  55. Junie Jhon M. Vequizo, Shunta Nishioka, Junji Hyodo, Yoshihiro Yamazaki, Kazuhiko Maeda, Akira Yamakata. Crucial impact of reduction on the photocarrier dynamics of SrTiO 3 powders studied by transient absorption spectroscopy. Journal of Materials Chemistry A 2019, 7 (45) , 26139-26146. https://doi.org/10.1039/C9TA08216F
  56. Baoshun Liu, Ling Yan, Jiangyan Wang. Liquid N2 quenching induced oxygen defects and surface distortion in TiO2 and the effect on the photocatalysis of methylene blue and acetone. Applied Surface Science 2019, 494 , 266-274. https://doi.org/10.1016/j.apsusc.2019.07.095
  57. Shiqun Wu, Xianjun Tan, Kaida Liu, Juying Lei, Lingzhi Wang, Jinlong Zhang. TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen. Catalysis Today 2019, 335 , 214-220. https://doi.org/10.1016/j.cattod.2018.11.043
  58. Jie Liu, Zichen Tao, Hongtian Xie, Xiaoming Zhang, Hao Wang, Huining Xiao, Lidong Wang. Facial construction of defected NiO/TiO2 with Z-scheme charge transfer for enhanced photocatalytic performance. Catalysis Today 2019, 335 , 269-277. https://doi.org/10.1016/j.cattod.2018.11.055
  59. Uma Maheswari A., Anjali K.K., Sivakumar M.. Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region. Solid State Ionics 2019, 337 , 33-41. https://doi.org/10.1016/j.ssi.2019.04.001
  60. Jingui Zheng, Fengyun Hu, Ershuan Han, Zhengbin Pan, Shuai Zhang, Ya Li, Peiguang Qin, Hui Wang, Peiqiang Li, Hongzong Yin. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 575 , 329-335. https://doi.org/10.1016/j.colsurfa.2019.05.016
  61. Chien-Tsung Wang, Hong-Syuan Lin, Wei-Ping Wang. Hydrothermal synthesis of Fe and Nb-doped titania nanobelts and their tunable electronic structure toward photovoltaic application. Materials Science in Semiconductor Processing 2019, 99 , 85-91. https://doi.org/10.1016/j.mssp.2019.04.019
  62. Fumiaki Amano, Hyosuke Mukohara, Hiroki Sato, Teruhisa Ohno. Photoelectrochemical water vapor splitting using an ionomer-coated rutile TiO 2 thin layer on titanium microfiber felt as an oxygen-evolving photoanode. Sustainable Energy & Fuels 2019, 3 (8) , 2048-2055. https://doi.org/10.1039/C9SE00292H
  63. J. Vázquez-Galván, C. Flox, J.R. Jervis, A.B. Jorge, P.R. Shearing, J.R. Morante. High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries. Carbon 2019, 148 , 91-104. https://doi.org/10.1016/j.carbon.2019.01.067
  64. Baoshun Liu, Xiujian Zhao, Jiaguo Yu, Ivan P. Parkin, Akira Fujishima, Kazuya Nakata. Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019, 39 , 1-57. https://doi.org/10.1016/j.jphotochemrev.2019.02.001
  65. Jung-Jie Huang, Sin-Liang Ou, Chun-Fa Hsu, Xiu-Qiu Shen. The effect of boric acid concentration on the TiO2 compact layer by liquid-phase deposition for dye-sensitized solar cell. Applied Surface Science 2019, 477 , 7-14. https://doi.org/10.1016/j.apsusc.2018.05.113
  66. Ruth Martínez-Casado, Milica Todorović, Giuseppe Mallia, Nicholas M. Harrison, Rubén Pérez. First Principles Calculations on the Stoichiometric and Defective (101) Anatase Surface and Upon Hydrogen and H2Pc Adsorption: The Influence of Electronic Exchange and Correlation and of Basis Set Approximations. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00220
  67. Piyush Kar, Sheng Zeng, Yun Zhang, Ehsan Vahidzadeh, Ajay Manuel, Ryan Kisslinger, Kazi M. Alam, Ujwal K. Thakur, Najia Mahdi, Pawan Kumar, Karthik Shankar. High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Applied Catalysis B: Environmental 2019, 243 , 522-536. https://doi.org/10.1016/j.apcatb.2018.08.002
  68. Peng Wang, Changchao Jia, Jia Li, Ping Yang. Ti3+-doped TiO2(B)/anatase spheres prepared using thioglycolic acid towards super photocatalysis performance. Journal of Alloys and Compounds 2019, 780 , 660-670. https://doi.org/10.1016/j.jallcom.2018.11.398
  69. Suk Hyun Kang, Yong Nam Jo, K. Prasanna, P. Santhoshkumar, Youn Cheol Joe, Kumaran Vediappan, Ramasamy Gnanamuthu, Chang Woo Lee. Bandgap tuned and oxygen vacant TiO2−x anode materials with enhanced electrochemical properties for lithium ion batteries. Journal of Industrial and Engineering Chemistry 2019, 71 , 177-183. https://doi.org/10.1016/j.jiec.2018.11.020
  70. Sourav Maiti, Farazuddin Azlan, Yogesh Jadhav, Jayanta Dana, Pranav Anand, Santosh K. Haram, G.R. Dey, Hirendra N. Ghosh. Efficient charge transport in surface engineered TiO2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells. Solar Energy 2019, 181 , 195-202. https://doi.org/10.1016/j.solener.2019.02.001
  71. Ayan Sarkar, Gobinda Gopal Khan. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11 (8) , 3414-3444. https://doi.org/10.1039/C8NR09666J
  72. Won June Kim, Myung Hoon Han, Sébastien Lebègue, Eok Kyun Lee, Hyungjun Kim. Electronic Structure and Band Alignments of Various Phases of Titania Using the Self-Consistent Hybrid Density Functional and DFT+U Methods. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00047
  73. Yin Xu, Rasin Ahmed, David Klein, Sebastien Cap, Keren Freedy, Stephen McDonnell, Giovanni Zangari. Improving photo-oxidation activity of water by introducing Ti3+ in self-ordered TiO2 nanotube arrays treated with Ar/NH3. Journal of Power Sources 2019, 414 , 242-249. https://doi.org/10.1016/j.jpowsour.2018.12.083
  74. Cherif Moslah, Teresa Aguilar, Rodrigo Alcántara, Mohamed Ksibi, Javier Navas. Synthesis of W-doped TiO 2 by low-temperature hydrolysis: Effects of annealing temperature and doping content on the surface microstructure and photocatalytic activity. Journal of the Chinese Chemical Society 2019, 66 (1) , 99-109. https://doi.org/10.1002/jccs.201800201
  75. Baoshun Liu, Jingjing Yang, Jiangyan Wang, Xiujian Zhao, Kazuya Nakata. High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. Applied Surface Science 2019, 465 , 192-200. https://doi.org/10.1016/j.apsusc.2018.09.098
  76. Yin Xu, Qiyuan Lin, Rasin Ahmed, Eric R. Hoglund, Giovanni Zangari. Synthesis of TiO2-based nanocomposites by anodizing and hydrogen annealing for efficient photoelectrochemical water oxidation. Journal of Power Sources 2019, 410-411 , 59-68. https://doi.org/10.1016/j.jpowsour.2018.10.079
  77. Akinobu Miyoshi, Shunta Nishioka, Kazuhiko Maeda. Water Splitting on Rutile TiO 2 ‐Based Photocatalysts. Chemistry – A European Journal 2018, 24 (69) , 18204-18219. https://doi.org/10.1002/chem.201800799
  78. Yamen AlSalka, Amer Hakki, Jenny Schneider, Detlef W. Bahnemann. Co-catalyst-free photocatalytic hydrogen evolution on TiO2: Synthesis of optimized photocatalyst through statistical material science. Applied Catalysis B: Environmental 2018, 238 , 422-433. https://doi.org/10.1016/j.apcatb.2018.07.045
  79. Gang Ou, Yushuai Xu, Bo Wen, Rui Lin, Binghui Ge, Yan Tang, Yuwei Liang, Cheng Yang, Kai Huang, Di Zu, Rong Yu, Wenxing Chen, Jun Li, Hui Wu, Li-Min Liu, Yadong Li. Tuning defects in oxides at room temperature by lithium reduction. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03765-0
  80. Perumal Devaraji, Wan-Kuen Jo. Two-dimensional Mixed Phase Leaf-Ti 1- x Cu x O 2 Sheets Synthesized Based on a Natural Leaf Template for Increased Photocatalytic H 2 Evolution. ChemCatChem 2018, 10 (17) , 3813-3823. https://doi.org/10.1002/cctc.201800814
  81. Harrison Sierra-Uribe, J. Edgar Carrera-Crespo, Arely Cano, Elcy María Córdoba-Tuta, Ignacio González, Próspero Acevedo-Peña. Electroreduction as a viable strategy to obtain TiO2 nanotube films with preferred anatase crystal orientation and its impact on photoelectrochemical performance. Journal of Solid State Electrochemistry 2018, 22 (6) , 1881-1891. https://doi.org/10.1007/s10008-018-3890-6
  82. Beibei Dong, Taifeng Liu, Can Li, Fuxiang Zhang. Species, engineering and characterizations of defects in TiO 2 -based photocatalyst. Chinese Chemical Letters 2018, 29 (5) , 671-680. https://doi.org/10.1016/j.cclet.2017.12.002
  83. Fumiaki Amano, Ryosuke Tosaki, Kyosuke Sato, Yamato Higuchi. Effects of donor doping and acceptor doping on rutile TiO2 particles for photocatalytic O2 evolution by water oxidation. Journal of Solid State Chemistry 2018, 258 , 79-85. https://doi.org/10.1016/j.jssc.2017.09.030
  84. Akrajas Ali Umar, Siti Khatijah Md Saad, Marjoni Imamora Ali Umar, Mohd Yusri Abd Rahman, Munetaka Oyama. Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures. Optical Materials 2018, 75 , 390-430. https://doi.org/10.1016/j.optmat.2017.10.002
  85. Junie Jhon M. Vequizo, Sunao Kamimura, Teruhisa Ohno, Akira Yamakata. Oxygen induced enhancement of NIR emission in brookite TiO 2 powders: comparison with rutile and anatase TiO 2 powders. Physical Chemistry Chemical Physics 2018, 20 (5) , 3241-3248. https://doi.org/10.1039/C7CP06975H
  86. Buanya Beryl Adormaa, Williams Kweku Darkwah, Yanhui Ao. Oxygen vacancies of the TiO 2 nano-based composite photocatalysts in visible light responsive photocatalysis. RSC Advances 2018, 8 (58) , 33551-33563. https://doi.org/10.1039/C8RA05117H
  87. Hironobu Kunioku, Akinobu Nakada, Masanobu Higashi, Osamu Tomita, Hiroshi Kageyama, Ryu Abe. Improved water oxidation under visible light on oxyhalide Bi 4 MO 8 X (M = Nb, Ta; X = Cl, Br) photocatalysts prepared using excess halogen precursors. Sustainable Energy & Fuels 2018, 2 (7) , 1474-1480. https://doi.org/10.1039/C8SE00097B
  88. Fumiaki Amano, Hyosuke Mukohara, Ayami Shintani. Rutile Titania Particulate Photoelectrodes Fabricated by Two-Step Annealing of Titania Nanotube Arrays. Journal of The Electrochemical Society 2018, 165 (4) , H3164-H3169. https://doi.org/10.1149/2.0231804jes
  89. Jingjing Yang, Baoshun Liu, Xiujian Zhao. A visible-light-active Au-Cu(I)@Na 2 Ti 6 O 13 nanostructured hybrid pasmonic photocatalytic membrane for acetaldehyde elimination. Chinese Journal of Catalysis 2017, 38 (12) , 2048-2055. https://doi.org/10.1016/S1872-2067(17)62954-1
  90. D. Sivaraj, K. Vijayalakshmi. Preferential killing of bacterial cells by hybrid carbon nanotube-MnO2 nanocomposite synthesized by novel microwave assisted processing. Materials Science and Engineering: C 2017, 81 , 469-477. https://doi.org/10.1016/j.msec.2017.08.027
  91. Joonhyeon Kang, Jinyoung Kim, Sangheon Lee, Sungun Wi, Chunjoong Kim, Seungmin Hyun, Seunghoon Nam, Yongjoon Park, Byungwoo Park. Breathable Carbon-Free Electrode: Black TiO 2 with Hierarchically Ordered Porous Structure for Stable Li-O 2 Battery. Advanced Energy Materials 2017, 7 (19) , 1700814. https://doi.org/10.1002/aenm.201700814
  92. Shigeru Kohtani, Akira Kawashima, Hideto Miyabe. Reactivity of Trapped and Accumulated Electrons in Titanium Dioxide Photocatalysis. Catalysts 2017, 7 (10) , 303. https://doi.org/10.3390/catal7100303
  93. Jiawei Liu, Long Zhang, Xuesi Yao, Steven S. C. Chuang. Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared study. Research on Chemical Intermediates 2017, 43 (9) , 5041-5054. https://doi.org/10.1007/s11164-017-3038-9
  94. Mustaffa Ali Azhar Taib, Khairunisak Abdul Razak, Mariatti Jaafar, Zainovia Lockman. Initial growth study of TiO 2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte. Materials & Design 2017, 128 , 195-205. https://doi.org/10.1016/j.matdes.2017.04.097
  95. Fumiaki Amano. Hydrogen Reduced Rutile Titanium Dioxide Photocatalyst. 2017,,https://doi.org/10.5772/intechopen.68603
  96. Bin Wang, Shaohua Shen, Samuel S. Mao. Black TiO 2 for solar hydrogen conversion. Journal of Materiomics 2017, 3 (2) , 96-111. https://doi.org/10.1016/j.jmat.2017.02.001
  97. Zhenyu Huang, Zhenggang Gao, Shanmin Gao, Qingyao Wang, Zeyan Wang, Baibiao Huang, Ying Dai. Facile synthesis of S-doped reduced TiO 2- x with enhanced visible-light photocatalytic performance. Chinese Journal of Catalysis 2017, 38 (5) , 821-830. https://doi.org/10.1016/S1872-2067(17)62825-0
  98. Brandon D. Piercy, Collen Z. Leng, Mark D. Losego. Variation in the density, optical polarizabilities, and crystallinity of TiO 2 thin films deposited via atomic layer deposition from 38 to 150 °C using the titanium tetrachloride-water reaction. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2017, 35 (3) , 03E107. https://doi.org/10.1116/1.4979047
  99. Jian Guo, Chengyu Mao, Ruikang Zhang, Mingfei Shao, Min Wei, Pingyun Feng. Reduced [email protected] double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation. Journal of Materials Chemistry A 2017, 5 (22) , 11016-11025. https://doi.org/10.1039/C7TA00770A
  100. Xiaodong Yan, Yong Li, Ting Xia. Black Titanium Dioxide Nanomaterials in Photocatalysis. International Journal of Photoenergy 2017, 2017 , 1-16. https://doi.org/10.1155/2017/8529851
Load all citations