Enhanced Photoelectrochemical Water Oxidation by Fabrication of p-LaFeO3/n-Fe2O3 Heterojunction on Hematite Nanorods

View Author Information
State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
§ School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
Cite this: J. Phys. Chem. C 2017, 121, 24, 12991–12998
Publication Date (Web):June 5, 2017
Copyright © 2017 American Chemical Society
Article Views
Read OnlinePDF (5 MB)
Supporting Info (1)»


The LaFeO3 film exhibits interesting p-type behavior and stable photocatalytic hydrogen production in aqueous solution, and we combine it with α-Fe2O3 nanorods to form a p-LaFeO3/n-Fe2O3 heterojunction to improve the photoeletrochemical (PEC) water oxidation performance of hematite. An atomic layer deposition (ALD) technique is adopted to deposit La2O3 controllably on β-FeOOH nanorods, and the p-LaFeO3/n-Fe2O3 heterojunction is achieved by post-thermal treatment, which is evidenced by the XRD, XPS, and HRTEM images. Due to the well-matched band levels of LaFeO3 and α-Fe2O3, the onset potential for photocurrent is negatively shifted by ∼50 mV. Meanwhile, the photocurrent density is promoted from 0.37 to 0.58 mA/cm2 at 1.23 V versus RHE owing to the accelerated charge separation within the space depletion layer induced by the build-in potential. Furthermore, the heterojunction is further modified by CoOx cocatalyst to improve the surface water oxidation kinetics, and the photocurrent density is promoted to 1.12 mA/cm2 at 1.23 V versus RHE. As a result, the incident photon-to-current conversion efficiency is further promoted to 25.13% at 400 nm. Our work demonstrates ALD with a prominent advantage in fabrication of the heterojunction with controllable film thickness, which plays an important role in the PEC water splitting application.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b01817.

  • IV plots and Mott–Schottky plots of LaFeO3 synthesized by ALD, structure and morphology characterization and optimized PEC performance of LF-C, HRTEM of LF-A with different La2O3 ALD cycles, PEC stability measurementm characterization of the CoOx decorated on LF-A, and UV–vis characterization of α-Fe2O3 and LF-A (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 39 publications.

  1. Yilan Jiang, Zhibin Geng, Yu Sun, Xiyang Wang, Keke Huang, Yingge Cong, Fangbing Shi, Ying Wang, Wei Zhang, Shouhua Feng. Highly Efficient B-Site Exsolution Assisted by Co Doping in Lanthanum Ferrite toward High-Performance Electrocatalysts for Oxygen Evolution and Oxygen Reduction. ACS Sustainable Chemistry & Engineering 2020, 8 (1) , 302-310. https://doi.org/10.1021/acssuschemeng.9b05344
  2. Bilal M. Pirzada, Pushpendra, Ravi K. Kunchala, Boddu S. Naidu. Synthesis of LaFeO3/Ag2CO3 Nanocomposites for Photocatalytic Degradation of Rhodamine B and p-Chlorophenol under Natural Sunlight. ACS Omega 2019, 4 (2) , 2618-2629. https://doi.org/10.1021/acsomega.8b02829
  3. Santosh Babar, Nana Gavade, Harish Shinde, Prasad Mahajan, Ki Hwan Lee, Narayan Mane, Ashish. Deshmukh, Kalyanrao Garadkar, Vijaykumar Bhuse. Evolution of Waste Iron Rust into Magnetically Separable g-C3N4–Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach. ACS Applied Nano Materials 2018, 1 (9) , 4682-4694. https://doi.org/10.1021/acsanm.8b00936
  4. Yilan Jiang, Zhibin Geng, Long Yuan, Yu Sun, Yingge Cong, Keke Huang, Lei Wang, Wei Zhang. Nanoscale Architecture of RuO2/La0.9Fe0.92Ru0.08–xO3−δ Composite via Manipulating the Exsolution of Low Ru-Substituted A-Site Deficient Perovskite. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 11999-12005. https://doi.org/10.1021/acssuschemeng.8b02288
  5. Jingyi Ma, Qian Wang, Linli Li, Xiaohang Zong, Hao Sun, Ran Tao, Xiaoxing Fan. Fe2O3 nanorods/CuO nanoparticles p-n heterojunction photoanode: Effective charge separation and enhanced photoelectrochemical properties. Journal of Colloid and Interface Science 2021, 602 , 32-42. https://doi.org/10.1016/j.jcis.2021.05.140
  6. Wen Jiang, Liwei Cheng, Jianghui Gao, Shiyu Zhang, Hao Wang, Zhihao Jin, Zhongfeng Tang, Cheng Peng. Preparation of Crystalline LaFeO3 Nanoparticles at Low Calcination Temperature: Precursor and Synthesis Parameter Effects. Materials 2021, 14 (19) , 5534. https://doi.org/10.3390/ma14195534
  7. Fabiana E. García, Marta I. Litter, Isabella Natali Sora. Assessment of the Arsenic Removal From Water Using Lanthanum Ferrite. ChemistryOpen 2021, 10 (8) , 790-797. https://doi.org/10.1002/open.202100065
  8. Shiqing Lu, Yangchen Wang, Yuqi Han, Ming Zhong, Haidong Yang, Bitao Su, Ziqiang Lei. LaNi x Fe 1‐x O 3‐δ ‐Quantum Dot/CNT Composite for High Performance Oxygen Evolution Reaction. European Journal of Inorganic Chemistry 2021, 2021 (23) , 2225-2230. https://doi.org/10.1002/ejic.202100054
  9. Xue-Fang Cao, Pan Yue, Qiu-Rui Wei, Yun-Fei Dang, Si-Qi Zhang, Zhi-Xian Wei, Rong-Zhen Wang. Synthesis, characterization and catalytic performance of magnetic La0.7Sr0.3MnO3/α-Fe2O3 with p–n heterojunction structure. Journal of Materials Science 2021, 56 (13) , 7862-7878. https://doi.org/10.1007/s10853-021-05788-3
  10. Nazmiye Birben, Ezgi Lale, Renato Pelosato, Ceyda Uyguner Demirel, Isabella Natali Sora, Miray Bekbolet. Photocatalytic Bactericidal Performance of LaFeO3 under Solar Light: Kinetics, Spectroscopic and Mechanistic Evaluation. Water 2021, 13 (9) , 1135. https://doi.org/10.3390/w13091135
  11. Jasmine Thomas, Anitha P.K, Tony Thomas, Nygil Thomas. The influence of B-site cation in LaBO3 (B = Fe, Co, Ni) perovskites on the nanomolar sensing of neurotransmitters. Sensors and Actuators B: Chemical 2021, 332 , 129362. https://doi.org/10.1016/j.snb.2020.129362
  12. Rui Tang, Shujie Zhou, Zhenyu Zhang, Rongkun Zheng, Jun Huang. Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials 2021, 33 (17) , 2005389. https://doi.org/10.1002/adma.202005389
  13. Yang Zhao, Lei Zhang, Jian Liu, Keegan Adair, Feipeng Zhao, Yipeng Sun, Tianpin Wu, Xuanxuan Bi, Khalil Amine, Jun Lu, Xueliang Sun. Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews 2021, 50 (6) , 3889-3956. https://doi.org/10.1039/D0CS00156B
  14. Yaejin Hong, Seung-Hwan Jeon, Hyunjin Jeong, Hyukhyun Ryu. Systematic study of an Fe2O3 stacked homojunction photoelectrochemical photoelectrode. Ceramics International 2021, 47 (6) , 7814-7823. https://doi.org/10.1016/j.ceramint.2020.11.127
  15. Xiaolin He, Chaoqun Shang, Qingguo Meng, Zhihong Chen, Mingliang Jin, Lingling Shui, Yongguang Zhang, Zhang Zhang, Mingzhe Yuan, Xin Wang, Krzysztof Kempa, Guofu Zhou. Hematite photoanode modified with inexpensive hole-storage layer for highly efficient solar water oxidation. Nanotechnology 2020, 31 (45) , 455405. https://doi.org/10.1088/1361-6528/ab8e74
  16. Han Zhang, Zhaoming Luo, Yalun Liu, Yuwen Jiang. Noble-metal-free Ni3C as co-catalyst on LaNiO3 with enhanced photocatalytic activity. Applied Catalysis B: Environmental 2020, 277 , 119166. https://doi.org/10.1016/j.apcatb.2020.119166
  17. Mu Xiao, Bin Luo, Zhiliang Wang, Songcan Wang, Lianzhou Wang. Recent Advances of Metal‐Oxide Photoanodes: Engineering of Charge Separation and Transportation toward Efficient Solar Water Splitting. Solar RRL 2020, 4 (8) , 1900509. https://doi.org/10.1002/solr.201900509
  18. Dongming Zhang, Mingpeng Chen, Haiyuan Zou, Yumin Zhang, Jicu Hu, Huapeng Wang, Baoye Zi, Jin Zhang, Zhongqi Zhu, Lele Duan, Qingju Liu. Microwave-assisted synthesis of porous and hollow α -Fe 2 O 3 /LaFeO 3 nanostructures for acetone gas sensing as well as photocatalytic degradation of methylene blue. Nanotechnology 2020, 31 (21) , 215601. https://doi.org/10.1088/1361-6528/ab73b5
  19. Justine Sageka Nyarige, Tjaart P.J. Krüger, Mmantsae Diale. Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis. Surfaces and Interfaces 2020, 18 , 100394. https://doi.org/10.1016/j.surfin.2019.100394
  20. Wei Wang, Meigui Xu, Xiaomin Xu, Wei Zhou, Zongping Shao. Perowskitoxid‐Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angewandte Chemie 2020, 132 (1) , 140-158. https://doi.org/10.1002/ange.201900292
  21. Wei Wang, Meigui Xu, Xiaomin Xu, Wei Zhou, Zongping Shao. Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting. Angewandte Chemie International Edition 2020, 59 (1) , 136-152. https://doi.org/10.1002/anie.201900292
  22. Rong Chen, Bin Shan, Xiao Liu, Kun Cao. Catalysts via Atomic Layer Deposition. 2020,,, 69-105. https://doi.org/10.1007/978-3-030-45823-2_3
  23. Peresi Majura Bulemo, Il-Doo Kim. Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. Journal of the Korean Ceramic Society 2020, 57 (1) , 24-39. https://doi.org/10.1007/s43207-019-00003-1
  24. Yongcai Qiu, Zhenghui Pan, Haining Chen, Daiqi Ye, Lin Guo, Zhiyong Fan, Shihe Yang. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin 2019, 64 (18) , 1348-1380. https://doi.org/10.1016/j.scib.2019.07.017
  25. Shuyang Yao, Ruifen Zheng, Rong Li, Yiqi Chen, Xiaosong Zhou, Jin Luo. Construction of Z-scheme LaNiO3/SnS2 composite for boosting visible light photodegradation of tetracycline. Journal of the Taiwan Institute of Chemical Engineers 2019, 100 , 186-193. https://doi.org/10.1016/j.jtice.2019.04.021
  26. Iltaf Khan, Ning Sun, Ziqing Zhang, Zhijun Li, Muhammad Humayun, Sharafat Ali, Yang Qu, Liqiang Jing. Improved visible-light photoactivities of porous LaFeO 3 by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catalysis Science & Technology 2019, 9 (12) , 3149-3157. https://doi.org/10.1039/C9CY00127A
  27. Mengyuan Zhang, Huu Khue Pham, Yanan Fang, Ying Fan Tay, Fatwa F. Abdi, Lydia H. Wong. The synergistic effect of cation mixing in mesoporous Bi x Fe 1−x VO 4 heterojunction photoanodes for solar water splitting. Journal of Materials Chemistry A 2019, 7 (24) , 14816-14824. https://doi.org/10.1039/C9TA01791G
  28. Xiaosong Zhou, Yilei Chen, Cuifen Li, Liqiong Zhang, Xiaoting Zhang, Xiaomei Ning, Liang Zhan, Jin Luo. Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation. Separation and Purification Technology 2019, 211 , 179-188. https://doi.org/10.1016/j.seppur.2018.09.075
  29. Jin Luo, Rong Li, Yiqi Chen, Xiaosong Zhou, Xiaomei Ning, Liang Zhan, Lin Ma, Xuyao Xu, Limei Xu, Lingling Zhang. Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Separation and Purification Technology 2019, 210 , 417-430. https://doi.org/10.1016/j.seppur.2018.08.028
  30. Mingpeng Chen, Huapeng Wang, Jicu Hu, Yumin Zhang, Kejin Li, Dongming Zhang, Shiqiang Zhou, Jin Zhang, Zhongqi Zhu, Qingju Liu. Near‐Room‐Temperature Ethanol Gas Sensor Based on Mesoporous Ag/Zn–LaFeO 3 Nanocomposite. Advanced Materials Interfaces 2019, 6 (1) , 1801453. https://doi.org/10.1002/admi.201801453
  31. Tianyu Liu, Martina Morelli, Yat Li. Hematite Materials for Solar-Driven Photoelectrochemical Cells. 2018,,, 159-218. https://doi.org/10.1002/9781119460008.ch5
  32. Guoqiang Wei, Xianshuang Wu, Junguang Meng, Zhen Huang, Fang He, Weina Zhao, Kun Zhao, Anqing Zheng, Zengli Zhao, Haibin Li. Performance evaluation of hematite oxygen carriers in high purity hydrogen generation from cooking oil by chemical looping reaction. International Journal of Hydrogen Energy 2018, 43 (45) , 20500-20512. https://doi.org/10.1016/j.ijhydene.2018.09.126
  33. Mingpeng Chen, Yumin Zhang, Tianping Lv, Kejin Li, Zhongqi Zhu, Jin Zhang, Ronghua Zhang, Qingju Liu. Ag-LaFeO3 nanoparticles using molecular imprinting technique for selective detection of xylene. Materials Research Bulletin 2018, 107 , 271-279. https://doi.org/10.1016/j.materresbull.2018.08.004
  34. Sangmo Kim, Nguyen Nguyen, Chung Bark. Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. Applied Sciences 2018, 8 (9) , 1526. https://doi.org/10.3390/app8091526
  35. Soniya Gahlawat, Nusrat Rashid, Pravin P. Ingole. n-Type Cu 2 O/α-Fe 2 O 3 Heterojunctions by Electrochemical Deposition: Tuning of Cu 2 O Thickness for Maximum Photoelectrochemical Performance. Zeitschrift für Physikalische Chemie 2018, 232 (9-11) , 1551-1566. https://doi.org/10.1515/zpch-2018-1140
  36. Ernesto Paparazzo. Comment on “Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane”, by Zheng et al. [Appl. Catal. B: Environ., 202 (2017) 51–63. doi: 10.1016/j.apcatb.2016.08.024]. Applied Catalysis B: Environmental 2018, 224 , 419-423. https://doi.org/10.1016/j.apcatb.2017.10.035
  37. Ashutosh K. Singh, Debasish Sarkar. A facile approach for preparing densely-packed individual p-NiO/n-Fe 2 O 3 heterojunction nanowires for photoelectrochemical water splitting. Nanoscale 2018, 10 (27) , 13130-13139. https://doi.org/10.1039/C8NR02508H
  38. S. Sultana, S. Mansingh, K. M. Parida. Rational design of light induced self healed Fe based oxygen vacancy rich CeO 2 (CeO 2 NS–FeOOH/Fe 2 O 3 ) nanostructure materials for photocatalytic water oxidation and Cr( vi ) reduction. Journal of Materials Chemistry A 2018, 6 (24) , 11377-11389. https://doi.org/10.1039/C8TA02539H
  39. Jun Wang, Chun Du, Qi Peng, Jie Yang, Yanwei Wen, Bin Shan, Rong Chen. Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn co-doping. International Journal of Hydrogen Energy 2017, 42 (49) , 29140-29149. https://doi.org/10.1016/j.ijhydene.2017.10.080