Evidencing Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH. Where Do Protons Come From?

View Author Information
Laboratoire d’Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, Paris F-75205 Cedex 13, France
NRC National Institute for Nanotechnology, Edmonton, Alberta T6G 2M9, Canada
§ Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
Leibniz-Institute für Polymerforshung Dresden, 01069 Dresden, Germany
Cite this: J. Phys. Chem. C 2017, 121, 19, 10325–10335
Publication Date (Web):April 28, 2017
Copyright © 2017 American Chemical Society
Article Views
Read OnlinePDF (2 MB)
Supporting Info (1)»


Ongoing developments of sustainable energy technologies based on high-surface-area semiconductive metal oxide electrodes operating under mild and safe aqueous conditions require deep understanding of proton and electron transfer/transport throughout their porous structure. To address this issue, we investigated the electrochemical reductive protonation of high surface area nanostructured amorphous TiO2 electrodes (produced by glancing angle deposition) in both buffered and unbuffered aqueous solutions. Quantitative analysis of the two charge storage mechanisms was achieved, allowing proper deconvolution of the electrical double-layer capacitive charge storage from the reversible faradaic one resulting from the proton-coupled reduction of bulk TiO2. We evidence that this latter process occurs reversibly and extensively (up to an intercalation ratio of 20%) not only under strongly acidic pH conditions but also, more interestingly, under neutral pH with the intercalated proton arising from the buffer rather than water. Moreover, we show that in comparison with reductive Li+ intercalation the proton-coupled electron charge storage occurs more rapidly (in a few seconds). This important finding suggests that a high-rate and high-power charge storage device could potentially be achieved with the reversible H+-coupled charge/discharge process in TiO2 at neutral pH, opening thus new opportunities to the development of eco-friendly batteries for electrical energy storage.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b02395.

  • Figures S1 to S6 (CVs and CVAs recorded at different scan rates in the presence of increasing concentrations of strong or weak acid and lithium, DCVAs) and Table S1 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 29 publications.

  1. Chao Geng, Tulai Sun, Zhencui Wang, Jin-Ming Wu, Yi-Jie Gu, Hisayoshi Kobayashi, Peng Yang, Jianhang Hai, Wei Wen. Surface-Induced Desolvation of Hydronium Ion Enables Anatase TiO2 as an Efficient Anode for Proton Batteries. Nano Letters 2021, 21 (16) , 7021-7029. https://doi.org/10.1021/acs.nanolett.1c02421
  2. Heng Zhu, Qimeng Yang, Depei Liu, Yu Du, Shicheng Yan, Min Gu, Zhigang Zou. Direct Electrochemical Protonation of Metal Oxide Particles. Journal of the American Chemical Society 2021, 143 (24) , 9236-9243. https://doi.org/10.1021/jacs.1c04631
  3. Nikolina Makivić, Jae-Young Cho, Kenneth D. Harris, Jean-Marie Tarascon, Benoît Limoges, Véronique Balland. Evidence of Bulk Proton Insertion in Nanostructured Anatase and Amorphous TiO2 Electrodes. Chemistry of Materials 2021, 33 (9) , 3436-3448. https://doi.org/10.1021/acs.chemmater.1c00840
  4. Seongkoo Kang, Arvinder Singh, Kyle G. Reeves, Jean-Claude Badot, Serge Durand-Vidal, Christophe Legein, Monique Body, Olivier Dubrunfaut, Olaf J. Borkiewicz, Benoît Tremblay, Christel Laberty-Robert, Damien Dambournet. Hydronium Ions Stabilized in a Titanate-Layered Structure with High Ionic Conductivity: Application to Aqueous Proton Batteries. Chemistry of Materials 2020, 32 (21) , 9458-9469. https://doi.org/10.1021/acs.chemmater.0c03658
  5. Heng Zhu, Qimeng Yang, Depei Liu, Duanduan Liu, Weining Zhang, Zijing Chu, Xiaoming Wang, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface. The Journal of Physical Chemistry Letters 2020, 11 (21) , 9184-9194. https://doi.org/10.1021/acs.jpclett.0c02291
  6. Pierre Lemaire, Ozlem Sel, Daniel Alves Dalla Corte, Antonella Iadecola, Hubert Perrot, Jean-Marie Tarascon. Elucidating the Origin of the Electrochemical Capacity in a Proton-Based Battery HxIrO4 via Advanced Electrogravimetry. ACS Applied Materials & Interfaces 2020, 12 (4) , 4510-4519. https://doi.org/10.1021/acsami.9b19349
  7. Coleen T. Nemes, John R. Swierk, Charles A. Schmuttenmaer. A Terahertz-Transparent Electrochemical Cell for In Situ Terahertz Spectroelectrochemistry. Analytical Chemistry 2018, 90 (7) , 4389-4396. https://doi.org/10.1021/acs.analchem.7b04204
  8. Wael Hamd, Christel Laberty-Robert, François Lambert, Cyrille Costentin, Benoît Limoges, and Véronique Balland . Investigating Charge Transfer in Functionalized Mesoporous EISA–SnO2 Films. The Journal of Physical Chemistry C 2017, 121 (41) , 23207-23217. https://doi.org/10.1021/acs.jpcc.7b07071
  9. Mingzhi Chen, Hongzheng Dong, Mengfan Xue, Chunsheng Yang, Pin Wang, Yanliang Yang, Heng Zhu, Congping Wu, Yingfang Yao, Wenjun Luo, Zhigang Zou. Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26661-6
  10. Saeed Saeed, Jenelle Fortunato, Karthik Ganeshan, Adri C. T. Duin, Veronica Augustyn. Decoupling Proton and Cation Contributions to Capacitive Charge Storage in Birnessite in Aqueous Electrolytes. ChemElectroChem 2021, 8 (22) , 4371-4379. https://doi.org/10.1002/celc.202100992
  11. Jing Li, Huihui Yan, Chiwei Xu, Yiwen Liu, Xikun Zhang, Maoting Xia, Liyuan Zhang, Jie Shu. Insights into host materials for aqueous proton batteries: structure, mechanism and prospect. Nano Energy 2021, 89 , 106400. https://doi.org/10.1016/j.nanoen.2021.106400
  12. Raquel Aymerich Armengol, Joohyun Lim, Marc Ledendecker, Katharina Hengge, Christina Scheu. Correlation between the TiO 2 encapsulation layer on Pt and its electrochemical behavior. Nanoscale Advances 2021, 3 (17) , 5075-5082. https://doi.org/10.1039/D1NA00423A
  13. Xuewei Wu, Wangyang Li, Sizhe Sheng, Lin Zhu, Lufeng Yuan, Jianwei Liu, Shunyu Jin, Zhen Zhang. Enhanced H2 evolution reaction due to H spillover during electrolytic reduction of water on a Au/TiO2 electrode. Electrochemistry Communications 2021, 129 , 107085. https://doi.org/10.1016/j.elecom.2021.107085
  14. Yee‐Seul Kim, Sébastien Kriegel, Alla Bessmertnykh‐Lemeune, Kenneth D. Harris, Benoît Limoges, Véronique Balland. Interplay Between Charge Accumulation and Oxygen Reduction Catalysis in Nanostructured TiO 2 Electrodes Functionalized with a Molecular Catalyst. ChemElectroChem 2021, 8 (14) , 2640-2648. https://doi.org/10.1002/celc.202100424
  15. Yunkai Xu, Xianyong Wu, Xiulei Ji. The Renaissance of Proton Batteries. Small Structures 2021, 2 (5) , 2000113. https://doi.org/10.1002/sstr.202000113
  16. Limin Zhou, Luojia Liu, Zhimeng Hao, Zhenhua Yan, Xue-Feng Yu, Paul K. Chu, Kai Zhang, Jun Chen. Opportunities and challenges for aqueous metal-proton batteries. Matter 2021, 4 (4) , 1252-1273. https://doi.org/10.1016/j.matt.2021.01.022
  17. H. Wang, Z. Chen, Z. Ji, P. Wang, J. Wang, W. Ling, Y. Huang. Temperature adaptability issue of aqueous rechargeable batteries. Materials Today Energy 2021, 19 , 100577. https://doi.org/10.1016/j.mtener.2020.100577
  18. Guojin Liang, Funian Mo, Xiulei Ji, Chunyi Zhi. Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials 2021, 6 (2) , 109-123. https://doi.org/10.1038/s41578-020-00241-4
  19. Qimeng Yang, Heng Zhu, Yanghui Hou, Duanduan Liu, Huang Tang, Depei Liu, Weining Zhang, Shicheng Yan, Zhigang Zou. Surface polaron states on single-crystal rutile TiO 2 nanorod arrays enhancing charge separation and transfer. Dalton Transactions 2020, 49 (42) , 15054-15060. https://doi.org/10.1039/D0DT03068F
  20. E. Boutin, L. Merakeb, B. Ma, B. Boudy, M. Wang, J. Bonin, E. Anxolabéhère-Mallart, M. Robert. Molecular catalysis of CO 2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chemical Society Reviews 2020, 49 (16) , 5772-5809. https://doi.org/10.1039/D0CS00218F
  21. Ziyu Yin, Xiangtian Chen, Cheng Wang, Zijing Guo, Xinglong Wu, Zongyan Zhao, Yingfang Yao, Wenjun Luo, Zhigang Zou. Mildly regulated intrinsic faradaic layer at the oxide/water interface for improved photoelectrochemical performance. Chemical Science 2020, 11 (24) , 6297-6304. https://doi.org/10.1039/D0SC01052A
  22. Mickaël Mateos, Nikolina Makivic, Yee‐Seul Kim, Benoît Limoges, Véronique Balland. Accessing the Two‐Electron Charge Storage Capacity of MnO 2 in Mild Aqueous Electrolytes. Advanced Energy Materials 2020, 10 (23) , 2000332. https://doi.org/10.1002/aenm.202000332
  23. Yuchao Zhang, Yunlu Zhang, Wenxiao Guo, Aaron C. Johnston-Peck, Yue Hu, Xuening Song, Wei David Wei. Modulating multi-hole reaction pathways for photoelectrochemical water oxidation on gold nanocatalysts. Energy & Environmental Science 2020, 13 (5) , 1501-1508. https://doi.org/10.1039/C9EE04192C
  24. Simon Fleischmann, Yangyunli Sun, Naresh C. Osti, Ruocun Wang, Eugene Mamontov, De-en Jiang, Veronica Augustyn. Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. Journal of Materials Chemistry A 2020, 8 (1) , 412-421. https://doi.org/10.1039/C9TA11098D
  25. Yee-Seul Kim, Kenneth D. Harris, Benoît Limoges, Véronique Balland. On the unsuspected role of multivalent metal ions on the charge storage of a metal oxide electrode in mild aqueous electrolytes. Chemical Science 2019, 10 (38) , 8752-8763. https://doi.org/10.1039/C9SC02397F
  26. Cyrille Costentin, Jean-Michel Savéant. Energy storage: pseudocapacitance in prospect. Chemical Science 2019, 10 (22) , 5656-5666. https://doi.org/10.1039/C9SC01662G
  27. Heng Zhu, Meiming Zhao, Junkang Zhou, Wenchao Li, Haoyu Wang, Zhe Xu, Lei Lu, Lang Pei, Zhan Shi, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Applied Catalysis B: Environmental 2018, 234 , 100-108. https://doi.org/10.1016/j.apcatb.2018.04.040
  28. Federico Bella, Polyssena Renzi, Carmen Cavallo, Claudio Gerbaldi. Caesium for Perovskite Solar Cells: An Overview. Chemistry - A European Journal 2018, 24 (47) , 12183-12205. https://doi.org/10.1002/chem.201801096
  29. Y. S. Kim, V. Balland, B. Limoges, C. Costentin. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO 2 mesoporous film. Physical Chemistry Chemical Physics 2017, 19 (27) , 17944-17951. https://doi.org/10.1039/C7CP02810E