Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media

View Author Information
Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403, United States
Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
Cite this: J. Phys. Chem. Lett. 2015, 6, 18, 3737–3742
Publication Date (Web):September 2, 2015
https://doi.org/10.1021/acs.jpclett.5b01650
Copyright © 2015 American Chemical Society
Article Views
7018
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

First-row transition-metal oxides and (oxy)hydroxides catalyze the oxygen evolution reaction (OER) in alkaline media. Understanding the intrinsic catalytic activity provides insight into improved catalyst design. Experimental and computationally predicted activity trends, however, have varied substantially. Here we describe a new OER activity trend for nominally oxyhydroxide thin films of Ni(Fe)OxHy > Co(Fe)OxHy > FeOxHy-AuOx > FeOxHy > CoOxHy > NiOxHy > MnOxHy. This intrinsic trend has been previously obscured by electrolyte impurities, potential-dependent electrical conductivity, and difficulty in correcting for surface-area or mass-loading differences. A quartz-crystal microbalance was used to monitor mass in situ and X-ray photoelectron spectroscopy to measure composition and impurity levels. These new results provide a basis for comparison to theory and help guide the design of improved catalyst systems.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.5b01650.

  • Experimental methods, tabulated data from figures, additional data, and discussion of Fe contamination in MnOxHy, and substrate enhancement effects. Cyclic voltammograms of the films before and after activity analysis. Tafel analyses, in situ mass measurements, XP spectra, and SEM images for each material. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 308 publications.

  1. Andraž Mavrič, Chunhua Cui. Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides. ACS Applied Energy Materials 2021, 4 (11) , 12032-12055. https://doi.org/10.1021/acsaem.1c02604
  2. Hannes Radinger, Paula Connor, Sven Tengeler, Robert W. Stark, Wolfram Jaegermann, Bernhard Kaiser. Importance of Nickel Oxide Lattice Defects for Efficient Oxygen Evolution Reaction. Chemistry of Materials 2021, 33 (21) , 8259-8266. https://doi.org/10.1021/acs.chemmater.1c02406
  3. Ahmed S. M. Ismail, Ivan Garcia-Torregrosa, Jeroen C. Vollenbroek, Laura Folkertsma, Johan G. Bomer, Ties Haarman, Mahnaz Ghiasi, Meike Schellhorn, Maarten Nachtegaal, Mathieu Odijk, Albert van den Berg, Bert M. Weckhuysen, Frank M. F. de Groot. Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis 2021, 11 (19) , 12324-12335. https://doi.org/10.1021/acscatal.1c02566
  4. Raina A. Krivina, Yingqing Ou, Qiucheng Xu, Liam P. Twight, T. Nathan Stovall, Shannon W. Boettcher. Oxygen Electrocatalysis on Mixed-Metal Oxides/Oxyhydroxides: From Fundamentals to Membrane Electrolyzer Technology. Accounts of Materials Research 2021, 2 (7) , 548-558. https://doi.org/10.1021/accountsmr.1c00087
  5. Yueguang Chen, Xintian Liu, Renjie Wu, Jiabin Cui, Gaofei Hu, Leyu Wang. Dual Active Center-Assembled Cu31S16–Co9-xNixS8 Heterodimers: Coherent Interface Engineering Induces Multihole Accumulation for Light-Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (17) , 20094-20104. https://doi.org/10.1021/acsami.1c02353
  6. Min Yang, Jing-Yi Xie, Wen-Li Yu, Yu-Ning Cao, Bin Dong, Ya-Nan Zhou, Fu-Li Wang, Qing-Zong Li, Yu-Lu Zhou, Yong-Ming Chai. Fe(Co)OOH Dynamically Stable Interface Based on Self-Sacrificial Reconstruction for Long-Term Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2021, 13 (15) , 17450-17458. https://doi.org/10.1021/acsami.0c22620
  7. Umanga De Silva, Jennifer See, Wipula P. R. Liyanage, Jahangir Masud, Jinpeng Wu, Wanli Yang, Wei-Ting Chen, David Prendergast, Manashi Nath. Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation. Energy & Fuels 2021, 35 (5) , 4387-4403. https://doi.org/10.1021/acs.energyfuels.0c04089
  8. Jumi Bak, Yoon Heo, Tae Gyu Yun, Sung-Yoon Chung. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano 2020, 14 (11) , 14323-14354. https://doi.org/10.1021/acsnano.0c06411
  9. Jie-Qiong Li, Lingyi Meng, Michiel Sprik, Jun Cheng. Thermodynamic Investigation of Proton/Electron Interplay on the Pourbaix Diagram at the TiO2/Electrolyte Interface. The Journal of Physical Chemistry C 2020, 124 (35) , 19003-19014. https://doi.org/10.1021/acs.jpcc.0c03546
  10. Yujia Zhang, Orhan Kizilkaya, Hubert K. Bilan, Richard Kurtz, Elizabeth J. Podlaha. Activity and Regeneration of Electrodeposited Fe–Ni–Co-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (8) , 7239-7245. https://doi.org/10.1021/acsaem.0c00985
  11. Tatiana Priamushko, Rémy Guillet-Nicolas, Mingquan Yu, Matthew Doyle, Claudia Weidenthaler, Harun Tüysüz, Freddy Kleitz. Nanocast Mixed Ni–Co–Mn Oxides with Controlled Surface and Pore Structure for Electrochemical Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (6) , 5597-5609. https://doi.org/10.1021/acsaem.0c00544
  12. Ping Li, Wenqin Li, Ran Chen, Yunan Lin. Boosting the Oxygen Evolution Electrocatalysis Performance of Iron Phosphide via Architectural Design and Electronic Modulation. ACS Sustainable Chemistry & Engineering 2020, 8 (24) , 9206-9216. https://doi.org/10.1021/acssuschemeng.0c03333
  13. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
  14. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  15. Denis A. Kuznetsov, Jiayu Peng, Livia Giordano, Yuriy Román-Leshkov, Yang Shao-Horn. Bismuth Substituted Strontium Cobalt Perovskites for Catalyzing Oxygen Evolution. The Journal of Physical Chemistry C 2020, 124 (12) , 6562-6570. https://doi.org/10.1021/acs.jpcc.0c01401
  16. Hemam Rachna Devi, Ravi Nandan, Karuna Kar Nanda. Mechanistic Investigation into Efficient Water Oxidation by Co–Ni-Based Hybrid Oxide–Hydroxide Flowers. ACS Applied Materials & Interfaces 2020, 12 (12) , 13888-13895. https://doi.org/10.1021/acsami.9b22956
  17. Xiaochao Wu, Yangming Lin, Yu Ji, Daojin Zhou, Zigeng Liu, Xiaoming Sun. Insights into the Enhanced Catalytic Activity of Fe-Doped LiCoPO4 for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (3) , 2959-2965. https://doi.org/10.1021/acsaem.0c00036
  18. John Mark P. Martirez, Emily A. Carter. Secondary Transition-Metal Dopants for Enhanced Electrochemical O2 Formation and Desorption on Fe-Doped β-NiOOH. ACS Energy Letters 2020, 5 (3) , 962-967. https://doi.org/10.1021/acsenergylett.9b02761
  19. Chunlei Yang, Honghao Zhang, Ke Yu, Songhai Xie, Haonan Tong, Yao Song, Guoshuai Shi, Haoyang Gu, Chen Chen, Liming Zhang. Stoichiometry-Dependent Oxygen Evolution Electrocatalysis on Open-Tubular Nitrogen-Doped Carbon Column Supported Transition Metal Oxides. ACS Applied Energy Materials 2020, 3 (2) , 2010-2019. https://doi.org/10.1021/acsaem.9b02446
  20. John Mark P. Martirez, Emily A. Carter. Noninnocent Influence of Host β-NiOOH Redox Activity on Transition-Metal Dopants’ Efficacy as Active Sites in Electrocatalytic Water Oxidation. ACS Catalysis 2020, 10 (4) , 2720-2734. https://doi.org/10.1021/acscatal.9b05092
  21. Audrey K. Taylor, Irene Andreu, Mikayla Louie, Byron D. Gates. Electrochemically Aged Ni Electrodes Supporting NiFe2O4 Nanoparticles for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (1) , 387-400. https://doi.org/10.1021/acsaem.9b01644
  22. Michele Orlandi, Serena Berardi, Alberto Mazzi, Stefano Caramori, Rita Boaretto, Francesco Nart, Carlo A. Bignozzi, Nicola Bazzanella, Nainesh Patel, Antonio Miotello. Rational Design Combining Morphology and Charge-Dynamic for Hematite/Nickel–Iron Oxide Thin-Layer Photoanodes: Insights into the Role of the Absorber/Catalyst Junction. ACS Applied Materials & Interfaces 2019, 11 (51) , 48002-48012. https://doi.org/10.1021/acsami.9b19790
  23. Anne-Marie Zieschang, Joshua D. Bocarsly, Jona Schuch, Christina V. Reichel, Bernhard Kaiser, Wolfram Jaegermann, Ram Seshadri, Barbara Albert. Magnetic and Electrocatalytic Properties of Nanoscale Cobalt Boride, Co3B. Inorganic Chemistry 2019, 58 (24) , 16609-16617. https://doi.org/10.1021/acs.inorgchem.9b02617
  24. Mustafa Al Samarai, Anselm W. Hahn, Abbas Beheshti Askari, Yi-Tao Cui, Kosuke Yamazoe, Jun Miyawaki, Yoshihisa Harada, Olaf Rüdiger, Serena DeBeer. Elucidation of Structure–Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. ACS Applied Materials & Interfaces 2019, 11 (42) , 38595-38605. https://doi.org/10.1021/acsami.9b06752
  25. Young Kyeong Kim, Jin Hyun Kim, Yim Hyun Jo, Jae Sung Lee. Precipitating Metal Nitrate Deposition of Amorphous Metal Oxyhydroxide Electrodes Containing Ni, Fe, and Co for Electrocatalytic Water Oxidation. ACS Catalysis 2019, 9 (10) , 9650-9662. https://doi.org/10.1021/acscatal.9b02701
  26. Xi Cheng, Bae-Jung Kim, Emiliana Fabbri, Thomas J. Schmidt. Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems. ACS Applied Materials & Interfaces 2019, 11 (38) , 34787-34795. https://doi.org/10.1021/acsami.9b04456
  27. Panpan Li, Zhaoyu Jin, Yumin Qian, Zhiwei Fang, Dan Xiao, Guihua Yu. Probing Enhanced Site Activity of Co–Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis. ACS Energy Letters 2019, 4 (8) , 1793-1802. https://doi.org/10.1021/acsenergylett.9b00893
  28. Meilin Cui, Huihui Zhao, Xiaoping Dai, Yang Yang, Xin Zhang, Xuebin Luan, Fei Nie, Ziteng Ren, Yin Dong, Yao Wang, Juntao Yang, Xingliang Huang. Promotion of the Electrocatalytic Oxygen Evolution Reaction by Chemical Coupling of CoOOH Particles to 3D Branched γ-MnOOH Rods. ACS Sustainable Chemistry & Engineering 2019, 7 (15) , 13015-13022. https://doi.org/10.1021/acssuschemeng.9b02106
  29. Chanderpratap Singh, Itamar Liberman, Ran Shimoni, Raya Ifraemov, Idan Hod. Pristine versus Pyrolyzed Metal–Organic Framework-based Oxygen Evolution Electrocatalysts: Evaluation of Intrinsic Activity Using Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (13) , 3630-3636. https://doi.org/10.1021/acs.jpclett.9b01232
  30. Chunguang Kuai, Yan Zhang, Deyao Wu, Dimosthenis Sokaras, Linqin Mu, Stephanie Spence, Dennis Nordlund, Feng Lin, Xi-Wen Du. Fully Oxidized Ni–Fe Layered Double Hydroxide with 100% Exposed Active Sites for Catalyzing Oxygen Evolution Reaction. ACS Catalysis 2019, 9 (7) , 6027-6032. https://doi.org/10.1021/acscatal.9b01935
  31. Douglas R. Kauffman, Xingyi Deng, Dan C. Sorescu, Thuy-Duong Nguyen-Phan, Congjun Wang, Chris M. Marin, Eli Stavitski, Iradwikanari Waluyo, Adrian Hunt. Edge-Enhanced Oxygen Evolution Reactivity at Ultrathin, Au-Supported Fe2O3 Electrocatalysts. ACS Catalysis 2019, 9 (6) , 5375-5382. https://doi.org/10.1021/acscatal.9b01093
  32. Pravin Babar, Abhishek Lokhande, Vijay Karade, Bharati Pawar, Myeng Gil Gang, Sambhaji Pawar, Jin Hyeok Kim. Bifunctional 2D Electrocatalysts of Transition Metal Hydroxide Nanosheet Arrays for Water Splitting and Urea Electrolysis. ACS Sustainable Chemistry & Engineering 2019, 7 (11) , 10035-10043. https://doi.org/10.1021/acssuschemeng.9b01260
  33. Jon G. Baker, Joel R. Schneider, Jose A. Garrido Torres, Joseph A. Singh, Adriaan J. M. Mackus, Michal Bajdich, Stacey F. Bent. The Role of Aluminum in Promoting Ni–Fe–OOH Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (5) , 3488-3499. https://doi.org/10.1021/acsaem.9b00265
  34. Finn Reikowski, Fouad Maroun, Ivan Pacheco, Tim Wiegmann, Philippe Allongue, Jochim Stettner, Olaf M. Magnussen. Operando Surface X-ray Diffraction Studies of Structurally Defined Co3O4 and CoOOH Thin Films during Oxygen Evolution. ACS Catalysis 2019, 9 (5) , 3811-3821. https://doi.org/10.1021/acscatal.8b04823
  35. Rituja B. Patil, Aayush Mantri, Stephen D. House, Judith C. Yang, James R. McKone. Enhancing the Performance of Ni-Mo Alkaline Hydrogen Evolution Electrocatalysts with Carbon Supports. ACS Applied Energy Materials 2019, 2 (4) , 2524-2533. https://doi.org/10.1021/acsaem.8b02087
  36. Bae-Jung Kim, Emiliana Fabbri, Daniel F. Abbott, Xi Cheng, Adam H. Clark, Maarten Nachtegaal, Mario Borlaf, Ivano E. Castelli, Thomas Graule, Thomas J. Schmidt. Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society 2019, 141 (13) , 5231-5240. https://doi.org/10.1021/jacs.8b12101
  37. Fang Song, Michael M. Busch, Benedikt Lassalle-Kaiser, Chia-Shuo Hsu, Elitsa Petkucheva, Michaël Bensimon, Hao Ming Chen, Clemence Corminboeuf, Xile Hu. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science 2019, 5 (3) , 558-568. https://doi.org/10.1021/acscentsci.9b00053
  38. Kaili Yan, Meili Sheng, Xiaodong Sun, Chang Song, Zhi Cao, Yujie Sun. Microwave Synthesis of Ultrathin Nickel Hydroxide Nanosheets with Iron Incorporation for Electrocatalytic Water Oxidation. ACS Applied Energy Materials 2019, 2 (3) , 1961-1968. https://doi.org/10.1021/acsaem.8b02067
  39. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  40. Christian Dette, Michael R. Hurst, Jiang Deng, Michael R. Nellist, Shannon W. Boettcher. Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (6) , 5590-5594. https://doi.org/10.1021/acsami.8b02796
  41. Forrest A. L. Laskowski, Michael R. Nellist, Jingjing Qiu, Shannon W. Boettcher. Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes. Journal of the American Chemical Society 2019, 141 (4) , 1394-1405. https://doi.org/10.1021/jacs.8b09449
  42. Jean Marie Vianney Nsanzimana, Raksha Dangol, Vikas Reddu, Shou Duo, Yeucheng Peng, Khang Ngoc Dinh, Zhenfeng Huang, Qingyu Yan, Xin Wang. Facile Synthesis of Amorphous Ternary Metal Borides–Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. ACS Applied Materials & Interfaces 2019, 11 (1) , 846-855. https://doi.org/10.1021/acsami.8b17836
  43. John Mark P. Martirez, Emily A. Carter. Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites. Journal of the American Chemical Society 2019, 141 (1) , 693-705. https://doi.org/10.1021/jacs.8b12386
  44. Dehua Xiong, Zijuan Du, Hong Li, Junyuan Xu, Junjie Li, Xiujian Zhao, Lifeng Liu. Polyvinylpyrrolidone-Assisted Hydrothermal Synthesis of CuCoO2 Nanoplates with Enhanced Oxygen Evolution Reaction Performance. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 1493-1501. https://doi.org/10.1021/acssuschemeng.8b05236
  45. Xiao Shang, Zi-Zhang Liu, Jia-Qi Zhang, Bin Dong, Yu-Lu Zhou, Jun-Feng Qin, Lei Wang, Yong-Ming Chai, Chen-Guang Liu. Electrochemical Corrosion Engineering for Ni–Fe Oxides with Superior Activity toward Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (49) , 42217-42224. https://doi.org/10.1021/acsami.8b13267
  46. G. Rajeshkhanna, Thangjam Ibomcha Singh, Nam Hoon Kim, Joong Hee Lee. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting. ACS Applied Materials & Interfaces 2018, 10 (49) , 42453-42468. https://doi.org/10.1021/acsami.8b16425
  47. Yin Wang, Yuanman Ni, Xia Wang, Nan Zhang, Peihe Li, Jing Dong, Bing Liu, Jinghai Liu, Minhua Cao, Changwen Hu. Template Electro-Etching-Mediated FeOOH Nanotubes as Highly Efficient Photoactive Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (10) , 5718-5725. https://doi.org/10.1021/acsaem.8b01289
  48. Haiyan Li, Shengnan Sun, Shibo Xi, Yubo Chen, Ting Wang, Yonghua Du, Matthew Sherburne, Joel W. Ager, Adrian C. Fisher, Zhichuan J. Xu. Metal–Oxygen Hybridization Determined Activity in Spinel-Based Oxygen Evolution Catalysts: A Case Study of ZnFe2–xCrxO4. Chemistry of Materials 2018, 30 (19) , 6839-6848. https://doi.org/10.1021/acs.chemmater.8b02871
  49. Amanda C. Garcia, Marc T. M. Koper. Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (10) , 9359-9363. https://doi.org/10.1021/acscatal.8b01447
  50. Michael R. Nellist, Jingjing Qiu, Forrest A. L. Laskowski, Francesca M. Toma, Shannon W. Boettcher. Potential-Sensing Electrochemical AFM Shows CoPi as a Hole Collector and Oxygen Evolution Catalyst on BiVO4 Water-Splitting Photoanodes. ACS Energy Letters 2018, 3 (9) , 2286-2291. https://doi.org/10.1021/acsenergylett.8b01150
  51. Zhe Xu, Wenchao Li, Xiaohui Wang, Bing Wang, Zhan Shi, Cheng Dong, Shicheng Yan, Zhigang Zou. Novel Cobalt Germanium Hydroxide for Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (36) , 30357-30366. https://doi.org/10.1021/acsami.8b09247
  52. Fang Li, Dafeng Zhang, Rong-Chen Xu, Wen-Fu Fu, Xiao-Jun Lv. Superhydrophilic Heteroporous MoS2/Ni3S2 for Highly Efficient Electrocatalytic Overall Water Splitting. ACS Applied Energy Materials 2018, 1 (8) , 3929-3936. https://doi.org/10.1021/acsaem.8b00665
  53. Daniel P. Leonard, William F. Stickle, Xiulei Ji. Carbon-Supported Iron Phosphides: Highest Intrinsic Oxygen Evolution Activity of the Iron Triad. ACS Applied Energy Materials 2018, 1 (8) , 3593-3597. https://doi.org/10.1021/acsaem.8b00861
  54. John Mark P. Martirez, Emily A. Carter. Effects of the Aqueous Environment on the Stability and Chemistry of β-NiOOH Surfaces. Chemistry of Materials 2018, 30 (15) , 5205-5219. https://doi.org/10.1021/acs.chemmater.8b01866
  55. Pan Peng, Xiao-Min Lin, Yuzi Liu, Alexander S. Filatov, Dongguo Li, Vojislav R. Stamenkovic, Dali Yang, Vitali B. Prakapenka, Aiwen Lei, Elena V. Shevchenko. Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (29) , 24715-24724. https://doi.org/10.1021/acsami.8b06165
  56. Haiyan Li, Yubo Chen, Shibo Xi, Jingxian Wang, Shengnan Sun, Yuanmiao Sun, Yonghua Du, Zhichuan J. Xu. Degree of Geometric Tilting Determines the Activity of FeO6 Octahedra for Water Oxidation. Chemistry of Materials 2018, 30 (13) , 4313-4320. https://doi.org/10.1021/acs.chemmater.8b01321
  57. Hongyang He, Junxiang Chen, Dafeng Zhang, Fang Li, Xin Chen, Yumei Chen, Linyan Bian, Qiufen Wang, Peigao Duan, Zhenhai Wen, Xiaojun Lv. Modulating the Electrocatalytic Performance of Palladium with the Electronic Metal–Support Interaction: A Case Study on Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (7) , 6617-6626. https://doi.org/10.1021/acscatal.8b00460
  58. Fang Song, Lichen Bai, Aliki Moysiadou, Seunghwa Lee, Chao Hu, Laurent Liardet, Xile Hu. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society 2018, 140 (25) , 7748-7759. https://doi.org/10.1021/jacs.8b04546
  59. Qun He, Yangyang Wan, Hongliang Jiang, Ziwen Pan, Chuanqiang Wu, Mei Wang, Xiaojun Wu, Bangjiao Ye, Pulickel M. Ajayan, Li Song. Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS Energy Letters 2018, 3 (6) , 1373-1380. https://doi.org/10.1021/acsenergylett.8b00515
  60. Guoxing Zhu, Xulan Xie, Xiaoyun Li, Yuanjun Liu, Xiaoping Shen, Keqiang Xu, Shaowei Chen. Nanocomposites Based on CoSe2-Decorated FeSe2 Nanoparticles Supported on Reduced Graphene Oxide as High-Performance Electrocatalysts toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (22) , 19258-19270. https://doi.org/10.1021/acsami.8b04024
  61. Jared S. Mondschein, Kuldeep Kumar, Cameron F. Holder, Kriti Seth, Hojong Kim, Raymond E. Schaak. Intermetallic Ni2Ta Electrocatalyst for the Oxygen Evolution Reaction in Highly Acidic Electrolytes. Inorganic Chemistry 2018, 57 (10) , 6010-6015. https://doi.org/10.1021/acs.inorgchem.8b00503
  62. HyukSu Han, Kang Min Kim, Heechae Choi, Ghulam Ali, Kyung Yoon Chung, Yu-Rim Hong, Junghyun Choi, Jiseok Kwon, Seung Woo Lee, Jae Woong Lee, Jeong Ho Ryu, Taeseup Song, Sungwook Mhin. Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis 2018, 8 (5) , 4091-4102. https://doi.org/10.1021/acscatal.8b00017
  63. Joseph M. Barforoush, Tess E. Seuferling, Dylan T. Jantz, Kelly R. Song, Kevin C. Leonard. Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials 2018, 1 (4) , 1415-1423. https://doi.org/10.1021/acsaem.8b00190
  64. Qun He, Hui Xie, Zia ur Rehman, Changda Wang, Ping Wan, Hongliang Jiang, Wangsheng Chu, Li Song. Highly Defective Fe-Based Oxyhydroxides from Electrochemical Reconstruction for Efficient Oxygen Evolution Catalysis. ACS Energy Letters 2018, 3 (4) , 861-868. https://doi.org/10.1021/acsenergylett.8b00342
  65. Zhu Chen, Li Cai, Xiaofang Yang, Coleman Kronawitter, Liejin Guo, Shaohua Shen, and Bruce E. Koel . Reversible Structural Evolution of NiCoOxHy during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. ACS Catalysis 2018, 8 (2) , 1238-1247. https://doi.org/10.1021/acscatal.7b03191
  66. Zhu Chen, Coleman X. Kronawitter, Iradwikanari Waluyo, and Bruce E. Koel . Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy. The Journal of Physical Chemistry B 2018, 122 (2) , 810-817. https://doi.org/10.1021/acs.jpcb.7b06960
  67. Gao-Feng Chen, Yaru Luo, Liang-Xin Ding, and Haihui Wang . Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. ACS Catalysis 2018, 8 (1) , 526-530. https://doi.org/10.1021/acscatal.7b03319
  68. Vladimir Tripkovic, Heine Anton Hansen, and Tejs Vegge . From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. ACS Catalysis 2017, 7 (12) , 8558-8571. https://doi.org/10.1021/acscatal.7b02712
  69. Shichuan Chen, Zhixiong Kang, Xiaodong Zhang, Junfeng Xie, Hui Wang, Wei Shao, XuSheng Zheng, Wensheng Yan, Bicai Pan, and Yi Xie . Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science 2017, 3 (11) , 1221-1227. https://doi.org/10.1021/acscentsci.7b00424
  70. Adam S. Batchellor, Gihan Kwon, Forrest A. L. Laskowski, David M. Tiede, and Shannon W. Boettcher . Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. The Journal of Physical Chemistry C 2017, 121 (45) , 25421-25429. https://doi.org/10.1021/acs.jpcc.7b10306
  71. Yuki Sakamoto, Yusuke Noda, Kaoru Ohno, and Shinichiro Nakamura . Chemical Insights from Theoretical Electronic States in Nickel Hydroxide and Monolayer Surface Model. The Journal of Physical Chemistry C 2017, 121 (44) , 24603-24611. https://doi.org/10.1021/acs.jpcc.7b07564
  72. Alaina L. Strickler, Marı́a Escudero-Escribano, and Thomas F. Jaramillo . Core–Shell [email protected] Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. Nano Letters 2017, 17 (10) , 6040-6046. https://doi.org/10.1021/acs.nanolett.7b02357
  73. Jony Saha and T. P. Radhakrishnan . Soft Chemical Fabrication of Iron-Based Thin Film Electrocatalyst for Water Oxidation under Neutral pH and Structure–Activity Tuning by Cerium Incorporation. Langmuir 2017, 33 (34) , 8372-8382. https://doi.org/10.1021/acs.langmuir.7b01647
  74. Michaela Burke Stevens, Christina D. M. Trang, Lisa J. Enman, Jiang Deng, and Shannon W. Boettcher . Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. Journal of the American Chemical Society 2017, 139 (33) , 11361-11364. https://doi.org/10.1021/jacs.7b07117
  75. Pongkarn Chakthranont, Jakob Kibsgaard, Alessandro Gallo, Joonsuk Park, Makoto Mitani, Dimosthenis Sokaras, Thomas Kroll, Robert Sinclair, Mogens B. Mogensen, and Thomas F. Jaramillo . Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts. ACS Catalysis 2017, 7 (8) , 5399-5409. https://doi.org/10.1021/acscatal.7b01070
  76. Michael G. Mavros, James J. Shepherd, Takashi Tsuchimochi, Alexandra R. McIsaac, and Troy Van Voorhis . Computational Design Principles of Two-Center First-Row Transition Metal Oxide Oxygen Evolution Catalysts. The Journal of Physical Chemistry C 2017, 121 (29) , 15665-15674. https://doi.org/10.1021/acs.jpcc.7b02424
  77. Jeremie Zaffran, Michaela Burke Stevens, Christina D. M. Trang, Michael Nagli, Mahran Shehadeh, Shannon W. Boettcher, and Maytal Caspary Toroker . Influence of Electrolyte Cations on Ni(Fe)OOH Catalyzed Oxygen Evolution Reaction. Chemistry of Materials 2017, 29 (11) , 4761-4767. https://doi.org/10.1021/acs.chemmater.7b00517
  78. Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang . Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews 2017, 117 (9) , 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
  79. Desmond E. Schipper, Zhenhuan Zhao, Andrew P. Leitner, Lixin Xie, Fan Qin, Md Kamrul Alam, Shuo Chen, Dezhi Wang, Zhifeng Ren, Zhiming Wang, Jiming Bao, and Kenton H. Whitmire . A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution. ACS Nano 2017, 11 (4) , 4051-4059. https://doi.org/10.1021/acsnano.7b00704
  80. Viruthasalam Maruthapandian, Mahendran Mathankumar, Velu Saraswathy, Balasubramanian Subramanian, and Srinivasan Muralidharan . Study of the Oxygen Evolution Reaction Catalytic Behavior of CoxNi1–xFe2O4 in Alkaline Medium. ACS Applied Materials & Interfaces 2017, 9 (15) , 13132-13141. https://doi.org/10.1021/acsami.6b16685
  81. Jared S. Mondschein, Juan F. Callejas, Carlos G. Read, Jamie Y. C. Chen, Cameron F. Holder, Catherine K. Badding, and Raymond E. Schaak . Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials 2017, 29 (3) , 950-957. https://doi.org/10.1021/acs.chemmater.6b02879
  82. Marco Favaro, Walter S. Drisdell, Matthew A. Marcus, John M. Gregoire, Ethan J. Crumlin, Joel A. Haber, and Junko Yano . An Operando Investigation of (Ni–Fe–Co–Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (2) , 1248-1258. https://doi.org/10.1021/acscatal.6b03126
  83. Michaela Burke Stevens, Lisa J. Enman, Adam S. Batchellor, Monty R. Cosby, Ashlee E. Vise, Christina D. M. Trang, and Shannon W. Boettcher . Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials 2017, 29 (1) , 120-140. https://doi.org/10.1021/acs.chemmater.6b02796
  84. Chia-Cheng Lin and Charles C. L. McCrory . Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co3–xCrxO4 Spinel Catalysts. ACS Catalysis 2017, 7 (1) , 443-451. https://doi.org/10.1021/acscatal.6b02170
  85. Stephanie L. Candelaria, Nicholas M. Bedford, Taylor J. Woehl, Nikki S. Rentz, Allison R. Showalter, Svitlana Pylypenko, Bruce A. Bunker, Sungsik Lee, Benjamin Reinhart, Yang Ren, S. Piril Ertem, E. Bryan Coughlin, Nicholas A. Sather, James L. Horan, Andrew M. Herring, and Lauren F. Greenlee . Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis 2017, 7 (1) , 365-379. https://doi.org/10.1021/acscatal.6b02552
  86. Pallavi Bothra and Swapan K. Pati . Activity of Water Oxidation on Pure and (Fe, Ni, and Cu)-Substituted Co3O4. ACS Energy Letters 2016, 1 (4) , 858-862. https://doi.org/10.1021/acsenergylett.6b00369
  87. Zhaoyang Wang, Jiantao Li, Xiaocong Tian, Xuanpeng Wang, Yang Yu, Kwadwo Asare Owusu, Liang He, and Liqiang Mai . Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (30) , 19386-19392. https://doi.org/10.1021/acsami.6b03392
  88. Carlos G. Morales-Guio, Laurent Liardet, and Xile Hu . Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts. Journal of the American Chemical Society 2016, 138 (28) , 8946-8957. https://doi.org/10.1021/jacs.6b05196
  89. Anirban Dutta, Aneeya K. Samantara, Sumit K. Dutta, Bikash Kumar Jena, and Narayan Pradhan . Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst. ACS Energy Letters 2016, 1 (1) , 169-174. https://doi.org/10.1021/acsenergylett.6b00144
  90. Valeria Butera and Maytal Caspary Toroker . Electronic Properties of Pure and Fe-Doped β-Ni(OH)2: New Insights Using Density Functional Theory with a Cluster Approach. The Journal of Physical Chemistry C 2016, 120 (23) , 12344-12350. https://doi.org/10.1021/acs.jpcc.6b01501
  91. Lisa J. Enman, Michaela S. Burke, Adam S. Batchellor, and Shannon W. Boettcher . Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)hydroxide in Alkaline Media. ACS Catalysis 2016, 6 (4) , 2416-2423. https://doi.org/10.1021/acscatal.5b02924
  92. Tingting Sun, Lianbin Xu, Yushan Yan, Anvar A. Zakhidov, Ray H. Baughman, and Jianfeng Chen . Ordered Mesoporous Nickel Sphere Arrays for Highly Efficient Electrocatalytic Water Oxidation. ACS Catalysis 2016, 6 (3) , 1446-1450. https://doi.org/10.1021/acscatal.5b02571
  93. Zonghua Pu, Yonglan Luo, Abdullah M. Asiri, and Xuping Sun . Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS Applied Materials & Interfaces 2016, 8 (7) , 4718-4723. https://doi.org/10.1021/acsami.5b12143
  94. Jamie Y. C. Chen, Lianna Dang, Hanfeng Liang, Wenli Bi, James B. Gerken, Song Jin, E. Ercan Alp, and Shannon S. Stahl . Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy. Journal of the American Chemical Society 2015, 137 (48) , 15090-15093. https://doi.org/10.1021/jacs.5b10699
  95. Shihui Zou, Michaela S. Burke, Matthew G. Kast, Jie Fan, Nemanja Danilovic, and Shannon W. Boettcher . Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials 2015, 27 (23) , 8011-8020. https://doi.org/10.1021/acs.chemmater.5b03404
  96. Michaela S. Burke, Lisa J. Enman, Adam S. Batchellor, Shihui Zou, and Shannon W. Boettcher . Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials 2015, 27 (22) , 7549-7558. https://doi.org/10.1021/acs.chemmater.5b03148
  97. Adam S. Batchellor and Shannon W. Boettcher . Pulse-Electrodeposited Ni–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings. ACS Catalysis 2015, 5 (11) , 6680-6689. https://doi.org/10.1021/acscatal.5b01551
  98. Chenyang Zhang, Jinwei Chen, Jie Zhang, Yan Luo, Yihan Chen, Yali Xue, Yong Yan, Yi Jiao, Gang Wang, Ruilin Wang. The activation of inert NiFe Prussian Blue analogues to boost oxygen evolution reaction activity. Journal of Colloid and Interface Science 2022, 607 , 967-977. https://doi.org/10.1016/j.jcis.2021.09.114
  99. Menglei Yuan, Yu Sun, Yong Yang, Jingxian Zhang, Sobia Dipazir, Tongkun Zhao, Shuwei Li, Yongbing Xie, He Zhao, Zhanjun Liu, Guangjin Zhang. Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy & Environment 2021, 6 (6) , 866-874. https://doi.org/10.1016/j.gee.2020.07.012
  100. Supriya A. Patil, Sangeun Cho, Yongcheol Jo, Nabeen K. Shrestha, Hyungsang Kim, Hyunsik Im. Bimetallic [email protected] nano-frameworks anchored on carbon nanotubes for highly efficient overall water splitting and urea decontamination. Chemical Engineering Journal 2021, 426 , 130773. https://doi.org/10.1016/j.cej.2021.130773
Load more citations