Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2–SiO2

View Author Information
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
*M.X.: E-mail: [email protected]
*J.Z.: E-mail: [email protected]
Cite this: J. Phys. Chem. Lett. 2016, 7, 15, 2962–2966
Publication Date (Web):July 14, 2016
https://doi.org/10.1021/acs.jpclett.6b01287
Copyright © 2016 American Chemical Society
Article Views
1658
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

On the basis of the fact that the competitive adsorption between CO2 and H2O on the catalyst plays an important role in the CO2 photoreduction process, here we develop an economic NH4F-induced hydrophobic modification strategy to enhance the CO2 competitive adsorption on the mesoporous TiO2–SiO2 composite surface via a simple solvothermal method. After the hydrophobic modification, the CO2 photoreduction for the selective generation of CH4 over the noble-metal-free TiO2–SiO2 composite can be greatly enhanced (2.42 vs 0.10 μmol/g in 4h). The enhanced CO2 photoreduction efficiency is assigned to the rational hydrophobic modification on TiO2–SiO2 surface by replacing Si–OH to hydrophobic Si–F bonds, which will improve the CO2 competitive adsorption and trigger the eight-electron CO2 photoreduction on the reaction kinetics.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.6b01287.

  • Detailed experimental procedures; CO2 photoreduction setup diagram; and characterization methods and figures of BET, XRD, FT-IR, XPS, UV-DRS. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 46 publications.

  1. Songchang Hu, Chunyang Dong, Zesheng Deng, Mingyang Xing, Jinlong Zhang. Tuning Reaction Pathway of CO2 Photoreduction via PtRu Bimetallic Microstructure Regulation. The Journal of Physical Chemistry C 2021, 125 (19) , 10406-10412. https://doi.org/10.1021/acs.jpcc.1c02769
  2. A. Putta Rangappa, D. Praveen Kumar, Yul Hong, Seonghyun Jeong, D. Amaranatha Reddy, Jae Kyu Song, Tae Kyu Kim. Construction of a Highly Efficient and Durable 1D Ternary CdS/ZnS/Pt Nanohybrid Catalyst for Photocatalytic CO2 Reduction into Chemical Fuels under Solar Light Irradiation. ACS Applied Energy Materials 2020, 3 (11) , 10533-10540. https://doi.org/10.1021/acsaem.0c01583
  3. Dahong Huang, Kaixuan Wang, Junfeng Niu, Chiheng Chu, Seunghyun Weon, Qianhong Zhu, Jianjiang Lu, Eli Stavitski, Jae-Hong Kim. Amorphous Pd-Loaded Ti4O7 Electrode for Direct Anodic Destruction of Perfluorooctanoic Acid. Environmental Science & Technology 2020, 54 (17) , 10954-10963. https://doi.org/10.1021/acs.est.0c03800
  4. Sunil Jeong, Gui-Min Kim, Gil-Seong Kang, Chanyeon Kim, Hyunjoo Lee, Woo-Jae Kim, Young Kuk Lee, Sungho Lee, Hyungjun Kim, Hyung Kyu Lim, Doh C. Lee. Selectivity Modulated by Surface Ligands on Cu2O/TiO2 Catalysts for Gas-Phase Photocatalytic Reduction of Carbon Dioxide. The Journal of Physical Chemistry C 2019, 123 (48) , 29184-29191. https://doi.org/10.1021/acs.jpcc.9b05780
  5. Shiqun Wu, Xianjun Tan, Juying Lei, Haijun Chen, Lingzhi Wang, Jinlong Zhang. Ga-Doped and Pt-Loaded Porous TiO2–SiO2 for Photocatalytic Nonoxidative Coupling of Methane. Journal of the American Chemical Society 2019, 141 (16) , 6592-6600. https://doi.org/10.1021/jacs.8b13858
  6. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
  7. Mingyang Xing, Yi Zhou, Chunyang Dong, Lejuan Cai, Lixi Zeng, Bin Shen, Lihan Pan, Chencheng Dong, Yang Chai, Jinlong Zhang, Yadong Yin. Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters 2018, 18 (6) , 3384-3390. https://doi.org/10.1021/acs.nanolett.8b00197
  8. Hyunju Jung, Kyeong Min Cho, Kyoung Hwan Kim, Hae-Wook Yoo, Ahmed Al-Saggaf, Issam Gereige, Hee-Tae Jung. Highly Efficient and Stable CO2 Reduction Photocatalyst with a Hierarchical Structure of Mesoporous TiO2 on 3D Graphene with Few-Layered MoS2. ACS Sustainable Chemistry & Engineering 2018, 6 (5) , 5718-5724. https://doi.org/10.1021/acssuschemeng.8b00002
  9. Shahzad Ali, Abdul Razzaq, Hwapyong Kim, Su-Il In. Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chemical Engineering Journal 2022, 429 , 131579. https://doi.org/10.1016/j.cej.2021.131579
  10. Wedja Timóteo Vieira, Marina Barbosa de Farias, Marcela Pires Spaolonzi, Meuris Gurgel Carlos da Silva, Melissa Gurgel Adeodato Vieira. Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media – A critical report. Journal of Environmental Chemical Engineering 2021, 9 (4) , 105748. https://doi.org/10.1016/j.jece.2021.105748
  11. Zhiwen Xiu, Dongfang Zhang, Jiaxun Wang. Direct Z-Scheme Photocatalytic System: Ag2CO3/g-C3N4 Organic–Inorganic Hybrid with Superior Activity through Built-in Electric Field Transfer Mechanism. Russian Journal of Physical Chemistry A 2021, 95 (6) , 1255-1268. https://doi.org/10.1134/S0036024421060273
  12. Yingxin Ma, Bocheng Qiu, Jinlong Zhang, Mingyang Xing. Vacancy Engineering of Ultrathin 2D Materials for Photocatalytic CO 2 Reduction. ChemNanoMat 2021, 7 (4) , 368-379. https://doi.org/10.1002/cnma.202100051
  13. Wedja Timóteo Vieira, Marina Barbosa de Farias, Marcela Pires Spaolonzi, Meuris Gurgel Carlos da Silva, Melissa Gurgel Adeodato Vieira. Endocrine-disrupting compounds: Occurrence, detection methods, effects and promising treatment pathways—A critical review. Journal of Environmental Chemical Engineering 2021, 9 (1) , 104558. https://doi.org/10.1016/j.jece.2020.104558
  14. Xuhui Feng, Fuping Pan, Peng Zhang, Xiao Wang, Hong‐Cai Zhou, Yongheng Huang, Ying Li. Metal‐Organic Framework MIL‐125 Derived Mg 2+ ‐Doped Mesoporous TiO 2 for Photocatalytic CO 2 Reduction. ChemPhotoChem 2021, 5 (1) , 79-89. https://doi.org/10.1002/cptc.202000181
  15. An-Ya Lo, Fariborz Taghipour. Ordered mesoporous photocatalysts for CO 2 photoreduction. Journal of Materials Chemistry A 2021, 30 https://doi.org/10.1039/D1TA05643C
  16. Jeannie Z. Y. Tan, Stelios Gavrielides, Meltiani Belekoukia, Warren A. Thompson, Leila Negahdar, Fang Xia, M. Mercedes Maroto-Valer, Andrew M. Beale. Synthesis of TiO 2−x /W 18 O 49 hollow double-shell and core–shell microspheres for CO 2 photoreduction under visible light. Chemical Communications 2020, 56 (81) , 12150-12153. https://doi.org/10.1039/D0CC04036C
  17. Mu-Jin Cai, Chao-Ran Li, Le He. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Metals 2020, 39 (8) , 881-886. https://doi.org/10.1007/s12598-020-01431-3
  18. Shuaijun Feng, Jie Zhao, Yujie Bai, Xinxin Liang, Ting Wang, Chuanyi Wang. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping. Journal of CO2 Utilization 2020, 38 , 1-9. https://doi.org/10.1016/j.jcou.2019.12.019
  19. Sina Matavos-Aramyan, Sadaf Soukhakian, Mohammad Hossein Jazebizadeh, Mohsen Moussavi, Mahmoud Reza Hojjati. On engineering strategies for photoselective CO2 reduction – A thorough review. Applied Materials Today 2020, 18 , 100499. https://doi.org/10.1016/j.apmt.2019.100499
  20. I-Hsiang Tseng, Zhi-Cheng Liu, Po-Ya Chang. Bio-friendly titania-grafted chitosan film with biomimetic surface structure for photocatalytic application. Carbohydrate Polymers 2020, 230 , 115584. https://doi.org/10.1016/j.carbpol.2019.115584
  21. Chunjing Tang, Xuerong Huang, Haoying Wang, Huijie Shi, Guohua Zhao. Mechanism investigation on the enhanced photocatalytic oxidation of nonylphenol on hydrophobic TiO2 nanotubes. Journal of Hazardous Materials 2020, 382 , 121017. https://doi.org/10.1016/j.jhazmat.2019.121017
  22. Zhiyan Fu, Qi Yang, Zhan Liu, Fei Chen, Fubing Yao, Ting Xie, Yu Zhong, Dongbo Wang, Jing Li, Xiaoming Li, Guangming Zeng. Photocatalytic conversion of carbon dioxide: From products to design the catalysts. Journal of CO2 Utilization 2019, 34 , 63-73. https://doi.org/10.1016/j.jcou.2019.05.032
  23. Xiaoni Xuan, Shuchen Tu, Hongjian Yu, Xin Du, Yajing Zhao, Junhui He, Haifeng Dong, Xueji Zhang, Hongwei Huang. Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Applied Catalysis B: Environmental 2019, 255 , 117768. https://doi.org/10.1016/j.apcatb.2019.117768
  24. Hongyi Gao, Junyong Wang, Mengyi Jia, Fucheng Yang, Radoelizo S. Andriamitantsoa, Xiubing Huang, Wenjun Dong, Ge Wang. Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2. Chemical Engineering Journal 2019, 374 , 684-693. https://doi.org/10.1016/j.cej.2019.06.002
  25. Xingxing Wu, Chujun Wang, Yuechang Wei, Jing Xiong, Yilong Zhao, Zhen Zhao, Jian Liu, Jianmei Li. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. Journal of Catalysis 2019, 377 , 309-321. https://doi.org/10.1016/j.jcat.2019.07.037
  26. Haipeng Wang, Ling Zhang, Kefu Wang, Xiang Sun, Wenzhong Wang. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping. Applied Catalysis B: Environmental 2019, 243 , 771-779. https://doi.org/10.1016/j.apcatb.2018.11.021
  27. Chencheng Dong, Jiahui Ji, Zhe Yang, Yifei Xiao, Mingyang Xing, Jinlong Zhang. Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO2. Chinese Chemical Letters 2019, 30 (4) , 853-862. https://doi.org/10.1016/j.cclet.2019.03.020
  28. Hongju Wang, Dapeng Wu, Wenpeng Wu, Danqi Wang, Zhiyong Gao, Fang Xu, Kun Cao, Kai Jiang. Preparation of TiO2 microspheres with tunable pore and chamber size for fast gaseous diffusion in photoreduction of CO2 under simulated sunlight. Journal of Colloid and Interface Science 2019, 539 , 194-202. https://doi.org/10.1016/j.jcis.2018.12.022
  29. Chunyang Dong, Cheng Lian, Songchang Hu, Zesheng Deng, Jianqiu Gong, Mingde Li, Honglai Liu, Mingyang Xing, Jinlong Zhang. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03666-2
  30. Fan Ye, Fang Wang, Chenchen Meng, Lijie Bai, Junying Li, Pingxing Xing, Botao Teng, Leihong Zhao, Song Bai. Crystalline phase engineering on cocatalysts: A promising approach to enhancement on photocatalytic conversion of carbon dioxide to fuels. Applied Catalysis B: Environmental 2018, 230 , 145-153. https://doi.org/10.1016/j.apcatb.2018.02.046
  31. Nasir Shehzad, Muhammad Tahir, Khairiraihanna Johari, Thanabalan Murugesan, Murid Hussain. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26 , 98-122. https://doi.org/10.1016/j.jcou.2018.04.026
  32. Yabo Wang, Jie Zhao, Yingxuan Li, Chuanyi Wang. Selective photocatalytic CO2 reduction to CH4 over Pt/In2O3: Significant role of hydrogen adatom. Applied Catalysis B: Environmental 2018, 226 , 544-553. https://doi.org/10.1016/j.apcatb.2018.01.005
  33. Chunyang Dong, Songchang Hu, Mingyang Xing, Jinlong Zhang. Enhanced photocatalytic CO 2 reduction to CH 4 over separated dual co-catalysts Au and RuO 2. Nanotechnology 2018, 29 (15) , 154005. https://doi.org/10.1088/1361-6528/aaad44
  34. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. Roles and Properties of Cocatalysts in Semiconductor-Based Materials for Efficient CO2 Photoreduction. 2018,,, 275-305. https://doi.org/10.1007/978-981-13-2113-9_12
  35. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. Syntheses and Applications of Silver Halide-Based Photocatalysts. 2018,,, 307-343. https://doi.org/10.1007/978-981-13-2113-9_13
  36. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. The Preparation and Applications of g-C3N4/TiO2 Heterojunction Catalysts. 2018,,, 173-196. https://doi.org/10.1007/978-981-13-2113-9_7
  37. Mingyang Xing, Bocheng Qiu, Mengmeng Du, Qiaohong Zhu, Lingzhi Wang, Jinlong Zhang. Spatially Separated CdS Shells Exposed with Reduction Surfaces for Enhancing Photocatalytic Hydrogen Evolution. Advanced Functional Materials 2017, 27 (35) , 1702624. https://doi.org/10.1002/adfm.201702624
  38. Dengke Wang, Zhaohui Li. Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates 2017, 43 (9) , 5169-5186. https://doi.org/10.1007/s11164-017-3042-0
  39. Jinqing Jiao, Yuechang Wei, Kebin Chi, Zhen Zhao, Aijun Duan, Jian Liu, Guiyuan Jiang, Yajun Wang, Xilong Wang, Changcun Han, Peng Zheng. Platinum Nanoparticles Supported on TiO 2 Photonic Crystals as Highly Active Photocatalyst for the Reduction of CO 2 in the Presence of Water. Energy Technology 2017, 5 (6) , 877-883. https://doi.org/10.1002/ente.201600572
  40. Younghwan Im, Jae Hyung Lee, Misook Kang. Effective photoconversion of CO2 into CH4 over Ti30Si70MCM-41 nanoporous catalyst photosensitized by a ruthenium dye. Korean Journal of Chemical Engineering 2017, 34 (6) , 1669-1677. https://doi.org/10.1007/s11814-017-0073-6
  41. Yang Bai, Liqun Ye, Ting Chen, Pingquan Wang, Li Wang, Xian Shi, Po Keung Wong. Synthesis of hierarchical bismuth-rich Bi4O5BrxI2-x solid solutions for enhanced photocatalytic activities of CO2 conversion and Cr(VI) reduction under visible light. Applied Catalysis B: Environmental 2017, 203 , 633-640. https://doi.org/10.1016/j.apcatb.2016.10.066
  42. Bao Pan, Yangen Zhou, Wenyue Su, Xuxu Wang. Self-assembly synthesis of LaPO4 hierarchical hollow spheres with enhanced photocatalytic CO2-reduction performance. Nano Research 2017, 10 (2) , 534-545. https://doi.org/10.1007/s12274-016-1311-7
  43. Zhen Wei, Fenfen Liang, Yanfang Liu, Wenjiao Luo, Jun Wang, Wenqing Yao, Yongfa Zhu. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. Applied Catalysis B: Environmental 2017, 201 , 600-606. https://doi.org/10.1016/j.apcatb.2016.09.003
  44. Jingxiang Low, Bei Cheng, Jiaguo Yu. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392 , 658-686. https://doi.org/10.1016/j.apsusc.2016.09.093
  45. Wenzhang Fang, Lhoussain Khrouz, Yi Zhou, Bin Shen, Chunyang Dong, Mingyang Xing, Shashank Mishra, Stéphane Daniele, Jinlong Zhang. Reduced {001}-TiO 2−x photocatalysts: noble-metal-free CO 2 photoreduction for selective CH 4 evolution. Physical Chemistry Chemical Physics 2017, 19 (21) , 13875-13881. https://doi.org/10.1039/C7CP01212H
  46. Chunyang Dong, Mingyang Xing, Jinlong Zhang. Double-cocatalysts promote charge separation efficiency in CO 2 photoreduction: spatial location matters. Materials Horizons 2016, 3 (6) , 608-612. https://doi.org/10.1039/C6MH00210B