Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity

View Author Information
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
*E-mail: [email protected] (K.Z.)
*E-mail: [email protected] (J.H.P.)
Cite this: J. Phys. Chem. Lett. 2017, 8, 1, 199–207
Publication Date (Web):December 8, 2016
https://doi.org/10.1021/acs.jpclett.6b02289
Copyright © 2016 American Chemical Society
Article Views
3272
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)

Abstract

In the past several years, surface-disordered TiO2, which is referred to as black TiO2 and can absorb both visible and near-infrared solar light, has triggered an explosion of interest for many important applications. Despite the excellent optical and electrical features of black TiO2 for various photoelectrochemical (PEC) and photochemical reactions, the current understanding of the photocatalytic mechanism is unsatisfactory and incomplete. On the basis of previous studies, we present new insight into the surface localization of defects and perspectives on the liquid/solid interface. The future prospects for understanding black TiO2 from this perspective suggest that defect engineering at the liquid/solid interface is a potential method of guiding nanomaterial design.

Cited By


This article is cited by 70 publications.

  1. Ádám Balog, Gergely F. Samu, Szabolcs Pető, Csaba Janáky. The Mystery of Black TiO2: Insights from Combined Surface Science and In Situ Electrochemical Methods. ACS Materials Au 2021, 1 (2) , 157-168. https://doi.org/10.1021/acsmaterialsau.1c00020
  2. Yukari Yamazaki, Kohsuke Mori, Yasutaka Kuwahara, Hisayoshi Kobayashi, Hiromi Yamashita. Defect Engineering of Pt/TiO2–x Photocatalysts via Reduction Treatment Assisted by Hydrogen Spillover. ACS Applied Materials & Interfaces 2021, 13 (41) , 48669-48678. https://doi.org/10.1021/acsami.1c13756
  3. Zihao Wu, Luyao Wang, Baihe Fu, Zhonghai Zhang. A “Green” Concentrated Solar Light Doping Strategy for Significantly Improved Photoelectrochemical Performance. ACS Applied Energy Materials 2020, 3 (9) , 8164-8170. https://doi.org/10.1021/acsaem.0c01648
  4. Meikun Shen, Tianben Ding, Jiang Luo, Che Tan, Khalid Mahmood, Zheyu Wang, Dongyan Zhang, Rohan Mishra, Matthew D. Lew, Bryce Sadtler. Competing Activation and Deactivation Mechanisms in Photodoped Bismuth Oxybromide Nanoplates Probed by Single-Molecule Fluorescence Imaging. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5219-5227. https://doi.org/10.1021/acs.jpclett.0c01237
  5. Swetha S. M. Bhat, Sol A Lee, Tae Hyung Lee, Changyeon Kim, Jinwoo Park, Tae-Woo Lee, Soo Young Kim, Ho Won Jang. All-Solution-Processed BiVO4/TiO2 Photoanode with NiCo2O4 Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. ACS Applied Energy Materials 2020, 3 (6) , 5646-5656. https://doi.org/10.1021/acsaem.0c00607
  6. Yao Guo, Shunwei Chen, Yaoguang Yu, Haoran Tian, Yanling Zhao, Ji-Chang Ren, Chao Huang, Haidong Bian, Miaoyan Huang, Liang An, Yangyang Li, Ruiqin Zhang. Hydrogen-Location-Sensitive Modulation of the Redox Reactivity for Oxygen-Deficient TiO2. Journal of the American Chemical Society 2019, 141 (21) , 8407-8411. https://doi.org/10.1021/jacs.9b01836
  7. Alberto Naldoni, Marco Altomare, Giorgio Zoppellaro, Ning Liu, Štěpán Kment, Radek Zbořil, Patrik Schmuki. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catalysis 2019, 9 (1) , 345-364. https://doi.org/10.1021/acscatal.8b04068
  8. Ossama Elbanna, Mamoru Fujitsuka, Sooyeon Kim, Tetsuro Majima. Charge Carrier Dynamics in TiO2 Mesocrystals with Oxygen Vacancies for Photocatalytic Hydrogen Generation under Solar Light Irradiation. The Journal of Physical Chemistry C 2018, 122 (27) , 15163-15170. https://doi.org/10.1021/acs.jpcc.8b04026
  9. Yoonjun Cho, Sungsoon Kim, Bumsu Park, Chang-Lyoul Lee, Jung Kyu Kim, Kug-Seung Lee, Il Yong Choi, Jong Kyu Kim, Kan Zhang, Sang Ho Oh, Jong Hyeok Park. Multiple Heterojunction in Single Titanium Dioxide Nanoparticles for Novel Metal-Free Photocatalysis. Nano Letters 2018, 18 (7) , 4257-4262. https://doi.org/10.1021/acs.nanolett.8b01245
  10. Aritra Biswas, Atanu Chakraborty, Nikhil R. Jana. Nitrogen and Fluorine Codoped, Colloidal TiO2 Nanoparticle: Tunable Doping, Large Red-Shifted Band Edge, Visible Light Induced Photocatalysis, and Cell Death. ACS Applied Materials & Interfaces 2018, 10 (2) , 1976-1986. https://doi.org/10.1021/acsami.7b14025
  11. Xiangcheng Zhang, Weiyao Hu, Kaifu Zhang, Jianan Wang, Bojing Sun, Haoze Li, Panzhe Qiao, Lei Wang, and Wei Zhou . Ti3+ Self-Doped Black TiO2 Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts. ACS Sustainable Chemistry & Engineering 2017, 5 (8) , 6894-6901. https://doi.org/10.1021/acssuschemeng.7b01114
  12. Xuemei Zhou, Ning Liu, and Patrik Schmuki . Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catalysis 2017, 7 (5) , 3210-3235. https://doi.org/10.1021/acscatal.6b03709
  13. Chuanxin Yu, Mingxia Li, Decai Yang, Kai Pan, Fan Yang, Yachao Xu, Lang Yuan, Yang Qu, Wei Zhou. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes P-N heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution. Applied Surface Science 2021, 568 , 150981. https://doi.org/10.1016/j.apsusc.2021.150981
  14. Guang Feng, Mengyun Hu, Shuai Yuan, Junyi Nan, Heping Zeng. Hydrogenated Amorphous TiO2−x and Its High Visible Light Photoactivity. Nanomaterials 2021, 11 (11) , 2801. https://doi.org/10.3390/nano11112801
  15. Xu Zhang, Min Cai, Naxin Cui, Guifa Chen, Guoyan Zou, Li Zhou. Defective Black TiO2: Effects of Annealing Atmospheres and Urea Addition on the Properties and Photocatalytic Activities. Nanomaterials 2021, 11 (10) , 2648. https://doi.org/10.3390/nano11102648
  16. Bao Chen, Chuan-Hui Zhang, Ying Jin. Tensile strain induced surface reactions for co-adsorption of H2O and OH− on vacancy Al (111) surface. Vacuum 2021, 192 , 110459. https://doi.org/10.1016/j.vacuum.2021.110459
  17. Wanrui Gui, Xin Zhou, Yu Wang, Zhihong Yang, Can Yang, Wenjun Luo, Wei Zhou, Luru Jing. The effective strategies of preparing black F-TiIII-codoping TiO2 anchored on sepiolite for enhanced photodegradation. Applied Clay Science 2021, 209 , 106116. https://doi.org/10.1016/j.clay.2021.106116
  18. Marcin Janczarek, Ewa Kowalska. Defective Dopant-Free TiO2 as an Efficient Visible Light-Active Photocatalyst. Catalysts 2021, 11 (8) , 978. https://doi.org/10.3390/catal11080978
  19. Safa Benjedim, Jesica Castelo-Quibén, Esther Bailón-García, El Mostapha Lotfi, Agustín F. Pérez-Cadenas, Václav Slovák, Jiří Kalina, Francisco Carrasco-Marín. Activated carbon-based coloured titania nanoparticles with high visible radiation absorption and excellent photoactivity in the degradation of emerging drugs of wastewater. Carbon 2021, 178 , 753-766. https://doi.org/10.1016/j.carbon.2021.03.044
  20. Simgeon Oh, Ji-Hee Kim, Hee Min Hwang, Doyoung Kim, Joosung Kim, G. Hwan Park, Joon Soo Kim, Young Hee Lee, Hyoyoung Lee. Band restructuring of ordered/disordered blue TiO 2 for visible light photocatalysis. Journal of Materials Chemistry A 2021, 9 (8) , 4822-4830. https://doi.org/10.1039/D0TA11505C
  21. Sungsoon Kim, Seulgi Ji, Kwang Hee Kim, Seung Hun Roh, Yoonjun Cho, Chang-Lyoul Lee, Kug-Seung Lee, Dae-Geun Choi, Heechae Choi, Jung Kyu Kim, Jong Hyeok Park. Revisiting surface chemistry in TiO2: A critical role of ionic passivation for pH-independent and anti-corrosive photoelectrochemical water oxidation. Chemical Engineering Journal 2021, 407 , 126929. https://doi.org/10.1016/j.cej.2020.126929
  22. Jyoti Bansal, Sanjay Kumar Swami, Akanksha Singh, Tarnija Sarao, Viresh Dutta, A. K. Hafiz, Shailesh Narain Sharma. Apparatus-dependent sol-gel synthesis of TiO 2 nanoparticles for dye-sensitized solar cells. Journal of Dispersion Science and Technology 2021, 42 (3) , 432-439. https://doi.org/10.1080/01932691.2019.1699427
  23. Saima G. Sayyed, Annis A. Shaikh, Pankaj K. Bhujbal, Arif V. Shaikh, Habib M. Pathan, Prafulla Kumar Jha. Structural and Electronic Properties of Various Useful Metal Oxides. 2021,,, 49-84. https://doi.org/10.1007/978-3-030-68462-4_3
  24. Yuanzheng Zhang, Xiang Chen, Siyao Zhang, Lifeng Yin, Yang Yang. Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm. Chemical Engineering Journal 2020, 401 , 126033. https://doi.org/10.1016/j.cej.2020.126033
  25. Luminita Andronic, Alexandru Enesca. Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.565489
  26. Keyla M. Fuentes, Doménico Venuti, Paulino Betancourt. Black titania with increased defective sites for phenol photodegradation under visible light. Reaction Kinetics, Mechanisms and Catalysis 2020, 131 (1) , 423-435. https://doi.org/10.1007/s11144-020-01832-6
  27. Raul Quesada-Cabrera, Ivan P. Parkin. Qualitative Approaches Towards Useful Photocatalytic Materials. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00817
  28. Li Zhou, Min Cai, Xu Zhang, Naxin Cui, Guifa Chen, Guo-yan Zou. In-situ nitrogen-doped black TiO2 with enhanced visible-light-driven photocatalytic inactivation of Microcystis aeruginosa cells: Synthesization, performance and mechanism. Applied Catalysis B: Environmental 2020, 272 , 119019. https://doi.org/10.1016/j.apcatb.2020.119019
  29. Rab Nawaz, Chong Fai Kait, Ho Yeek Chia, Mohamed Hasnain Isa, Lim Wen Huei. Structural elucidation of core–shell TiO2 nanomaterials for environmental pollutants removal: A focused mini review. Environmental Technology & Innovation 2020, 19 , 101007. https://doi.org/10.1016/j.eti.2020.101007
  30. Mengfan Du, Qirong Chen, Yingjie Wang, Jianxin Hu, Xiangfu Meng. Synchronous construction of oxygen vacancies and phase junction in TiO2 hierarchical structure for enhancement of visible light photocatalytic activity. Journal of Alloys and Compounds 2020, 830 , 154649. https://doi.org/10.1016/j.jallcom.2020.154649
  31. T.S. Rajaraman, Sachin P. Parikh, Vimal G. Gandhi. Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal 2020, 389 , 123918. https://doi.org/10.1016/j.cej.2019.123918
  32. Tao Wang, Wenchao Yin, Xuelian Yu, Xiaoqiang An. A strategy of enhancing photoactivity of TiO2 via facet-dependent pyrolysis of dicyandiamide. Applied Catalysis B: Environmental 2020, 264 , 118527. https://doi.org/10.1016/j.apcatb.2019.118527
  33. Xu Zhang, Min Cai, Naxin Cui, Guifa Chen, Guoyan Zou, Li Zhou. One-Step Synthesis of b-N-TiO2/C Nanocomposites with High Visible Light Photocatalytic Activity to Degrade Microcystis aeruginosa. Catalysts 2020, 10 (5) , 579. https://doi.org/10.3390/catal10050579
  34. Claudio Imparato, Giuseppina Iervolino, Marzia Fantauzzi, Can Koral, Wojciech Macyk, Marcin Kobielusz, Gerardino D'Errico, Ilaria Rea, Rocco Di Girolamo, Luca De Stefano, Antonello Andreone, Vincenzo Vaiano, Antonella Rossi, Antonio Aronne. Photocatalytic hydrogen evolution by co-catalyst-free TiO 2 /C bulk heterostructures synthesized under mild conditions. RSC Advances 2020, 10 (21) , 12519-12534. https://doi.org/10.1039/D0RA01322F
  35. Kamel Eid, Khaled A. Soliman, Dana Abdulmalik, Dariusz Mitoraj, Mostafa H. Sleim, Maciej O. Liedke, Hany A. El-Sayed, Amina S. AlJaber, Ilham Y. Al-Qaradawi, Oliver Mendoza Reyes, Aboubakr M. Abdullah. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: experimental insights on the photocatalytic–activity–defects relationship. Catalysis Science & Technology 2020, 10 (3) , 801-809. https://doi.org/10.1039/C9CY02366F
  36. Feng Zhang, Guang Feng, Mengyun Hu, Yanwei Huang, Heping Zeng. Liquid-Plasma Hydrogenated Synthesis of Gray Titania with Engineered Surface Defects and Superior Photocatalytic Activity. Nanomaterials 2020, 10 (2) , 342. https://doi.org/10.3390/nano10020342
  37. Nazanin Rahimi, Randolph A. Pax, Evan MacA. Gray. Mechanism of hydrogen modification of titanium-dioxide. Journal of Alloys and Compounds 2020, 815 , 152249. https://doi.org/10.1016/j.jallcom.2019.152249
  38. Junie Jhon M. Vequizo, Shunta Nishioka, Junji Hyodo, Yoshihiro Yamazaki, Kazuhiko Maeda, Akira Yamakata. Crucial impact of reduction on the photocarrier dynamics of SrTiO 3 powders studied by transient absorption spectroscopy. Journal of Materials Chemistry A 2019, 7 (45) , 26139-26146. https://doi.org/10.1039/C9TA08216F
  39. Yuxin Li, Rong Fu, Min Gao, Xiangdong Wang. B–N co-doped black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2019, 44 (54) , 28629-28637. https://doi.org/10.1016/j.ijhydene.2019.09.121
  40. Thanh‐Dinh Nguyen, Jessica Li, Erlantz Lizundia, Markus Niederberger, Wadood Y. Hamad, Mark J. MacLachlan. Black Titania with Nanoscale Helicity. Advanced Functional Materials 2019, 29 (40) , 1904639. https://doi.org/10.1002/adfm.201904639
  41. Xiaoni Xuan, Shuchen Tu, Hongjian Yu, Xin Du, Yajing Zhao, Junhui He, Haifeng Dong, Xueji Zhang, Hongwei Huang. Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Applied Catalysis B: Environmental 2019, 255 , 117768. https://doi.org/10.1016/j.apcatb.2019.117768
  42. Jingyuan Pei, Jie Meng, Shiyan Wu, Qingyun Lin, Jixue Li, Xiao Wei, Gaorong Han, Ze Zhang. Hierarchical CaTiO3 nanowire-network architectures for H2 evolution under visible-light irradiation. Journal of Alloys and Compounds 2019, 806 , 889-896. https://doi.org/10.1016/j.jallcom.2019.07.294
  43. Nazanin Rahimi, Randolph Pax, Evan MacA. Gray. Review of functional titanium oxides. II: Hydrogen-modified TiO2. Progress in Solid State Chemistry 2019, 55 , 1-19. https://doi.org/10.1016/j.progsolidstchem.2019.04.003
  44. Elham Baktash, Jérôme Capitolis, Lionel Tinat, Clément Larquet, Tsou Hsi Camille Chan Chang, Jean‐Jacques Gallet, Fabrice Bournel, Clément Sanchez, Sophie Carenco, David Portehault. Different Reactivity of Rutile and Anatase TiO 2 Nanoparticles: Synthesis and Surface States of Nanoparticles of Mixed‐Valence Magnéli Oxides. Chemistry – A European Journal 2019, 25 (47) , 11114-11120. https://doi.org/10.1002/chem.201901592
  45. V.A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S. Sharma Kanakkillam, D.A. Avellaneda, J.A. Aguilar Martinez, T.K. Das Roy, N.A. Ramos-Delgado. Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid. Applied Surface Science 2019, 483 , 156-164. https://doi.org/10.1016/j.apsusc.2019.03.302
  46. Mengkun Tian, Chenze Liu, Jingxuan Ge, David Geohegan, Gerd Duscher, Gyula Eres. Recent progress in characterization of the core–shell structure of black titania. Journal of Materials Research 2019, 34 (07) , 1138-1153. https://doi.org/10.1557/jmr.2019.46
  47. Jianfei Lin, Yong Liu, Yongping Liu, Chen Huang, Wenhui Liu, Xihong Mi, Dayong Fan, Fengtao Fan, Huidan Lu, Xiaobo Chen. SnS 2 Nanosheets/H‐TiO 2 Nanotube Arrays as a Type II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12 (5) , 961-967. https://doi.org/10.1002/cssc.201802691
  48. Pengcheng Wu, Chang Liu, Yan Luo, Keliang Wu, Jianning Wu, Xuhong Guo, Juan Hou, Zhiyong Liu. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance. Frontiers of Materials Science 2019, 13 (1) , 43-53. https://doi.org/10.1007/s11706-019-0447-2
  49. Lili Hou, Zhongjie Guan, Taifeng Liu, Chunqing He, Qiuye Li, Jianjun Yang. Synergistic effect of {101} crystal facet and bulk/surface oxygen vacancy ratio on the photocatalytic hydrogen production of TiO2. International Journal of Hydrogen Energy 2019, 44 (16) , 8109-8120. https://doi.org/10.1016/j.ijhydene.2019.02.075
  50. Hesham Hamad, Esther Bailón-García, Francisco J. Maldonado-Hódar, Agustín F. Pérez-Cadenas, Francisco Carrasco-Marín, Sergio Morales-Torres. Synthesis of TixOy nanocrystals in mild synthesis conditions for the degradation of pollutants under solar light. Applied Catalysis B: Environmental 2019, 241 , 385-392. https://doi.org/10.1016/j.apcatb.2018.09.016
  51. Mengkun Tian, Ondrej Dyck, Jingxuan Ge, Gerd Duscher. Measuring the areal density of nanomaterials by electron energy-loss spectroscopy. Ultramicroscopy 2019, 196 , 154-160. https://doi.org/10.1016/j.ultramic.2018.10.009
  52. Yuxin Li, Rong Fu, Xiangdong Wang, Xiaoling Guo. Preparation of core–shell nanostructured black nano-TiO 2 by sol–gel method combined with Mg reduction. Journal of Materials Research 2018, 33 (24) , 4173-4181. https://doi.org/10.1557/jmr.2018.411
  53. Apurba Sinhamahapatra, Ha-Young Lee, Shaohua Shen, Samuel S. Mao, Jong-Sung Yu. H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production. Applied Catalysis B: Environmental 2018, 237 , 613-621. https://doi.org/10.1016/j.apcatb.2018.06.030
  54. Devika Laishram, Kiran P. Shejale, Ritu Gupta, Rakesh K. Sharma. Heterostructured HfO2/TiO2 spherical nanoparticles for visible photocatalytic water remediation. Materials Letters 2018, 231 , 225-228. https://doi.org/10.1016/j.matlet.2018.08.053
  55. Song Bai, Ning Zhang, Chao Gao, Yujie Xiong. Defect engineering in photocatalytic materials. Nano Energy 2018, 53 , 296-336. https://doi.org/10.1016/j.nanoen.2018.08.058
  56. Adersh Asok, Prashant Deshlahra, Animesh M. Ramachandran, Ajit R. Kulkarni. Multifunctional Photostable Nanocomplex of ZnO Quantum Dots and Avobenzone via the Promotion of Enolate Tautomer. Global Challenges 2018, 2 (11) , 1800025. https://doi.org/10.1002/gch2.201800025
  57. Jie Liu, Ying Li, Ziwei Li, Jun Ke, Huining Xiao, Yang Hou. In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catalysis Today 2018, 314 , 2-9. https://doi.org/10.1016/j.cattod.2017.12.001
  58. Ming-Chung Wu, Ying-Han Liao, Shun-Hsiang Chan, Chun-Fu Lu, Wei-Fang Su. Enhancing Organolead Halide Perovskite Solar Cells Performance Through Interfacial Engineering Using Ag-doped TiO 2 Hole Blocking Layer. Solar RRL 2018, 2 (8) , 1800072. https://doi.org/10.1002/solr.201800072
  59. Lina Kong, Xintong Zhang, Changhua Wang, Jianping Xu, Xiwen Du, Lan Li. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance. Applied Surface Science 2018, 448 , 288-296. https://doi.org/10.1016/j.apsusc.2018.04.011
  60. Kang Du, Guohua Liu, Xuyuan Chen, Kaiying Wang. Fast charge separation and photocurrent enhancement on black TiO2 nanotubes co-sensitized with Au nanoparticles and PbS quantum dots. Electrochimica Acta 2018, 277 , 244-254. https://doi.org/10.1016/j.electacta.2018.05.014
  61. Jie Liu, Ying Li, Jun Ke, Shaobin Wang, Lidong Wang, Huining Xiao. Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Applied Catalysis B: Environmental 2018, 224 , 705-714. https://doi.org/10.1016/j.apcatb.2017.11.028
  62. Jeong Yeon Do, Junyeong Kim, Yeju Jang, Youn-Kyoung Baek, Misook Kang. Change of band-gap position of MTiO2 particle doped with 3d-transition metal and control of product selectivity on carbon dioxide photoreduction. Korean Journal of Chemical Engineering 2018, 35 (4) , 1009-1018. https://doi.org/10.1007/s11814-017-0286-8
  63. Kazuki Morita, Kenji Yasuoka. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO 2 nanocrystals. AIP Advances 2018, 8 (3) , 035119. https://doi.org/10.1063/1.5021024
  64. Junie Jhon M. Vequizo, Sunao Kamimura, Teruhisa Ohno, Akira Yamakata. Oxygen induced enhancement of NIR emission in brookite TiO 2 powders: comparison with rutile and anatase TiO 2 powders. Physical Chemistry Chemical Physics 2018, 20 (5) , 3241-3248. https://doi.org/10.1039/C7CP06975H
  65. Lili Hou, Zhongjie Guan, Min Zhang, Chunqing He, Qiuye Li, Jianjun Yang. Adjusting the ratio of bulk single-electron-trapped oxygen vacancies/surface oxygen vacancies in TiO 2 for efficient photocatalytic hydrogen evolution. Catalysis Science & Technology 2018, 8 (11) , 2809-2817. https://doi.org/10.1039/C8CY00644J
  66. Junhui Liang, Ning Wang, Qixing Zhang, Bofei Liu, Xiangbin Kong, Changchun Wei, Dekun Zhang, Baojie Yan, Ying Zhao, Xiaodan Zhang. Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting. Nano Energy 2017, 42 , 151-156. https://doi.org/10.1016/j.nanoen.2017.10.062
  67. Dongshi Zhang, Jun Liu, Pengfei Li, Zhenfei Tian, Changhao Liang. Recent Advances in Surfactant-Free, Surface-Charged, and Defect-Rich Catalysts Developed by Laser Ablation and Processing in Liquids. ChemNanoMat 2017, 3 (8) , 512-533. https://doi.org/10.1002/cnma.201700079
  68. Haitao Chen, Anqi Guo, Qiaoqiao Ding, Jun Zhu, Liwen Cheng. Dispersedly embedded loading of SnO 2 nanoparticles onto graphene nanosheets for highly efficient removal of organic dyes. Journal of Nanophotonics 2017, 11 (2) , 026009. https://doi.org/10.1117/1.JNP.11.026009
  69. Haitao Chen, Anqi Guo, Shuhui Huang, Jun Zhu, Liwen Cheng. Enhanced removal of organic dyes from porous channel-like SnO 2 nanostructures. Materials Research Express 2017, 4 (5) , 055019. https://doi.org/10.1088/2053-1591/aa6c11
  70. Xiaodong Yan, Yong Li, Ting Xia. Black Titanium Dioxide Nanomaterials in Photocatalysis. International Journal of Photoenergy 2017, 2017 , 1-16. https://doi.org/10.1155/2017/8529851