Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media

View Author Information
Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Mechanical Behavior and Design of Materials and CAS Key Laboratory of Materials for Energy Conversion and Department of Material Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
Cite this: Nano Lett. 2017, 17, 1, 578–583
Publication Date (Web):December 2, 2016
https://doi.org/10.1021/acs.nanolett.6b04732
Copyright © 2016 American Chemical Society
Article Views
4618
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

In this study, by using dicobalt phosphide nanoparticles as precatalysts, we demonstrated that electrochemical activation of metallic precatalysts in alkaline media (comparing with directly electrochemical activation in neutral media) could significantly promote the OER catalysis in neutral media, specifically realizing a 2-fold enhanced activity and meanwhile showing a greatly decreased overpotential of about 100 mV at 10 mA cm–2. Compared directly with electrochemical activation in neutral media, the electrochemical activation in harsh alkaline media could easily break the strong Co–Co bond and promote active species generation on the surface of metallic Co2P, thus accounting for the enhancement of neutral OER activity, which is also evidenced by HRTEM and the electrochemical double-layer capacitance measurement. The activation of electrochemical oxidation of metallic precatalysts in alkaline media enhanced neutral OER catalysis could also be observed on CoP nanoparticles and Ni2P nanoparticles, suggesting this is a generic strategy. Our work highlights that the activation of electrochemical oxidation of metallic precatalysts in alkaline media would pave new avenues for the design of advanced neutral OER electrocatalysts.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.6b04732.

  • Experimental section, additional figures, analysis, and discussion (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 146 publications.

  1. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  2. Lu Zhang, Guojun Yuan, Xinyu Wang, Jianliang Bai, Yaqing Zhu, Lili Ren. Non-Negligible Oxygen Atoms in Transition Metal Phosphides: Research on the Role of Oxygen in Hydrodechlorination. The Journal of Physical Chemistry C 2021, 125 (29) , 15967-15975. https://doi.org/10.1021/acs.jpcc.1c04163
  3. Julia Linnemann, Kannasoot Kanokkanchana, Kristina Tschulik. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catalysis 2021, 11 (9) , 5318-5346. https://doi.org/10.1021/acscatal.0c04118
  4. Han Cheng, Si Liu, Jingda Zhang, Tianpei Zhou, Nan Zhang, Xu-sheng Zheng, Wangsheng Chu, Zhenpeng Hu, Changzheng Wu, Yi Xie. Surface Nitrogen-Injection Engineering for High Formation Rate of CO2 Reduction to Formate. Nano Letters 2020, 20 (8) , 6097-6103. https://doi.org/10.1021/acs.nanolett.0c02144
  5. Peng Wei, Xueping Sun, Qirui Liang, Xiaogang Li, Zhimin He, Xiangsheng Hu, Jinxu Zhang, Minhui Wang, Qing Li, Hui Yang, Jiantao Han, Yunhui Huang. Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces 2020, 12 (28) , 31503-31513. https://doi.org/10.1021/acsami.0c08271
  6. Xin Cui, Yu Cui, Meiling Chen, Rui Xiong, Yucheng Huang, Xiaowang Liu. Enhancing Electrochemical Hydrogen Evolution Performance of CoMoO4-Based Microrod Arrays in Neutral Media through Alkaline Activation. ACS Applied Materials & Interfaces 2020, 12 (27) , 30905-30914. https://doi.org/10.1021/acsami.0c02856
  7. Kun Xu, Yiqiang Sun, Xiuling Li, Zihan Zhao, Yongqi Zhang, Cuncheng Li, Hong Jin Fan. Fluorine-Induced Dual Defects in Cobalt Phosphide Nanosheets Enhance Hydrogen Evolution Reaction Activity. ACS Materials Letters 2020, 2 (7) , 736-743. https://doi.org/10.1021/acsmaterialslett.0c00209
  8. Liang Fang, Yanping Xie, Ya Yang, Boya Zhu, Yueyue Wang, Mingxin Liu, Kangning Zhao, Hongbin Zhao, Jiujun Zhang. Interfacial Electronic Modulation of Multishelled CoP Hollow Spheres via Surface Reconstruction for High-Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (1) , 309-318. https://doi.org/10.1021/acsaem.9b01562
  9. Meenakshi Chauhan, Sasanka Deka. Hollow Cobalt Sulfide Nanoparticles: A Robust and Low-Cost pH-Universal Oxygen Evolution Electrocatalyst. ACS Applied Energy Materials 2020, 3 (1) , 977-986. https://doi.org/10.1021/acsaem.9b02019
  10. Pengxia Ji, Huihui Jin, Hongliang Xia, Xu Luo, Junke Zhu, Zonghua Pu, Shichun Mu. Double Metal Diphosphide Pair Nanocages Coupled with P-Doped Carbon for Accelerated Oxygen and Hydrogen Evolution Kinetics. ACS Applied Materials & Interfaces 2020, 12 (1) , 727-733. https://doi.org/10.1021/acsami.9b17960
  11. Haiyang Wang, Caiyan Gao, Rui Li, Zhikun Peng, Jinghe Yang, Jie Gao, Yongpeng Yang, Shuaihui Li, Baojun Li, Zhongyi Liu. Ruthenium–Cobalt Nanoalloy Embedded within Hollow Carbon Spheres as a Bifunctionally Robust Catalyst for Hydrogen Generation from Water Splitting and Ammonia Borane Hydrolysis. ACS Sustainable Chemistry & Engineering 2019, 7 (23) , 18744-18752. https://doi.org/10.1021/acssuschemeng.9b02126
  12. Shiqing Ding, Dengfeng Cao, Daobin Liu, Yunxiang Lin, Changda Wang, Chuanqiang Wu, Yuzhu Zhou, Shuangming Chen, Li Song. Modulating Electronic Structure of Cobalt Phosphide Precatalysts via Dual-Metal Incorporation for Highly Efficient Overall Water Splitting. ACS Applied Energy Materials 2019, 2 (11) , 8022-8030. https://doi.org/10.1021/acsaem.9b01501
  13. Yaqi Jing, Haile Liu, Ruijuan Yan, Jing Chen, Haitao Dai, Changlong Liu, Xiao-Dong Zhang. Mesoporous CoP Nanowire Arrays for Hydrogen Evolution. ACS Applied Nano Materials 2019, 2 (9) , 5922-5930. https://doi.org/10.1021/acsanm.9b01353
  14. Ping Li, Ran Chen, Shuanghong Tian, Ya Xiong. Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry & Engineering 2019, 7 (10) , 9566-9573. https://doi.org/10.1021/acssuschemeng.9b01062
  15. Ling Wang, Haijun Wu, Shibo Xi, Sing Teng Chua, Fenghe Wang, Stephen J. Pennycook, Zhi Gen Yu, Yonghua Du, Junmin Xue. Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces 2019, 11 (19) , 17359-17367. https://doi.org/10.1021/acsami.9b01235
  16. Shuai Niu, Wen-Jie Jiang, Zengxi Wei, Tang Tang, Jianmin Ma, Jin-Song Hu, Li-Jun Wan. Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. Journal of the American Chemical Society 2019, 141 (17) , 7005-7013. https://doi.org/10.1021/jacs.9b01214
  17. Mohsin Ali Raza Anjum, Mahesh Datt Bhatt, Min Hee Lee, Jae Sung Lee. Sulfur-Doped Dicobalt Phosphide Outperforming Precious Metals as a Bifunctional Electrocatalyst for Alkaline Water Electrolysis. Chemistry of Materials 2018, 30 (24) , 8861-8870. https://doi.org/10.1021/acs.chemmater.8b03908
  18. Li An, Zhiyong Zhang, Jianrui Feng, Fan Lv, Yuxuan Li, Rui Wang, Min Lu, Ram B. Gupta, Pinxian Xi, Sen Zhang. Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc–Air Battery with Neutral Aqueous Electrolyte. Journal of the American Chemical Society 2018, 140 (50) , 17624-17631. https://doi.org/10.1021/jacs.8b09805
  19. Pengzuo Chen, Yun Tong, Changzheng Wu, Yi Xie. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research 2018, 51 (11) , 2857-2866. https://doi.org/10.1021/acs.accounts.8b00266
  20. Hongliang Jiang, Qun He, Youkui Zhang, Li Song. Structural Self-Reconstruction of Catalysts in Electrocatalysis. Accounts of Chemical Research 2018, 51 (11) , 2968-2977. https://doi.org/10.1021/acs.accounts.8b00449
  21. Helmut Schäfer, Karsten Kuepper, Jonas Koppe, Philipp Selter, Martin Steinhart, Michael Ryan Hansen, Diemo Daum. Intercalation of Li+ into a Co-Containing Steel-Ceramic Composite: Substantial Oxygen Evolution at Almost Zero Overpotential. ACS Catalysis 2018, 8 (11) , 10914-10925. https://doi.org/10.1021/acscatal.8b03566
  22. Mengjiao Wang, Zhiya Dang, Mirko Prato, Dipak V. Shinde, Luca De Trizio, Liberato Manna. Ni–Co–S–Se Alloy Nanocrystals: Influence of the Composition on Their in Situ Transformation and Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Nano Materials 2018, 1 (10) , 5753-5762. https://doi.org/10.1021/acsanm.8b01418
  23. Zhongtao Li, Ting-Ting Zhao, Wen-Jie Jiang, Shuai Niu, Mingbo Wu, Jin-Song Hu. Bimetal Prussian Blue as a Continuously Variable Platform for Investigating the Composition–Activity Relationship of Phosphides-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (42) , 35904-35910. https://doi.org/10.1021/acsami.8b10257
  24. Xiyang Wang, Keke Huang, Long Yuan, Shuang Li, Wei Ma, Zhongyuan Liu, Shouhua Feng. Molten Salt Flux Synthesis, Crystal Facet Design, Characterization, Electronic Structure, and Catalytic Properties of Perovskite Cobaltite. ACS Applied Materials & Interfaces 2018, 10 (33) , 28219-28231. https://doi.org/10.1021/acsami.8b08621
  25. Qilong Liu, Lingzhi Wei, Qiangchun Liu, Guilin Chen, Xiangkai Kong. Anion Engineering on 3D Ni3S2 Nanosheets Array toward Water Splitting. ACS Applied Energy Materials 2018, 1 (7) , 3488-3496. https://doi.org/10.1021/acsaem.8b00710
  26. Zhi-Mei Luo, Jia-Wei Wang, Jing-Bo Tan, Zhi-Ming Zhang, Tong-Bu Lu. Self-Template Synthesis of Co–Se–S–O Hierarchical Nanotubes as Efficient Electrocatalysts for Oxygen Evolution under Alkaline and Neutral Conditions. ACS Applied Materials & Interfaces 2018, 10 (9) , 8231-8237. https://doi.org/10.1021/acsami.8b00986
  27. Qiuyan Jin, Bowen Ren, Dongqi Li, Hao Cui, and Chengxin Wang . Plasma-Assisted Synthesis of Self-Supporting Porous [email protected] Nanosheet as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (37) , 31913-31921. https://doi.org/10.1021/acsami.7b09487
  28. Dezheng Guo, Xin Li, Yanqing Jiao, Haijing Yan, Aiping Wu, Ganceng Yang, Yu Wang, Chungui Tian, Honggang Fu. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Research 2022, 15 (1) , 238-247. https://doi.org/10.1007/s12274-021-3465-1
  29. Dengfeng Cao, Hongwei Shou, Shuangming Chen, Li Song. Manipulating and probing the structural self-optimization in oxygen evolution reaction catalysts. Current Opinion in Electrochemistry 2021, 30 , 100788. https://doi.org/10.1016/j.coelec.2021.100788
  30. Haopeng Feng, Jing Tang, Wangwang Tang, Lin Tang, Jiangfang Yu, Jiajia Wang, Yaya Yang, Ting Ni, Chao Li, Jun Luo. A strategy to improve electrochemical water oxidation of FeOOH by modulating the electronic structure. Applied Materials Today 2021, 25 , 101252. https://doi.org/10.1016/j.apmt.2021.101252
  31. Siran Xu, Yeshuang Du, Xin Yu, Zhe Wang, Xiaohong Cheng, Qian Liu, Yonglan Luo, Xuping Sun, Qi Wu. A [email protected]–P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale 2021, 13 (40) , 17003-17010. https://doi.org/10.1039/D1NR04513J
  32. Yanqiu Wu, Muzaffar Ahmad Boda, Zhiguo Yi. Highly efficient H 2 production and size-selective AgCl synthesis via electrolytic cell design. Journal of Materials Chemistry A 2021, 9 (40) , 22871-22877. https://doi.org/10.1039/D1TA04839B
  33. Nan Jiang, Zhiwei Zhu, Wenjie Xue, Bao Yu Xia, Bo You. Emerging Electrocatalysts for Water Oxidation under Near‐Neutral CO 2 Reduction Conditions. Advanced Materials 2021, , 2105852. https://doi.org/10.1002/adma.202105852
  34. Qiuyan Jin, Hao Cui, Chengxin Wang. A fast and in-depth self-reconstruction of anion ligands optimized CoFe-based pre-catalysts for water oxidation. Green Energy & Environment 2021, 13 https://doi.org/10.1016/j.gee.2021.10.002
  35. Paweł Stelmachowski, Joanna Duch, David Sebastián, María Jesús Lázaro, Andrzej Kotarba. Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. Materials 2021, 14 (17) , 4984. https://doi.org/10.3390/ma14174984
  36. Juzhe Liu, Lin Guo. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4 (9) , 2850-2873. https://doi.org/10.1016/j.matt.2021.05.025
  37. Eunji Pyo, Keunyoung Lee, Gi-Tae Park, Se-Young Ha, Seonhong Lee, Chung Soo Kim, Ki-Young Kwon. Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite. RSC Advances 2021, 11 (45) , 28342-28346. https://doi.org/10.1039/D1RA05108C
  38. Xiong Liu, Jiashen Meng, Jiexin Zhu, Meng Huang, Bo Wen, Ruiting Guo, Liqiang Mai. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials 2021, 33 (32) , 2007344. https://doi.org/10.1002/adma.202007344
  39. Jian Xiao, Dongdong Cai, Yan Zhang, Xiaogang Luo. Ni4Mo alloy nanosheets coating on carbon tube arrays as high-performance electrocatalyst toward overall water splitting.. Journal of Alloys and Compounds 2021, 110 , 161180. https://doi.org/10.1016/j.jallcom.2021.161180
  40. Xiecheng Yang, Fengmei Su, Minjie Hou, Da Zhang, Yongnian Dai, Feng Liang. Plasma tailored reactive nitrogen species in MOF derived carbon materials for hybrid sodium–air batteries. Dalton Transactions 2021, 50 (20) , 7041-7047. https://doi.org/10.1039/D1DT00807B
  41. Yi-Meng Wang, Yuan-Yuan Li, Tao Huang, Wei-Qing Huang, Shao-Fang Ma, Fan Zeng, Xin Li, Yi-Feng Chai, Gui-Fang Huang. Co-Cu-P nanosheet-based open architecture for high-performance oxygen evolution reaction. Applied Physics A 2021, 127 (4) https://doi.org/10.1007/s00339-021-04378-z
  42. Alireza Kardan, Narges Ashraf, Zeynab Dabirifar, Sara Khadempir. In situ electrochemical activation as a generic strategy for promoting the electrocatalytic hydrogen evolution reaction and alcohol electro-oxidation in alkaline medium. RSC Advances 2021, 11 (18) , 10615-10624. https://doi.org/10.1039/D0RA07817D
  43. N. Clament Sagaya Selvam, Lijie Du, Bao Yu Xia, Pil J. Yoo, Bo You. Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Advanced Functional Materials 2021, 31 (12) , 2008190. https://doi.org/10.1002/adfm.202008190
  44. Yuanlin Xu, Chen Wang, Yunhui Huang, Jing Fu. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80 , 105545. https://doi.org/10.1016/j.nanoen.2020.105545
  45. Teng Kong, Yanwei Sui, Jiqiu Qi, Fuxiang Wei, Yaojian Ren, Zhenzhen Zhan, Zhi Sun, Meihua Zhou, Dongmei Meng, Lijun Zhang, Lan Ma, Qun Wang. In situ transformation of sea urchin-like [email protected] as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Science: Materials in Electronics 2021, 32 (2) , 1951-1961. https://doi.org/10.1007/s10854-020-04963-7
  46. Jian Xiao, Rongzhi Qiao, Yan Zhang, Xiaogang Luo. Porous Co2P film coated on carbon fiber as highly performance electrocatalyst toward overall water splitting. International Journal of Hydrogen Energy 2021, 46 (1) , 31-40. https://doi.org/10.1016/j.ijhydene.2020.09.255
  47. Arumugam Sivanantham, Hansung Lee, Sung Won Hwang, Byungmin Ahn, In Sun Cho. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH. Journal of Materials Chemistry A 2021, 8 https://doi.org/10.1039/D1TA02621F
  48. Isilda Amorim, Junyuan Xu, Nan Zhang, Dehua Xiong, Sitaramanjaneya M. Thalluri, Rajesh Thomas, Juliana P.S. Sousa, Ana Araújo, Hong Li, Lifeng Liu. Bi-metallic cobalt-nickel phosphide nanowires for electrocatalysis of the oxygen and hydrogen evolution reactions. Catalysis Today 2020, 358 , 196-202. https://doi.org/10.1016/j.cattod.2019.05.037
  49. Zehao Zhang, Chenbo Li, Haoran Huang, Jiefei Li, Xueqiong Zhang, Zhenyu Li, Hang Wei, Haibin Chu. High-density nickel phosphide nanoparticles loaded reduced graphene oxide on nickel foam for enhanced alkaline and neutral water splitting. Electrochimica Acta 2020, 362 , 137172. https://doi.org/10.1016/j.electacta.2020.137172
  50. J. Peng, W. Dong, Z. Wang, Y. Meng, W. Liu, P. Song, Z. Liu. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Materials Today Advances 2020, 8 , 100081. https://doi.org/10.1016/j.mtadv.2020.100081
  51. Longsheng Zhang, Haiyang Yuan, Liping Wang, Hui Zhang, Yijing Zang, Yao Tian, Yunzhou Wen, Fenglou Ni, Hao Song, Haifeng Wang, Bo Zhang, Huisheng Peng. The critical role of electrochemically activated adsorbates in neutral OER. Science China Materials 2020, 63 (12) , 2509-2516. https://doi.org/10.1007/s40843-020-1390-6
  52. Zonghua Pu, Tingting Liu, Ibrahim Saana Amiinu, Ruilin Cheng, Pengyan Wang, Chengtian Zhang, Pengxia Ji, Weihua Hu, Jian Liu, Shichun Mu. Transition‐Metal Phosphides: Activity Origin, Energy‐Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials 2020, 30 (45) , 2004009. https://doi.org/10.1002/adfm.202004009
  53. Jan Niklas Hausmann, Stefan Mebs, Konstantin Laun, Ingo Zebger, Holger Dau, Prashanth W. Menezes, Matthias Driess. Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy & Environmental Science 2020, 13 (10) , 3607-3619. https://doi.org/10.1039/D0EE01912G
  54. Wanpeng Zhao, Chunlei Peng, Zhaoyu Kuang, Qingming Zhang, Yi Xue, Zhaoxia Li, Xiaoxia Zhou, Hangrong Chen. Na+-induced in situ reconstitution of metal phosphate enabling efficient electrochemical water oxidation in neutral and alkaline media. Chemical Engineering Journal 2020, 398 , 125537. https://doi.org/10.1016/j.cej.2020.125537
  55. Binbin Jiang, Xing Fan, Qian Dang, Fan Liao, Youyong Li, Haiping Lin, Zhenhui Kang, Mingwang Shao. Functionalization of metal oxides with thiocyanate groups: A general strategy for boosting oxygen evolution reaction in neutral media. Nano Energy 2020, 76 , 105079. https://doi.org/10.1016/j.nanoen.2020.105079
  56. Yi Man, Firdoz Shaik, Bin Jiang, Jianbin Zheng. An Iron-Group Metal Boride/Boron-Doped Vertically Oriented Graphene as Efficient Catalyst for Overall Water Splitting in a Wide pH Range. Journal of The Electrochemical Society 2020, 167 (12) , 122513. https://doi.org/10.1149/1945-7111/abb3da
  57. Byeongyoon Kim, Taekyung Kim, Kwangyeol Lee, Jinghong Li. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem 2020, 7 (17) , 3578-3589. https://doi.org/10.1002/celc.202000734
  58. Longsheng Zhang, Liping Wang, Yunzhou Wen, Fenglou Ni, Bo Zhang, Huisheng Peng. Boosting Neutral Water Oxidation through Surface Oxygen Modulation. Advanced Materials 2020, 32 (31) , 2002297. https://doi.org/10.1002/adma.202002297
  59. Youkui Zhang, Li Song. Structural Designs and in‐situ X‐ray Characterizations of Metal Phosphides for Electrocatalysis. ChemCatChem 2020, 12 (14) , 3621-3638. https://doi.org/10.1002/cctc.202000233
  60. Liang Yan, Bing Zhang, Shangyou Wu, Jianlin Yu. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. Journal of Materials Chemistry A 2020, 8 (28) , 14234-14242. https://doi.org/10.1039/D0TA05189F
  61. Chun Yang, Wen-Jing Cai, Bin-Bin Yu, Hong Qiu, Meng-Li Li, Lian-Wen Zhu, Zheng Yan, Lei Hou, Yao-Yu Wang. Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal–organic frameworks. Catalysis Science & Technology 2020, 10 (12) , 3897-3903. https://doi.org/10.1039/D0CY00567C
  62. Jiapeng Hu, Xietao Yuan, Chonglong Wang, Xixi Shao, Baiyu Yang, Amir Abdul Razzaq, Xiaohui Zhao, Yuebin Lian, Zhao Deng, Muzi Chen, Yang Peng. Self‐Phosphorization of MOF‐Armored Microbes for Advanced Energy Storage. Small 2020, 16 (24) , 2000755. https://doi.org/10.1002/smll.202000755
  63. Sanha Jang, Kyeongmin Moon, Youchang Park, Sujung Park, Kang Hyun Park. Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts 2020, 10 (6) , 621. https://doi.org/10.3390/catal10060621
  64. Tianpei Zhou, Nan Zhang, Changzheng Wu, Yi Xie. Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy & Environmental Science 2020, 13 (4) , 1132-1153. https://doi.org/10.1039/C9EE03634B
  65. Da Li, Zhen Liu, Jirong Wang, Bingping Liu, Yingchao Qin, Wenrong Yang, Jingquan Liu. Hierarchical trimetallic sulfide FeCo2S4–NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting. Electrochimica Acta 2020, 340 , 135957. https://doi.org/10.1016/j.electacta.2020.135957
  66. Jing Li, Donghuan Wu, Arnav S. Malkani, Xiaoxia Chang, Mu‐Jeng Cheng, Bingjun Xu, Qi Lu. Hydroxide Is Not a Promoter of C 2+ Product Formation in the Electrochemical Reduction of CO on Copper. Angewandte Chemie 2020, 132 (11) , 4494-4499. https://doi.org/10.1002/ange.201912412
  67. Jing Li, Donghuan Wu, Arnav S. Malkani, Xiaoxia Chang, Mu‐Jeng Cheng, Bingjun Xu, Qi Lu. Hydroxide Is Not a Promoter of C 2+ Product Formation in the Electrochemical Reduction of CO on Copper. Angewandte Chemie International Edition 2020, 59 (11) , 4464-4469. https://doi.org/10.1002/anie.201912412
  68. Ning Wang, Zhen Cao, Xueli Zheng, Bo Zhang, Sergey M. Kozlov, Peining Chen, Chengqin Zou, Xiangbin Kong, Yunzhou Wen, Min Liu, Yansong Zhou, Cao Thang Dinh, Lirong Zheng, Huisheng Peng, Ying Zhao, Luigi Cavallo, Xiaodan Zhang, Edward H. Sargent. Hydration‐Effect‐Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials 2020, 32 (8) , 1906806. https://doi.org/10.1002/adma.201906806
  69. Sengeni Anantharaj, Vanchiappan Aravindan. Developments and Perspectives in 3d Transition‐Metal‐Based Electrocatalysts for Neutral and Near‐Neutral Water Electrolysis. Advanced Energy Materials 2020, 10 (1) , 1902666. https://doi.org/10.1002/aenm.201902666
  70. Zibin Liang, Wenyang Zhou, Song Gao, Ruo Zhao, Hao Zhang, Yanqun Tang, Jinqian Cheng, Tianjie Qiu, Bingjun Zhu, Chong Qu, Wenhan Guo, Qian Wang, Ruqiang Zou. Fabrication of Hollow CoP/TiO x Heterostructures for Enhanced Oxygen Evolution Reaction. Small 2020, 16 (2) , 1905075. https://doi.org/10.1002/smll.201905075
  71. Yujie Liu, Chenglong Luan, Juntao Yang, Yin Dong, Yao Wang, Congli Qin, Zhun Dong, Shiqing Wang, Xiaoping Dai, Xin Zhang. In situ fabrication of dynamic self-optimizing Ni 3 S 2 nanosheets as an efficient catalyst for the oxygen evolution reaction. Dalton Transactions 2020, 49 (1) , 70-78. https://doi.org/10.1039/C9DT03885J
  72. Xiaoteng Ding, Wei Cui, Xiaohua Zhu, Jianwei Zhang, Yusheng Niu. Intrinsic poorly-crystallized Fe 5 O 7 (OH)·4H 2 O: a highly efficient oxygen evolution reaction electrocatalyst under alkaline conditions. RSC Advances 2019, 9 (72) , 42470-42473. https://doi.org/10.1039/C9RA06374A
  73. Xingyu Ding, Weiwei Li, Haipeng Kuang, Mei Qu, Meiyan Cui, Chenhao Zhao, Dong-Chen Qi, Freddy E. Oropeza, Kelvin H. L. Zhang. An Fe stabilized metallic phase of NiS 2 for the highly efficient oxygen evolution reaction. Nanoscale 2019, 11 (48) , 23217-23225. https://doi.org/10.1039/C9NR07832K
  74. Ting Xiong, Ziyu Tan, Yan Mi, Qin Huang, Yan Tan, Xianhong Yin, Feilong Hu. On-site generated metal organic framework-deriving core/shell ZnCo 2 O 4 /ZnO nanoarray for better water oxidation. Nanotechnology 2019, 30 (49) , 495405. https://doi.org/10.1088/1361-6528/ab3e1d
  75. Shan Zhang, Fan Lv, Xiaoyan Zhang, Yelong Zhang, Haishuang Zhu, Huanhuan Xing, Zijie Mu, Jing Li, Shaojun Guo, Erkang Wang. [email protected] (M=Ni or Co) [email protected] nanocrystals with high mass activity for overall water-splitting catalysis. Science China Materials 2019, 62 (12) , 1868-1876. https://doi.org/10.1007/s40843-019-9463-8
  76. Shengjue Deng, Yanbin Shen, Dong Xie, Yangfan Lu, Xiaolong Yu, Liang Yang, Xiuli Wang, Xinhui Xia, Jiangping Tu. Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. Journal of Energy Chemistry 2019, 39 , 61-67. https://doi.org/10.1016/j.jechem.2019.01.014
  77. Juanjuan Huo, Yali Chen, Yan Liu, Jiaojiao Guo, Li Lu, Wenxian Li, Yong Wang, Hao Liu. Bifunctional iron nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustainable Materials and Technologies 2019, 22 , e00117. https://doi.org/10.1016/j.susmat.2019.e00117
  78. Christoph P. Guntlin, Kostiantyn V. Kravchyk, Rolf Erni, Maksym V. Kovalenko. Transition metal trifluoroacetates (M = Fe, Co, Mn) as precursors for uniform colloidal metal difluoride and phosphide nanoparticles. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-43018-8
  79. Jianwen Huang, Yaoyao Li, Yadong Zhang, Gaofeng Rao, Chunyang Wu, Yin Hu, Xianfu Wang, Ruifeng Lu, Yanrong Li, Jie Xiong. Identification of Key Reversible Intermediates in Self‐Reconstructed Nickel‐Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie 2019, 131 (48) , 17619-17625. https://doi.org/10.1002/ange.201910716
  80. Jianwen Huang, Yaoyao Li, Yadong Zhang, Gaofeng Rao, Chunyang Wu, Yin Hu, Xianfu Wang, Ruifeng Lu, Yanrong Li, Jie Xiong. Identification of Key Reversible Intermediates in Self‐Reconstructed Nickel‐Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie International Edition 2019, 58 (48) , 17458-17464. https://doi.org/10.1002/anie.201910716
  81. Lei Yan, Yanrong Ren, Xiaolong Zhang, Yulin Sun, Jiqiang Ning, Yijun Zhong, Botao Teng, Yong Hu. Electronic modulation of composite electrocatalysts derived from layered NiFeMn triple hydroxide nanosheets for boosted overall water splitting. Nanoscale 2019, 11 (43) , 20797-20808. https://doi.org/10.1039/C9NR07159H
  82. Qiuyan Jin, Bowen Ren, Jianpo Chen, Hao Cui, Chengxin Wang. A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery. Applied Catalysis B: Environmental 2019, 256 , 117887. https://doi.org/10.1016/j.apcatb.2019.117887
  83. Yaming Ma, Ke Wang, Dongyu Liu, Xuxiao Yang, Hu Wu, Chunhui Xiao, Shujiang Ding. Surface dual-oxidation induced metallic copper doping into NiFe electrodes for electrocatalytic water oxidation. Journal of Materials Chemistry A 2019, 7 (40) , 22889-22897. https://doi.org/10.1039/C9TA08797D
  84. Liang Yan, Bing Zhang, Junlu Zhu, Zhonggang Liu, Haiyan Zhang, Yunyong Li. Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting. Journal of Materials Chemistry A 2019, 7 (39) , 22453-22462. https://doi.org/10.1039/C9TA08812A
  85. Junfeng Xie, Xiaodong Zhang, Yi Xie. Preferential Microstructure Design of Two‐Dimensional Electrocatalysts for Boosted Oxygen Evolution Reaction. ChemCatChem 2019, 11 (19) , 4662-4670. https://doi.org/10.1002/cctc.201901088
  86. Xueyuan Wang, Yan Zhou, Yongxiao Tuo, Yan Lin, Youguo Yan, Chen Chen, Yanpeng Li, Jun Zhang. Synthesis and identifying the active site of [email protected] nano-composite for enhanced electrocatalytic oxygen evolution. Electrochimica Acta 2019, 320 , 134589. https://doi.org/10.1016/j.electacta.2019.134589
  87. Lechen Diao, Tao Yang, Biao Chen, Biao Zhang, Naiqin Zhao, Chunsheng Shi, Enzuo Liu, Liying Ma, Chunnian He. Electronic reconfiguration of Co 2 P induced by Cu doping enhancing oxygen reduction reaction activity in zinc–air batteries. Journal of Materials Chemistry A 2019, 7 (37) , 21232-21243. https://doi.org/10.1039/C9TA07652B
  88. Wanping Li, Gao Cheng, Ming Sun, Zhaoxuan Wu, Guanliang Liu, Dangsheng Su, Bang Lan, Shixin Mai, Liya Chen, Lin Yu. C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting. Nanoscale 2019, 11 (36) , 17084-17092. https://doi.org/10.1039/C9NR05061B
  89. Qing Zhu, Lingmin Yao, Rui Tong, Dong Liu, Kar Wei Ng, Hui Pan. Cobalt/titanium [email protected] carbon hybrids for enhanced electrocatalytic hydrogen evolution and supercapacitance. New Journal of Chemistry 2019, 43 (36) , 14518-14526. https://doi.org/10.1039/C9NJ03531A
  90. Yan Li, Junxiang Chen, Junheng Huang, Yang Hou, Lecheng Lei, Wanzhen Lin, Yaping Lian, Xiang Zhonghua, Huang-Hao Yang, Zhenhai Wen. Interfacial engineering of Ru–S–Sb/antimonene electrocatalysts for highly efficient electrolytic hydrogen generation in neutral electrolyte. Chemical Communications 2019, 55 (73) , 10884-10887. https://doi.org/10.1039/C9CC05522C
  91. Junchi Wu, Yuqiao Guo, Haifeng Liu, Jiyin Zhao, Haodong Zhou, Wangsheng Chu, Changzheng Wu. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Research 2019, 12 (9) , 2296-2301. https://doi.org/10.1007/s12274-019-2409-5
  92. Shaoyang Zhang, Guangwei She, Shengyang Li, Fangmu Qu, Lixuan Mu, Wensheng Shi. Enhancing the electrocatalytic activity of NiMoO4 through a post-phosphorization process for oxygen evolution reaction. Catalysis Communications 2019, 129 , 105725. https://doi.org/10.1016/j.catcom.2019.105725
  93. Tao Yang, Lang Pei, Shicheng Yan, Zhentao Yu, Tao Yu, Zhigang Zou. In situ formed oxy/hydroxide antennas accelerating the water dissociation kinetics on a [email protected] carbon core–shell assembly for hydrogen production in alkaline solution. Dalton Transactions 2019, 48 (31) , 11927-11933. https://doi.org/10.1039/C9DT02301A
  94. Yaoyao Li, Xinchuan Du, Jianwen Huang, Chunyang Wu, Yinghui Sun, Guifu Zou, Chengtao Yang, Jie Xiong. Recent Progress on Surface Reconstruction of Earth‐Abundant Electrocatalysts for Water Oxidation. Small 2019, 15 (35) , 1901980. https://doi.org/10.1002/smll.201901980
  95. Lingyou Zeng, Kaian Sun, Yanju Chen, Zhi Liu, Yinjuan Chen, Yuan Pan, Ruiyu Zhao, Yunqi Liu, Chenguang Liu. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. Journal of Materials Chemistry A 2019, 7 (28) , 16793-16802. https://doi.org/10.1039/C9TA05601G
  96. Shucong Zhang, Ting Xiong, Xiaofan Tang, Qiuyi Ma, Feilong Hu, Yan Mi. Engineering inner-porous cobalt phosphide nanowire based on controllable phosphating for efficient hydrogen evolution in both acidic and alkaline conditions. Applied Surface Science 2019, 481 , 1524-1531. https://doi.org/10.1016/j.apsusc.2019.03.250
  97. Liang Yan, Bing Zhang, Junlu Zhu, Shanzhi Zhao, Yunyong Li, Bao Zhang, Jianjun Jiang, Xiao Ji, Haiyan Zhang, Pei Kang Shen. Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. Journal of Materials Chemistry A 2019, 7 (23) , 14271-14279. https://doi.org/10.1039/C9TA03686E
  98. Shasha Zhu, Jinglei Lei, Lina Zhang, Lijuan Lu. Efficient electrocatalytic oxygen evolution by Fe3C nanosheets perpendicularly grown on 3D Ni foams. International Journal of Hydrogen Energy 2019, 44 (31) , 16507-16515. https://doi.org/10.1016/j.ijhydene.2019.04.214
  99. Liang Yan, Shanzhi Zhao, Yunyong Li, Bing Zhang, Junlu Zhu, Zhonggang Liu, Xingxing Yuan, Jianlin Yu, Haiyan Zhang, Pei Kang Shen. Hierarchical cobalt phosphide hollow nanoboxes as high performance bifunctional electrocatalysts for overall water splitting. Materials Today Energy 2019, 12 , 443-452. https://doi.org/10.1016/j.mtener.2019.04.007
  100. Luhong Fu, Xin Hu, Yunbo Li, Gongzhen Cheng, Wei Luo. IrW nanobranches as an advanced electrocatalyst for pH-universal overall water splitting. Nanoscale 2019, 11 (18) , 8898-8905. https://doi.org/10.1039/C9NR01690B
Load all citations