RETURN TO ISSUEPREVResearch ArticleNEXT

Capacitive and Oxidant Generating Properties of Black-Colored TiO2 Nanotube Array Fabricated by Electrochemical Self-Doping

View Author Information
School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University (SNU), Gwanak-gu, Daehak-dong, Seoul 151-742, Republic of Korea
*E-mail: [email protected]. Phone: +82-2-880-8941. Fax: +82-2-876-8911.
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 14, 7486–7491
Publication Date (Web):March 20, 2015
https://doi.org/10.1021/acsami.5b00123
Copyright © 2015 American Chemical Society
Article Views
2399
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Recently, black-colored TiO2 NTA (denoted as black TiO2 NTA) fabricated by self-doping of TiO2 NTA with the amorphous phase led to significant success as a visible-light-active photocatalyst. This enhanced photocatalytic activity is largely attributed to a higher charge carrier density as an effect of electrochemical self-doping resulting in a higher optical absorbance and lower transport resistance. Nevertheless, the potential of black TiO2 NTA for other electrochemical applications, such as a supercapacitor and an oxidant-generating anode, has not been fully investigated. Here, we report the capacitive and oxidant generating properties of black TiO2 NTA. The black TiO2 NTA exhibited significantly a high value for areal capacitance with a good rate capability and novel electrocatalytic activity in generating OHs and Cl2 compared to pristine TiO2 NTA with the anatase phase. This study suggests that the black TiO2 NTA be applied as a supercapacitor and an oxidant generating anode.

Supporting Information

ARTICLE SECTIONS
Jump To

The XRD patterns, XPS spectra and additional experimental results were included in Figures S1–S6 to demonstrate the electrochemical properties of the Black TiO2 NTA. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 69 publications.

  1. Xin Liu, Patricia Carvalho, Marit Norderhaug Getz, Truls Norby, Athanasios Chatzitakis. Black Anatase TiO2 Nanotubes with Tunable Orientation for High Performance Supercapacitors. The Journal of Physical Chemistry C 2019, 123 (36) , 21931-21940. https://doi.org/10.1021/acs.jpcc.9b05070
  2. Jonghun Lim, Yang Yang, Michael R. Hoffmann. Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO2 Nanotubes for the Removal of Organic Pollutants. Environmental Science & Technology 2019, 53 (12) , 6972-6980. https://doi.org/10.1021/acs.est.9b01449
  3. Reza Katal, Mojtaba Salehi, Mohammad Hossein Davood Abadi Farahani, Saeid Masudy-Panah, Say Leong Ong, Jiangyong Hu. Preparation of a New Type of Black TiO2 under a Vacuum Atmosphere for Sunlight Photocatalysis. ACS Applied Materials & Interfaces 2018, 10 (41) , 35316-35326. https://doi.org/10.1021/acsami.8b14680
  4. Jiye Kim, Changha Lee, Jeyong Yoon. Electrochemical Peroxodisulfate (PDS) Generation on a Self-Doped TiO2 Nanotube Array Electrode. Industrial & Engineering Chemistry Research 2018, 57 (33) , 11465-11471. https://doi.org/10.1021/acs.iecr.8b01208
  5. Felipe F. Hudari, Guilherme G. Bessegato, Flávio C. Bedatty Fernandes, Maria V. B. Zanoni, Paulo R. Bueno. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry 2018, 90 (12) , 7651-7658. https://doi.org/10.1021/acs.analchem.8b01501
  6. Min Seok Koo, Kangwoo Cho, Jeyong Yoon, and Wonyong Choi . Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environmental Science & Technology 2017, 51 (11) , 6590-6598. https://doi.org/10.1021/acs.est.7b00774
  7. Yang Yang and Michael R. Hoffmann . Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environmental Science & Technology 2016, 50 (21) , 11888-11894. https://doi.org/10.1021/acs.est.6b03540
  8. Chong Wang, Tianai Zhang, Lifeng Yin, Chengsheng Ni, JiuPai Ni, Li-An Hou. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti3+ self-doping TiO2 nanotube arrays anode. Chemosphere 2022, 286 , 131804. https://doi.org/10.1016/j.chemosphere.2021.131804
  9. Kunnambeth M. Thulasi, Sindhu Thalappan Manikkoth, Anjali Paravannoor, Shajesh Palantavida, Baiju Kizhakkekilikoodayil Vijayan. Supercapacitor electrodes based on modified titania nanotube arrays on flexible substrates. International Journal of Materials Research 2021, Article ASAP.
  10. Jun Chen, Jiangao Li, Ling Sun, Zhong Lin, Zhengguang Hu, Hongtao Zhang, Xiaoling Wu, Dongbo Zhang, Guoan Cheng, Ruiting Zheng. Tunable oxygen defect density and location for enhancement of energy storage. Journal of Energy Chemistry 2021, 59 , 736-747. https://doi.org/10.1016/j.jechem.2020.12.016
  11. Yue Liu, Di Pang, Luyao Wang, Haiou Song, Rumeng Liu, Shen Hu, Yuliang Shen, Aimin Li, Shupeng Zhang. Electrochemically reduced phytic acid-doped TiO2 nanotubes for the efficient electrochemical degradation of toxic pollutants. Journal of Hazardous Materials 2021, 414 , 125600. https://doi.org/10.1016/j.jhazmat.2021.125600
  12. Xingxin Liu, Xiaoyan Yu, Li Sha, Yuqian Wang, Zhuo Zhou, Shuting Zhang. The preparation of black titanium oxide nanoarray via coking fluorinated wastewater and application on coking wastewater treatment. Chemosphere 2021, 270 , 128609. https://doi.org/10.1016/j.chemosphere.2020.128609
  13. Teayoung Lee, Seongsoo Kim, Joon Young Choi, Changha Lee, Choonsoo Kim, Jeyong Yoon. Effects of chloride and other anions on electrochemical chlorine evolution over self-doped TiO2 nanotube array. Korean Journal of Chemical Engineering 2021, 38 (4) , 756-762. https://doi.org/10.1007/s11814-020-0738-4
  14. Teayoung Lee, Woonghee Lee, Seongsoo Kim, Changha Lee, Kangwoo Cho, Choonsoo Kim, Jeyong Yoon. High chlorine evolution performance of electrochemically reduced TiO 2 nanotube array coated with a thin RuO 2 layer by the self-synthetic method. RSC Advances 2021, 11 (20) , 12107-12116. https://doi.org/10.1039/D0RA09623G
  15. Di Pang, Yue Liu, Haiou Song, Duozhe Chen, Weiqing Zhu, Rumeng Liu, Hu Yang, Aimin Li, Shupeng Zhang. Trace Ti3+- and N-codoped TiO2 nanotube array anode for significantly enhanced electrocatalytic degradation of tetracycline and metronidazole. Chemical Engineering Journal 2021, 405 , 126982. https://doi.org/10.1016/j.cej.2020.126982
  16. Robert Brüninghoff, Ainoa Paradelo Rodríguez, Ronald P.H. Jong, Jacobus M. Sturm, Uwe Breuer, Caroline Lievens, Adriaan W. Jeremiasse, Guido Mul, Bastian Mei. Electrochemical preparation of defect-engineered titania: Bulk doping versus surface contamination. Applied Surface Science 2021, 539 , 148136. https://doi.org/10.1016/j.apsusc.2020.148136
  17. Roberto Giannuzzi, Tania Prontera, David M Tobaldi, Marco Pugliese, Luisa De Marco, Sonia Carallo, Giuseppe Gigli, Robert C Pullar, Vincenzo Maiorano. Pseudocapacitive behaviour in sol-gel derived electrochromic titania nanostructures. Nanotechnology 2021, 32 (4) , 045703. https://doi.org/10.1088/1361-6528/abbceb
  18. Junwei Hou, Tengze Xu, Yanbin Ning, Bingxuan Huang, Ye Yang, Qingyao Wang. Solvothermal preparation of Ti3+ self-doped TiO2-x nanotube arrays for enhanced photoelectrochemical performance. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 244 , 118896. https://doi.org/10.1016/j.saa.2020.118896
  19. Jingju Cai, Minghua Zhou, Xuedong Du, Xin Xu. Enhanced mechanism of 2,4-dichlorophenoxyacetic acid degradation by electrochemical activation of persulfate on Blue-TiO2 nanotubes anode. Separation and Purification Technology 2021, 254 , 117560. https://doi.org/10.1016/j.seppur.2020.117560
  20. Yijie Liu, Xianzhe Meng, Chao Li, Yifan Gong, Juan Wang, Jiang Bo. Electrochemical Degradation of Pharmaceuticals Using Ti/SnO 2 -Sb 2 O 5 -IrO 2 -RuO 2 Anode: Electrode Properties, Performance and Contributions of Diverse Reactive Species. Journal of The Electrochemical Society 2020, 167 (14) , 143503. https://doi.org/10.1149/1945-7111/abc30b
  21. Jaspal Singh, Shatrudhan Palsaniya, R.K. Soni. Mesoporous dark brown TiO2 spheres for pollutant removal and energy storage applications. Applied Surface Science 2020, 527 , 146796. https://doi.org/10.1016/j.apsusc.2020.146796
  22. Amir Ahmadi, Bernhard Vogler, Yang Deng, Tingting Wu. Removal of meropenem from environmental matrices by electrochemical oxidation using Co/Bi/TiO 2 nanotube electrodes. Environmental Science: Water Research & Technology 2020, 6 (8) , 2197-2208. https://doi.org/10.1039/D0EW00184H
  23. Xu Zifang, Jiang Yujie, Gui Can. Based on the Study on Preparation and Properties of Co(II) and La 3+ -Doped TiO 2 Electrochromic Film. Integrated Ferroelectrics 2020, 209 (1) , 58-67. https://doi.org/10.1080/10584587.2020.1728811
  24. Xiyue Zhang, Xiaoqing Liu, Yinxiang Zeng, Yexiang Tong, Xihong Lu. Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges. Small Methods 2020, 4 (6) , 1900823. https://doi.org/10.1002/smtd.201900823
  25. Guangqing Xu, Qiang Feng, Zhiwei Wang, Jun Lv, Jun Huang, Yong Li, Pengjie Zhang, Yucheng Wu. Structures and photoelectrochemical performances of reduced TiO2 NTAs obtained by hydrogen thermal and electrochemical reduction methods. Journal of Solid State Electrochemistry 2020, 24 (2) , 365-374. https://doi.org/10.1007/s10008-019-04358-7
  26. Seong Eun Heo, Hyun Woo Lim, Deok Ki Cho, Ik Jae Park, Hyunki Kim, Chan Woo Lee, Sang Hyun Ahn, Jin Young Kim. Anomalous potential dependence of conducting property in black titania nanotube arrays for electrocatalytic chlorine evolution. Journal of Catalysis 2020, 381 , 462-467. https://doi.org/10.1016/j.jcat.2019.11.030
  27. Cheng Zhang, Shuang Tian, Chuanmeng Xu, Liyi Li, Jian Zhou, Feng Xue. Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method. Journal of Materials Science: Materials in Electronics 2019, 30 (23) , 20892-20898. https://doi.org/10.1007/s10854-019-02458-8
  28. Kunnambeth M. Thulasi, Sindhu Thalappan Manikkoth, Anjali Paravannoor, Shajesh Palantavida, Margandan Bhagiyalakshmi, Baiju Kizhakkekilikoodayil Vijayan. Ceria deposited titania nanotubes for high performance supercapacitors. Journal of Physics and Chemistry of Solids 2019, 135 , 109111. https://doi.org/10.1016/j.jpcs.2019.109111
  29. Farah Naeem, Sumayyah Naeem, Yuting Zhao, Dingrun Wang, Jing Zhang, YongFeng Mei, Gaoshan Huang. TiO2 Nanomembranes Fabricated by Atomic Layer Deposition for Supercapacitor Electrode with Enhanced Capacitance. Nanoscale Research Letters 2019, 14 (1) https://doi.org/10.1186/s11671-019-2912-3
  30. Sung Pil Hong, Seonghwan Kim, Nayeong Kim, Jeyong Yoon, Choonsoo Kim. A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. Korean Journal of Chemical Engineering 2019, 36 (11) , 1753-1766. https://doi.org/10.1007/s11814-019-0365-0
  31. Jingju Cai, Minghua Zhou, Yuwei Pan, Xuedong Du, Xiaoye Lu. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode. Applied Catalysis B: Environmental 2019, 257 , 117902. https://doi.org/10.1016/j.apcatb.2019.117902
  32. Kangwoo Cho, Seonggeun Lee, Hyeonjeong Kim, Hyung-Eun Kim, Aseom Son, Eun-ju Kim, Mengkai Li, Zhimin Qiang, Seok Won Hong. Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays. Applied Catalysis B: Environmental 2019, 257 , 117910. https://doi.org/10.1016/j.apcatb.2019.117910
  33. Chenghao Mo, Huixian Wei, Tongjun Wang. Fabrication of a self‐doped TiO 2 nanotube array electrode for electrochemical degradation of methyl orange. Journal of the Chinese Chemical Society 2019, 66 (7) , 740-747. https://doi.org/10.1002/jccs.201800456
  34. Ling Gan, Yifan Wu, Haiou Song, Chang Lu, Shupeng Zhang, Aimin Li. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols. Chemosphere 2019, 226 , 329-339. https://doi.org/10.1016/j.chemosphere.2019.03.135
  35. Anuj Kumar Tomar, Gurmeet Singh, Raj Kishore Sharma. Charge storage characteristics of mesoporous strontium titanate perovskite aqueous as well as flexible solid-state supercapacitor cell. Journal of Power Sources 2019, 426 , 223-232. https://doi.org/10.1016/j.jpowsour.2019.04.049
  36. Guilherme G. Bessegato, Maria Valnice Boldrin Zanoni, Germano Tremiliosi-Filho, Cleber A. Lindino. Evidences of the Electrochemical Production of Sulfate Radicals at Cathodically Polarized TiO2 Nanotubes Electrodes. Electrocatalysis 2019, 10 (3) , 272-276. https://doi.org/10.1007/s12678-019-00525-6
  37. Xiaolan Kang, Sihang Liu, Zideng Dai, Yunping He, Xuezhi Song, Zhenquan Tan. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9 (2) , 191. https://doi.org/10.3390/catal9020191
  38. Lizhen Wu, Shikai Cao, Zongrong Ying, Wenqiang Huang, Dawei Xu, Xufei Zhu, Ye Song. Al-Doped TiO 2  Nanotube Arrays Achieved by Using Low Boiling AlCl 3 as a Dopant Source for Supercapacitors. Journal of The Electrochemical Society 2019, 166 (16) , A3889-A3895. https://doi.org/10.1149/2.0021916jes
  39. Cheng Zhang, Liyi Li, Chia-Chi Tuan, Jian Zhou, Feng Xue, Ching-Ping Wong. A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing. Journal of Materials Science: Materials in Electronics 2018, 29 (17) , 15130-15137. https://doi.org/10.1007/s10854-018-9654-3
  40. Kaidi Li, Fangfang Zhang, Huiming Wang, Yalan Zhou, Lixin Zhao, Jimin Du, Yating Gao, Weimin Wang, Dae Joon Kang. Highly Efficient Photocatalysts Based on Lamellar-Shaped Bi 2 S 3 Grown on TiO 2 Monolith. Nano 2018, 13 (09) , 1850110. https://doi.org/10.1142/S1793292018501102
  41. Guo Zhou, Haiyan Meng, Yan Cao, Xuejun Kou, Shuxiang Duan, Leilei Fan, Ming Xiao, Fangzhou Zhou, Zhenzi Li, Zipeng Xing. Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticles-decorated Ti3+ self-doped porous black TiO2 pillars. Journal of Industrial and Engineering Chemistry 2018, 64 , 188-193. https://doi.org/10.1016/j.jiec.2018.03.015
  42. Sanjay Gopal Ullattil, Soumya B. Narendranath, Suresh C. Pillai, Pradeepan Periyat. Black TiO2 Nanomaterials: A Review of Recent Advances. Chemical Engineering Journal 2018, 343 , 708-736. https://doi.org/10.1016/j.cej.2018.01.069
  43. Yan Shi, Zhuoxin Lu, Lili Guo, Zhida Wang, Changqing Guo, Hongyi Tan, Changfeng Yan. Fabrication of IrO 2 decorated vertical aligned self-doped TiO 2 nanotube arrays for oxygen evolution in water electrolysis. International Journal of Hydrogen Energy 2018, 43 (19) , 9133-9143. https://doi.org/10.1016/j.ijhydene.2018.03.214
  44. Wen-Xuan Zhang, Jun-Tao Cao, Yu-Ling Wang, Shu-Hui Ma, Yan-Ming Liu. Label-free Photoelectrochemical Aptasensor for the Determination of Carcinoembryonic Antigen Using a Cadmum Sulfide Quantum Dot Sensitized Titanium (IV) Oxide Nanotube Electrode. Analytical Letters 2018, 51 (6) , 820-833. https://doi.org/10.1080/00032719.2017.1360900
  45. Xiangdong Wang, Rong Fu, Qianqian Yin, Han Wu, Xiaoling Guo, Ruohan Xu, Qianyun Zhong. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity. Journal of Nanoparticle Research 2018, 20 (4) https://doi.org/10.1007/s11051-018-4188-4
  46. Naeimeh Sadat Peighambardoust, Shahin Khameneh Asl, Raheleh Mohammadpour, Shahab Khameneh Asl. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays. Electrochimica Acta 2018, 270 , 245-255. https://doi.org/10.1016/j.electacta.2018.03.091
  47. Maryam Salari, Seyed Hamed Aboutalebi, Iriny Ekladious, Rouhollah Jalili, Konstantin Konstantinov, Hua Kun Liu, Mark W. Grinstaff. Tubular TiO 2 Nanostructures: Toward Safer Microsupercapacitors. Advanced Materials Technologies 2018, 3 (2) , 1700194. https://doi.org/10.1002/admt.201700194
  48. Brian P. Chaplin. Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment. 2018,,, 451-494. https://doi.org/10.1016/B978-0-12-813160-2.00017-1
  49. Thomas Favet, Dris Ihiawakrim, Valérie Keller, Thomas Cottineau. Anions and cations distribution in M 5+ /N 3- co-alloyed TiO 2 nanotubular structures for photo-electrochemical water splitting. Materials Science in Semiconductor Processing 2018, 73 , 22-29. https://doi.org/10.1016/j.mssp.2017.05.018
  50. Yanzhao Zhang, Xiya Wang, Peimei Dong, Zhengfeng Huang, Xiaoxiao Nie, Xiwen Zhang. A green synthetic approach for self-doped TiO 2 with exposed highly reactive facets showing efficient CO 2 photoreduction under simulated solar light. Green Chemistry 2018, 20 (9) , 2084-2090. https://doi.org/10.1039/C7GC02963B
  51. Liyan Zhu, Hongchao Ma, Huibin Han, Yinghuan Fu, Chun Ma, Zhihui Yu, Xiaoli Dong. Black TiO 2 nanotube arrays fabricated by electrochemical self-doping and their photoelectrochemical performance. RSC Advances 2018, 8 (34) , 18992-19000. https://doi.org/10.1039/C8RA02983K
  52. C. Clement Raj, R. Prasanth. Review—Advent of TiO 2 Nanotubes as Supercapacitor Electrode. Journal of The Electrochemical Society 2018, 165 (9) , E345-E358. https://doi.org/10.1149/2.0561809jes
  53. Viet Hung Pham, Thuy-Duong Nguyen-Phan, Xiao Tong, Balasubramaniyan Rajagopalan, Jin Suk Chung, James H. Dickerson. Hydrogenated [email protected] graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 2018, 126 , 135-144. https://doi.org/10.1016/j.carbon.2017.10.026
  54. Zhuoyin Peng, Yueli Liu, Yinghan Zhao, Lida Liao, Jian Chen. Performance enhancement of quantum dot sensitized solar cells under TiO2 nanotube arrays membranes optimization. Electronic Materials Letters 2017, 13 (4) , 359-367. https://doi.org/10.1007/s13391-017-6219-1
  55. Jingnan Song, Maojun Zheng, Xiaoliang Yuan, Qiang Li, Faze Wang, Liguo Ma, Yuxiu You, Shaohua Liu, Pengjie Liu, Dongkai Jiang, Li Ma, Wenzhong Shen. Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. Journal of Materials Science 2017, 52 (12) , 6976-6986. https://doi.org/10.1007/s10853-017-0930-z
  56. S.C. Lau, H.N. Lim, T.B.S.A. Ravoof, M.H. Yaacob, D.M. Grant, R.C.I. MacKenzie, I. Harrison, N.M. Huang. A three-electrode integrated photo-supercapacitor utilizing graphene-based intermediate bifunctional electrode. Electrochimica Acta 2017, 238 , 178-184. https://doi.org/10.1016/j.electacta.2017.04.003
  57. Yan Liu, Zhe Li, Michael Green, Michael Just, Yang Yang Li, Xiaobo Chen. Titanium dioxide nanomaterials for photocatalysis. Journal of Physics D: Applied Physics 2017, 50 (19) , 193003. https://doi.org/10.1088/1361-6463/aa6500
  58. Guilherme Garcia Bessegato, Felipe Fantinato Hudari, Maria Valnice Boldrin Zanoni. Self-doped TiO2 nanotube electrodes: A powerful tool as a sensor platform for electroanalytical applications. Electrochimica Acta 2017, 235 , 527-533. https://doi.org/10.1016/j.electacta.2017.03.141
  59. Jianfang Zhang, Yan Wang, Jingjie Wu, Xia Shu, Cuiping Yu, Jiewu Cui, Yongqiang Qin, Yong Zhang, Pulickel M. Ajayan, Yucheng Wu. Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies. Chemical Engineering Journal 2017, 313 , 1071-1081. https://doi.org/10.1016/j.cej.2016.11.004
  60. Yan Liu, Lihong Tian, Xinyu Tan, Xin Li, Xiaobo Chen. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Science Bulletin 2017, 62 (6) , 431-441. https://doi.org/10.1016/j.scib.2017.01.034
  61. Aiqin Zhang, Feilong Gong, Yuanhua Xiao, Xingpeng Guo, Feng Li, Lizhen Wang, Yong Zhang, Linsen Zhang. Electrochemical Reductive Doping and Interfacial Impedance of TiO 2 Nanotube Arrays in Aqueous and Aprotic Solvents. Journal of The Electrochemical Society 2017, 164 (2) , H91-H96. https://doi.org/10.1149/2.1231702jes
  62. Choonsoo Kim, Seonggeun Lee, Seonghwan Kim, Jeyong Yoon. Effect of Annealing Temperature on the Capacitive and Oxidant-generating Properties of an Electrochemically Reduced TiO2 Nanotube Array. Electrochimica Acta 2016, 222 , 1578-1584. https://doi.org/10.1016/j.electacta.2016.11.143
  63. Choonsoo Kim, Jaehan Lee, Seonghwan Kim, Jeyong Yoon. Electrochemical softening using capacitive deionization (CDI) with zeolite modified carbon electrode (ZMCE). Desalination and Water Treatment 2016, 57 (51) , 24682-24687. https://doi.org/10.1080/19443994.2016.1152638
  64. Jungchan Kim, Youngbin Baek, Sung Pil Hong, Hongsik Yoon, Seonghwan Kim, Choonsoo Kim, Jiye Kim, Jeyong Yoon. Evaluation of thin-film nanocomposite RO membranes using TiO 2 nanotubes and TiO 2 nanoparticles: a comparative study. Desalination and Water Treatment 2016, 57 (51) , 24674-24681. https://doi.org/10.1080/19443994.2016.1152642
  65. Xiangye Liu, Guilian Zhu, Xin Wang, Xiaotao Yuan, Tianquan Lin, Fuqiang Huang. Progress in Black Titania: A New Material for Advanced Photocatalysis. Advanced Energy Materials 2016, 6 (17) , 1600452. https://doi.org/10.1002/aenm.201600452
  66. Ranjith Vellacheri, Huaping Zhao, Mike Mühlstädt, Jie Ming, Ahmed Al-Haddad, Minghong Wu, Klaus D. Jandt, Yong Lei. All-Solid-State Cable-Type Supercapacitors with Ultrahigh Rate Capability. Advanced Materials Technologies 2016, 1 (1) , 1600012. https://doi.org/10.1002/admt.201600012
  67. J.L. Qiao, Q.Y. Wang, J.X. Ye, Y.K. Xiao. Enhancing photoelectrochemical performance of TiO2 nanotube arrays by CdS and Bi2S3 co-sensitization. Journal of Photochemistry and Photobiology A: Chemistry 2016, 319-320 , 34-39. https://doi.org/10.1016/j.jphotochem.2015.12.020
  68. M. M. Momeni, I. Ahadzadeh. Copper photodeposition on titania nanotube arrays and study of their optical and photocatalytic properties. Materials Research Innovations 2016, 20 (1) , 44-50. https://doi.org/10.1080/14328917.2015.1113733
  69. Choonsoo Kim, Seonghwan Kim, Sung Pil Hong, Jaehan Lee, Jeyong Yoon. Effect of doping level of colored TiO 2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties. Physical Chemistry Chemical Physics 2016, 18 (21) , 14370-14375. https://doi.org/10.1039/C6CP01799A