RETURN TO ISSUEPREVResearch ArticleNEXT

Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts

View Author Information
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 13, 8536–8545
Publication Date (Web):March 17, 2016
https://doi.org/10.1021/acsami.6b00966
Copyright © 2016 American Chemical Society
Article Views
2672
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

The reduced TiO2-graphene oxide heterostructure as an alternative broad spectrum-driven efficient water splitting photocatalyst has become a really interesting topic, however, its syntheses has many flaws, e.g., tedious experimental steps, time-consuming, small scale production, and requirement of various additives, for example, hydrazine hydrate is widely used as reductant to the reduction of graphene oxide, which is high toxicity and easy to cause the second pollution. For these issues, herein, we reported the synthesis of the reduced TiO2-graphene oxide heterostructure by a facile chemical reduction agent-free one-step laser ablation in liquid (LAL) method, which achieves extended optical response range from ultraviolet to visible and composites TiO2–x (reduced TiO2) nanoparticle and graphene oxide for promoting charge conducting. 30.64% Ti3+ content in the reduced TiO2 nanoparticles induces the electronic reconstruction of TiO2, which results in 0.87 eV decrease of the band gap for the visible light absorption. TiO2–x-graphene oxide heterostructure achieved drastically increased photocatalytic H2 production rate, up to 23 times with respect to the blank experiment. Furthermore, a maximum H2 production rate was measured to be 16 mmol/h/g using Pt as a cocatalyst under the simulated sunlight irradiation (AM 1.5G, 135 mW/cm2), the quantum efficiencies were measured to be 5.15% for wavelength λ = 365 ± 10 nm and 1.84% for λ = 405 ± 10 nm, and overall solar energy conversion efficiency was measured to be 14.3%. These findings provided new insights into the broad applicability of this methodology for accessing fascinate photocatalysts.

Cited By


This article is cited by 103 publications.

  1. Yinghao Wen, Mingbao Feng, Peng Zhang, Hong-Chai Zhou, Virender K. Sharma, Xingmao Ma. Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering 2021, 1 (5) , 804-826. https://doi.org/10.1021/acsestengg.1c00051
  2. Maodi Wang, Xiaomin Ren, Miao Guo, Jiali Liu, He Li, Qihua Yang. Chemoselective NADH Regeneration: the Synergy Effect of TiOx and Pt in NAD+ Hydrogenation. ACS Sustainable Chemistry & Engineering 2021, 9 (18) , 6499-6506. https://doi.org/10.1021/acssuschemeng.1c02188
  3. Jianqiang Luo, Zhijian Wang, Hongxia Jiang, Shujuan Liu, Feng-Qiang Xiong, Jianguo Ma. Localized Building Titania–Graphene Charge Transfer Interfaces for Enhanced Photocatalytic Performance. Langmuir 2020, 36 (17) , 4637-4644. https://doi.org/10.1021/acs.langmuir.0c00297
  4. Tongming Su, Zachary D. Hood, Michael Naguib, Lei Bai, Si Luo, Christopher M. Rouleau, Ilia N. Ivanov, Hongbing Ji, Zuzeng Qin, Zili Wu. Monolayer Ti3C2Tx as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO2. ACS Applied Energy Materials 2019, 2 (7) , 4640-4651. https://doi.org/10.1021/acsaem.8b02268
  5. Zhirun Xie, Hui Ling Tan, Xiaoming Wen, Yoshitaka Suzuki, Akihide Iwase, Akihiko Kudo, Rose Amal, Jason Scott, Yun Hau Ng. The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Interfaces 2019, 11 (26) , 23125-23134. https://doi.org/10.1021/acsami.9b03624
  6. Ossama Elbanna, Mamoru Fujitsuka, Sooyeon Kim, Tetsuro Majima. Charge Carrier Dynamics in TiO2 Mesocrystals with Oxygen Vacancies for Photocatalytic Hydrogen Generation under Solar Light Irradiation. The Journal of Physical Chemistry C 2018, 122 (27) , 15163-15170. https://doi.org/10.1021/acs.jpcc.8b04026
  7. Zhaofu Zhang, Qingkai Qian, Baikui Li, Kevin J. Chen. Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment. ACS Applied Materials & Interfaces 2018, 10 (20) , 17419-17426. https://doi.org/10.1021/acsami.8b01286
  8. Song Ling Wang, Jing Li, Shijie Wang, Ji’en Wu, Ten It Wong, Maw Lin Foo, Wei Chen, Kai Wu, and Guo Qin Xu . Two-Dimensional C/TiO2 Heterogeneous Hybrid for Noble-Metal-Free Hydrogen Evolution. ACS Catalysis 2017, 7 (10) , 6892-6900. https://doi.org/10.1021/acscatal.7b02331
  9. Dongshi Zhang, Bilal Gökce, and Stephan Barcikowski . Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chemical Reviews 2017, 117 (5) , 3990-4103. https://doi.org/10.1021/acs.chemrev.6b00468
  10. Hsin Liang Chen, Chia-Jui Li, Chien-Jung Peng, Hoang-Jyh Leu, and Wei-Hsuan Hung . Plasmon-Induced Hot Electrons on Mesoporous Carbon for Decomposition of Organic Pollutants under Outdoor Sunlight Irradiation. ACS Applied Materials & Interfaces 2017, 9 (1) , 327-334. https://doi.org/10.1021/acsami.6b11360
  11. Rika Tri Yunarti, Tatya Najla Safitri, Lizbeth Cantik Christina Dimonti, Ghufran Aulia, Munawar Khalil, Muhammad Ridwan. Facile synthesis of composite between titania nanoparticles with highly exposed (001) facet and coconut shell-derived graphene oxide for photodegradation of methylene blue. Journal of Physics and Chemistry of Solids 2022, 160 , 110357. https://doi.org/10.1016/j.jpcs.2021.110357
  12. Kommula Bramhaiah, Santanu Bhattacharyya. Challenges and future prospects of graphene-based hybrids for solar fuel generation: moving towards next generation photocatalysts. Materials Advances 2022, 41 https://doi.org/10.1039/D1MA00748C
  13. Lili Zhao, Zhen Liu, Duo Chen, Fan Liu, Zhiyuan Yang, Xiao Li, Haohai Yu, Hong Liu, Weijia Zhou. Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. Nano-Micro Letters 2021, 13 (1) https://doi.org/10.1007/s40820-020-00577-0
  14. Thanh-Lieu T. Le, Thanh-Hiep T. Le, Kim Nguyen Van, Hao Van Bui, Truong Giang Le, Vien Vo. Controlled growth of TiO2 nanoparticles on graphene by hydrothermal method for visible-light photocatalysis. Journal of Science: Advanced Materials and Devices 2021, 6 (4) , 516-527. https://doi.org/10.1016/j.jsamd.2021.07.003
  15. Jian Zhang, Dezhi Zhu, Jianfeng Yan, Chang-An Wang. Strong metal-support interactions induced by an ultrafast laser. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27000-5
  16. Muhammad Bilal Tahir, Tasmia Nawaz, Ghulam Nabi, M. Sagir, M. Aamir Shehzad, Aqsa Yasmin, Sajjad Hussain, M. Pervaiz Bhatti, Adeel Ahmed, S. S. A. Gilani. Recent advances on photocatalytic nanomaterials for hydrogen energy evolution in sustainable environment. International Journal of Environmental Analytical Chemistry 2021, 101 (14) , 2016-2034. https://doi.org/10.1080/03067319.2019.1691188
  17. Andrew T. Smith, Xiaolong Liu, Hao Ding, Songshan Zeng, Brandon L. Williams, Anna Marie Lachance, Chanhyun Park, Philip A. Gitman, Akhil Kokkula, Xueni Huang, Steven L. Suib, Huidan Zeng, Ting Tan, Luyi Sun. Tailoring Defects in Photocatalysts by Engineering Solvent Interactions for Highly Active and Responsive Color Switching. Advanced Optical Materials 2021, 9 (20) , 2101115. https://doi.org/10.1002/adom.202101115
  18. Thammanoon Thaweechai, Weekit Sirisaksoontorn, Yingyot Poo-arporn, Narong Chanlek, Supapan Seraphin, Surachai Thachepan, Rungtiva P. Poo-arporn, Songwut Suramitr. Transparent graphene quantum dot/amorphous TiO2 nanocomposite sol as homogeneous-like photocatalyst. Journal of Nanoparticle Research 2021, 23 (10) https://doi.org/10.1007/s11051-021-05338-7
  19. Zahra Shokri Aghbolagh, Mohammad Saim Rahmatyan, Mohammad Reza Khanmohammadi Khorrami. Catalytic degradation of methyl red using PZnW 11 / m‐Go as a high‐performance photocatalyst. Environmental Progress & Sustainable Energy 2021, 40 (5) https://doi.org/10.1002/ep.13657
  20. Zhimin Dong, Zhibin Zhang, Zifan Li, Yue Feng, Wenjie Dong, Ting Wang, Zhongping Cheng, Youqun Wang, Ying Dai, Xiaohong Cao, Yuhui Liu, Yunhai Liu. 3D structure aerogels constructed by reduced graphene oxide and hollow TiO 2 spheres for efficient visible-light-driven photoreduction of U( vi ) in air-equilibrated wastewater. Environmental Science: Nano 2021, 8 (8) , 2372-2385. https://doi.org/10.1039/D1EN00217A
  21. Y.B. Wu, C. He, F.S. Han, W.X. Zhang. Construction of an arsenene/g-C3N4 hybrid heterostructure towards enhancing photocatalytic activity of overall water splitting: A first-principles study. Journal of Solid State Chemistry 2021, 299 , 122138. https://doi.org/10.1016/j.jssc.2021.122138
  22. Bharati Debnath, Suman Dhingra, C. M. Nagaraja. Recent Developments in the Design of Cd x Zn 1− x S‐Based Photocatalysts for Sustainable Production of Hydrogen. Solar RRL 2021, 5 (7) , 2100226. https://doi.org/10.1002/solr.202100226
  23. Yalin Lan, Meng Yu, Dongqing He, Yanming Wang, Qing Bo Meng, Hongwei Huang, Yu Zhang, Tianyi Ma, Xi-Ming Song. Pickering emulsion-embedded hierarchical solid-liquid hydrogel spheres for static and flow photocatalysis. Journal of Colloid and Interface Science 2021, 589 , 587-596. https://doi.org/10.1016/j.jcis.2021.01.020
  24. Zongpeng Wang, Zhiping Lin, Shijie Shen, Wenwu Zhong, Shaowen Cao. Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis 2021, 42 (5) , 710-730. https://doi.org/10.1016/S1872-2067(20)63698-1
  25. Shaoming Yang, Kaiqiang Deng, Jian Zhang, Chaopeng Bai, Jiaxi Peng, Zhili Fang, Wenyuan Xu. Synergy effect of Ag plasmonic resonance and heterostructure construction enhanced visible-light photoelectrochemical sensing for quercetin. Electrochimica Acta 2021, 371 , 137772. https://doi.org/10.1016/j.electacta.2021.137772
  26. Yang Chen, Guobing Mao, Yawen Tang, Heng Wu, Gang Wang, Li Zhang, Qi Liu. Synthesis of core-shell nanostructured Cr2O3/[email protected] for photocatalytic hydrogen production. Chinese Journal of Catalysis 2021, 42 (1) , 225-234. https://doi.org/10.1016/S1872-2067(20)63615-4
  27. Kejian Lu, Fangyong Hou, Wenlong Fu, Fei Xue, Maochang Liu. Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions. Physical Chemistry Chemical Physics 2021, 110 https://doi.org/10.1039/D1CP02356J
  28. M. May-Lozano, R. Lopez-Medina, V. Mendoza Escamilla, G. Rivadeneyra-Romero, A. Alonzo-Garcia, M. Morales-Mora, M.O. González-Díaz, S.A. Martinez-Degadillo. Intensification of the Orange II and Black 5 degradation by sonophotocatalysis using Ag-graphene oxide/TiO2 systems. Chemical Engineering and Processing - Process Intensification 2020, 158 , 108175. https://doi.org/10.1016/j.cep.2020.108175
  29. Ewelina Kusiak-Nejman, Agnieszka Wanag, Joanna Kapica- Kozar, Łukasz Kowalczyk, Michał Zgrzebnicki, Beata Tryba, Jacek Przepiórski, Antoni W. Morawski. Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catalysis Today 2020, 357 , 630-637. https://doi.org/10.1016/j.cattod.2019.04.078
  30. Liming Sun, Xiaoxiao He, Yusheng Yuan, Jinquan Chen, Wenwen Zhan, Xiao-Jun Wang, Yanli Zhao, Xiguang Han. Tuning interfacial sequence between nitrogen-doped carbon layer and Au nanoparticles on metal-organic framework-derived TiO2 to enhance photocatalytic hydrogen production. Chemical Engineering Journal 2020, 397 , 125468. https://doi.org/10.1016/j.cej.2020.125468
  31. Mohamad Fakhrul Ridhwan Samsudin, Suriati Sufian. Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics. Journal of Molecular Liquids 2020, 314 , 113530. https://doi.org/10.1016/j.molliq.2020.113530
  32. N.T. Padmanabhan, P. Ganguly, S.C. Pillai, H. John. Morphology engineered spatial charge separation in superhydrophilic TiO2/graphene hybrids for hydrogen production. Materials Today Energy 2020, 17 , 100447. https://doi.org/10.1016/j.mtener.2020.100447
  33. Abniel Machín, Juan C. Arango, Kenneth Fontánez, María Cotto, José Duconge, Loraine Soto-Vázquez, Edgar Resto, Florian Ion Tiberiu Petrescu, Carmen Morant, Francisco Márquez. Biomimetic Catalysts Based on [email protected]–Graphene Composites for the Generation of Hydrogen by Water Splitting. Biomimetics 2020, 5 (3) , 39. https://doi.org/10.3390/biomimetics5030039
  34. Wenwen Liu, Matthew Li, Gaopeng Jiang, Gaoran Li, Jianbing Zhu, Meiling Xiao, Yanfei Zhu, Rui Gao, Aiping Yu, Ming Feng, Zhongwei Chen. Graphene Quantum Dots‐Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials 2020, 10 (29) , 2001275. https://doi.org/10.1002/aenm.202001275
  35. Jiahao Yan, Xinyue Liu, Churong Ma, Yingcong Huang, Guowei Yang. All-dielectric materials and related nanophotonic applications. Materials Science and Engineering: R: Reports 2020, 141 , 100563. https://doi.org/10.1016/j.mser.2020.100563
  36. Fawad Khan, M. Idrees, C. Nguyen, Iftikhar Ahmad, Bin Amin. A first-principles study of electronic structure and photocatalytic performance of GaN–MX 2 (M = Mo, W; X= S, Se) van der Waals heterostructures. RSC Advances 2020, 10 (41) , 24683-24690. https://doi.org/10.1039/D0RA04082G
  37. Tao E, Zengying Ma, Shuyi Yang, Ying Li, Dan Ma, Zhenqiang Xing, Yun Li. Enhanced electrical conductivity of TiO2/graphene: The role of introducing Ca2+. Journal of Alloys and Compounds 2020, 827 , 154280. https://doi.org/10.1016/j.jallcom.2020.154280
  38. Mahdi Shahrezaei, Seyyed Mohammad Hossein Hejazi, Yalavarthi Rambabu, Miroslav Vavrecka, Aristides Bakandritsos, Selda Oezkan, Radek Zboril, Patrik Schmuki, Alberto Naldoni, Stepan Kment. Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. Catalysts 2020, 10 (6) , 717. https://doi.org/10.3390/catal10060717
  39. Huan Wang, Yuanyuan Wang, Fangbao Fu, Yong Qian, Yonghao Xiao, Dongjie Yang, Xueqing Qiu. Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application. International Journal of Biological Macromolecules 2020, 150 , 371-379. https://doi.org/10.1016/j.ijbiomac.2019.12.185
  40. Robabeh Bashiri, Mohamad Fakhrul Ridhwan Samsudin, Norani Muti Mohamed, Nur Amirah Suhaimi, Liew Yi Ling, Suriati Sufian, Chong Fai Kait. Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell. Applied Surface Science 2020, 510 , 145482. https://doi.org/10.1016/j.apsusc.2020.145482
  41. Uruniyengal Rajeena, Mohammed Akbar, Poovanthinthodiyil Raveendran, Resmi M. Ramakrishnan. Graphene reduction of P25 titania: Ti3+- doped titania/graphene nanohybrids for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2020, 45 (16) , 9564-9574. https://doi.org/10.1016/j.ijhydene.2020.01.184
  42. Andrew T. Smith, Hao Ding, Alicia Gorski, Monica Zhang, Philip A. Gitman, Chanhyun Park, Zirui Hao, Yejia Jiang, Brandon L. Williams, Songshan Zeng, Akhil Kokkula, Qingkai Yu, Guqiao Ding, Huidan Zeng, Luyi Sun. Multi-color Reversible Photochromisms via Tunable Light-Dependent Responses. Matter 2020, 2 (3) , 680-696. https://doi.org/10.1016/j.matt.2019.12.006
  43. Feng Zhang, Guang Feng, Mengyun Hu, Yanwei Huang, Heping Zeng. Liquid-Plasma Hydrogenated Synthesis of Gray Titania with Engineered Surface Defects and Superior Photocatalytic Activity. Nanomaterials 2020, 10 (2) , 342. https://doi.org/10.3390/nano10020342
  44. Juhui Zhang, Chao Xing, Feng Shi. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation. International Journal of Hydrogen Energy 2020, 45 (11) , 6291-6301. https://doi.org/10.1016/j.ijhydene.2019.12.109
  45. Jiraporn Payormhorm, Raphael Idem. Synthesis of C-doped TiO2 by sol-microwave method for photocatalytic conversion of glycerol to value-added chemicals under visible light. Applied Catalysis A: General 2020, 590 , 117362. https://doi.org/10.1016/j.apcata.2019.117362
  46. Sandip Ghosh, Wen Cheng Chiang, Muhammad Yusuf Fakhri, Chien Ting Wu, Ruei San Chen, Surojit Chattopadhyay. Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upconversion nanoparticle nanocomposite. Nano Energy 2020, 67 , 104258. https://doi.org/10.1016/j.nanoen.2019.104258
  47. Sukon Phanichphant, Auppatham Nakaruk, Kantapat Chansaenpak, Duangdao Channei. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-52589-5
  48. Shubhangi R. Damkale, Sudhir S. Arbuj, Govind G. Umarji, Rajendra P. Panmand, Supriya K. Khore, Ravindra S. Sonawane, Sunit B. Rane, Bharat B. Kale. Two-dimensional hexagonal SnS 2 nanostructures for photocatalytic hydrogen generation and dye degradation. Sustainable Energy & Fuels 2019, 3 (12) , 3406-3414. https://doi.org/10.1039/C9SE00235A
  49. Yuanlv Mao, Yuqiang Fang, Jie Pan, Dong Wang, Kejun Bu, Xiangli Che, Wei Zhao, Fuqiang Huang. Synthesis, crystal structures and physical properties of A(H2O) MoS2 (A = K, Rb, Cs). Journal of Solid State Chemistry 2019, 279 , 120937. https://doi.org/10.1016/j.jssc.2019.120937
  50. Sven Reichenberger, Galina Marzun, Martin Muhler, Stephan Barcikowski. Perspective of Surfactant‐Free Colloidal Nanoparticles in Heterogeneous Catalysis. ChemCatChem 2019, 11 (18) , 4489-4518. https://doi.org/10.1002/cctc.201900666
  51. Xiaojun Hou, Kangze Hu, Huan Zhang, Zhang Tao, Mu Yang, Ge Wang. Construction of 2D [email protected] Graphene Oxide Nanocomposites with Enhanced Visible Light‐induced Fenton‐like Catalytic Performance by Seeded Growth Strategy. ChemCatChem 2019, 11 (17) , 4411-4419. https://doi.org/10.1002/cctc.201900760
  52. Wei Zhao, I-Wei Chen, Fuqiang Huang. Toward large-scale water treatment using nanomaterials. Nano Today 2019, 27 , 11-27. https://doi.org/10.1016/j.nantod.2019.05.003
  53. Muhammad Qamaruddin, Ibrahim Khan, Oluwole Olagoke Ajumobi, Saheed Adewale Ganiyu, Ahsanulhaq Qurashi. Sulfur doped ceria-titania (S-CeTiO4−x) nanocomposites for enhanced solar-driven water splitting. Solar Energy 2019, 188 , 890-897. https://doi.org/10.1016/j.solener.2019.05.058
  54. Chun Du, Bo Yan, Zhaoyong Lin, Guowei Yang. Cross-linked bond accelerated interfacial charge transfer in monolayer zinc indium sulfide (ZnIn 2 S 4 )/reduced graphene oxide (RGO) heterostructure for photocatalytic hydrogen production with mechanistic insight. Catalysis Science & Technology 2019, 9 (15) , 4066-4076. https://doi.org/10.1039/C9CY00841A
  55. Chun Du, Qian Zhang, Zhaoyong Lin, Bo Yan, Congxin Xia, Guowei Yang. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 2019, 248 , 193-201. https://doi.org/10.1016/j.apcatb.2019.02.027
  56. Rakesh Arul, Rakesh Arul, Rakesh Arul, Rakesh Arul, Reece N. Oosterbeek, B.P.P. Mallett, B.P.P. Mallett, B.P.P. Mallett, B.P.P. Mallett, M. Cather Simpson, M. Cather Simpson, M. Cather Simpson, M. Cather Simpson. Laser Direct‐Writing Graphene Oxide to Graphene—Mechanisms to Applications. 2019,,, 237-287. https://doi.org/10.1002/9781119468455.ch131
  57. Zhaoyong Lin, Chun Du, Bo Yan, Guowei Yang. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. Journal of Catalysis 2019, 372 , 299-310. https://doi.org/10.1016/j.jcat.2019.03.025
  58. Mohamed B. Zakaria, Haibo Tan, Jeonghun Kim, Ahmad Yacine Badjah, Mu Naushad, Mohamed Habila, Saikh Wabaidur, Zeid A. Alothman, Yusuke Yamauchi, Jianjian Lin. Structurally controlled layered Ni3C/graphene hybrids using cyano-bridged coordination polymers. Electrochemistry Communications 2019, 100 , 74-80. https://doi.org/10.1016/j.elecom.2019.01.004
  59. Sawanta S. Mali, Gwang Ryeol Park, Hyungjin Kim, Hyun Hoon Kim, Jyoti V. Patil, Chang Kook Hong. Synthesis of nanoporous Mo:BiVO 4 thin film photoanodes using the ultrasonic spray technique for visible-light water splitting. Nanoscale Advances 2019, 1 (2) , 799-806. https://doi.org/10.1039/C8NA00209F
  60. Di Zhang, Xu Zhang, Quan Sun, Shengliang Zheng, Juanyuan Hao, You Wang. Continuous Photocatalysis Based on Layer‐by‐Layer Assembly of Separation‐Free TiO 2 /Reduced Graphene Oxide Film Catalysts with Increased Charge Transfer and Active Site. European Journal of Inorganic Chemistry 2019, 2019 (5) , 721-729. https://doi.org/10.1002/ejic.201801282
  61. Shanchi Wang, Jingsheng Cai, Jiajun Mao, Shuhui Li, Jiali Shen, Shouwei Gao, Jianying Huang, Xiaoqin Wang, Ivan P. Parkin, Yuekun Lai. Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity. Applied Surface Science 2019, 467-468 , 45-55. https://doi.org/10.1016/j.apsusc.2018.10.138
  62. Sankeerthana Bellamkonda, Nithya Thangavel, Hafeez Yusuf Hafeez, B. Neppolian, G. Ranga Rao. Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting. Catalysis Today 2019, 321-322 , 120-127. https://doi.org/10.1016/j.cattod.2017.10.023
  63. Weiwei Mao, Haiping He, Zhizhen Ye, Jingyun Huang. Bio-inspired three-dimensional micro-nanoporous graphene for constructing Schottky junction and remarkably enhanced electrochemical detection. Sensors and Actuators B: Chemical 2019, 281 , 245-252. https://doi.org/10.1016/j.snb.2018.10.104
  64. Ananta G. Dhodamani, Krantiveer V. More, Valmiki B. Koli, Abhijeet R. Shelke, Nishad G. Deshpande, Dillip K. Panda, Sagar D. Delekar. Compositional Dependent Physicochemical and Photovoltaic Properties of the (TiO 2 ) 1-x (RGO) x Nanocomposites for Sensitized Solar Cells Using Ru(II) Dyes. ChemistrySelect 2019, 4 (3) , 1055-1068. https://doi.org/10.1002/slct.201803495
  65. M. Shamim Hossan, Bungo Ochiai. Detailed Study on Rapid Removal of Cationic Dyes Using TiO 2 -Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite. Journal of The Electrochemical Society 2019, 166 (9) , B3240-B3245. https://doi.org/10.1149/2.0381909jes
  66. M. Hossan, Bungo Ochiai. Preparation of TiO2-Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite for Selective Adsorption and Degradation of Dyes. Technologies 2018, 6 (4) , 92. https://doi.org/10.3390/technologies6040092
  67. Prasenjit Deb, J.C. Dhar. Enhanced Absorption and Photoemission from TiO2 Nanowire/Graphene Oxide Thin-Film Heterostructure. Journal of Electronic Materials 2018, 47 (10) , 6078-6085. https://doi.org/10.1007/s11664-018-6503-3
  68. Mahima Sharma, Kannikka Behl, Subhasha Nigam, Monika Joshi. TiO2-GO nanocomposite for photocatalysis and environmental applications: A green synthesis approach. Vacuum 2018, 156 , 434-439. https://doi.org/10.1016/j.vacuum.2018.08.009
  69. Jiajie Xu, Yanfeng Chen, Zhiyong Dong, Qiongke Wang, Yue Situ, Hong Huang. Facile synthesis of the Ti3+–TiO2–rGO compound with controllable visible light photocatalytic performance: GO regulating lattice defects. Journal of Materials Science 2018, 53 (18) , 12770-12780. https://doi.org/10.1007/s10853-018-2383-4
  70. Katarzyna Morawa Eblagon, Luisa M. Pastrana‐Martínez, Manuel F. R. Pereira, José L. Figueiredo. Cascade Conversion of Cellobiose to Gluconic Acid: The Large Impact of the Small Modification of Electronic Interaction on the Performance of Au/TiO 2 Bifunctional Catalysts. Energy Technology 2018, 6 (9) , 1675-1686. https://doi.org/10.1002/ente.201700837
  71. Guiming Peng, Ruian Du, Quanming Peng, Suqin Wu, Changlin Yu. A surfactant free method for rutile TiO2 microspheres-graphene oxide composite and its photocatalytic performance. Materials Chemistry and Physics 2018, 214 , 34-40. https://doi.org/10.1016/j.matchemphys.2018.04.092
  72. Yuhang Wang, Hongxia Yan, Qiuyu Zhang. Core shell-structured NiFe 2 O 4 @TiO 2 nanoparticle-anchored reduced graphene oxide for rapid degradation of rhodamine B. Journal of the Chinese Chemical Society 2018, 65 (7) , 868-874. https://doi.org/10.1002/jccs.201700458
  73. H.-Y. He, Z. He, Q. Shen. TiO 2 : Si nanotube/1T-MoSe 2 nanosheet hybrids with highly efficient hydrogen evolution catalytic activity. Journal of Colloid and Interface Science 2018, 522 , 136-143. https://doi.org/10.1016/j.jcis.2018.03.068
  74. Jiangbo Shi, Guiqiu Chen, Guangming Zeng, Anwei Chen, Kai He, Zhenzhen Huang, Liang Hu, Jingwen Zeng, Jing Wu, Weiwei Liu. Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceramics International 2018, 44 (7) , 7473-7480. https://doi.org/10.1016/j.ceramint.2018.01.124
  75. Guang Feng, Botao Wu, Abdul Qayyum Khan, Heping Zeng. In situ glow discharge plasma electrolytic synthesis of reduced TiO 2 for enhanced visible light photocatalysis. Materials Research Express 2018, 5 (5) , 055022. https://doi.org/10.1088/2053-1591/aac0d4
  76. Anil Kumar Reddy Police, Manvitha Chennaiahgari, Rajender Boddula, S.V. Prabhakar Vattikuti, Kotesh Kumar Mandari, Byon Chan. Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications. Materials Research Bulletin 2018, 98 , 314-321. https://doi.org/10.1016/j.materresbull.2017.10.034
  77. Bo Tang, Haiqun Chen, Haoping Peng, Zhengwei Wang, Weiqiu Huang. Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective. Nanomaterials 2018, 8 (2) , 105. https://doi.org/10.3390/nano8020105
  78. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. Preparation of Reduced TiO2–x for Photocatalysis. 2018,,, 75-105. https://doi.org/10.1007/978-981-13-2113-9_4
  79. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. Graphene-Modified TiO2 with Enhanced Visible Light Photocatalytic Activities. 2018,,, 107-131. https://doi.org/10.1007/978-981-13-2113-9_5
  80. Xinying Pan, Pan Yang, Hui Nan, Lijun Yang, Huiyuan Chen, Xiaochong Zhao. Preparation and enhanced visible-light photoelectrocatalytic activity of ternary TiO2ZnO/RGO nanocomposites. Electrochimica Acta 2018, 261 , 284-288. https://doi.org/10.1016/j.electacta.2017.12.143
  81. Jalal Azadmanjiri, Vijay K. Srivastava, Parshant Kumar, James Wang, Aimin Yu. Graphene-supported 2D transition metal oxide heterostructures. Journal of Materials Chemistry A 2018, 6 (28) , 13509-13537. https://doi.org/10.1039/C8TA03404D
  82. Peng Ran, Lan Jiang, Xin Li, Pei Zuo, Bo Li, Xiaojie Li, Xiaoyan Cheng, Jiatao Zhang, Yongfeng Lu. Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO–TiO 2−x photocatalysts under visible light. Journal of Materials Chemistry A 2018, 6 (34) , 16430-16438. https://doi.org/10.1039/C8TA04198A
  83. Wenyu Yuan, Laifei Cheng, Yani Zhang, Heng Wu, Shilin Lv, Liying Chai, Xiaohui Guo, Lianxi Zheng. 2D-Layered Carbon/TiO 2 Hybrids Derived from Ti 3 C 2 MXenes for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Advanced Materials Interfaces 2017, 4 (20) , 1700577. https://doi.org/10.1002/admi.201700577
  84. Wenzhang Fang, Mingyang Xing, Jinlong Zhang. Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2017, 32 , 21-39. https://doi.org/10.1016/j.jphotochemrev.2017.05.003
  85. Dongshi Zhang, Jun Liu, Pengfei Li, Zhenfei Tian, Changhao Liang. Recent Advances in Surfactant-Free, Surface-Charged, and Defect-Rich Catalysts Developed by Laser Ablation and Processing in Liquids. ChemNanoMat 2017, 3 (8) , 512-533. https://doi.org/10.1002/cnma.201700079
  86. H.-Y. He. Efficient hydrogen evolution activity of 1T-MoS 2 /Si-doped TiO 2 nanotube hybrids. International Journal of Hydrogen Energy 2017, 42 (32) , 20739-20748. https://doi.org/10.1016/j.ijhydene.2017.07.040
  87. Swapna Challagulla, Sounak Roy. The role of fuel to oxidizer ratio in solution combustion synthesis of TiO 2 and its influence on photocatalysis. Journal of Materials Research 2017, 32 (14) , 2764-2772. https://doi.org/10.1557/jmr.2017.244
  88. Dawei Sha, Jingjing Wang, Nanfei Ye, Yu Dai, Jie Ren, Ming Chen, Yanze Wu, Qiong Wang, Hua Tang, Xuehua Yan. A novel and efficient synthesis of reduced TiO 2 /C nanocomposites with mesopores for improved visible light photocatalytic performance. Materials Technology 2017, 32 (7) , 451-459. https://doi.org/10.1080/10667857.2016.1268328
  89. Muhammad Sohail, Haoliang Xue, Qingze Jiao, Hansheng Li, Khakemin Khan, Shanshan Wang, Yun Zhao. Synthesis of well-dispersed TiO 2 @reduced graphene oxide (rGO) nanocomposites and their photocatalytic properties. Materials Research Bulletin 2017, 90 , 125-130. https://doi.org/10.1016/j.materresbull.2017.02.025
  90. Tengfei Li, Tiecheng Wang, Guangzhou Qu, Dongli Liang, Shibin Hu. Synthesis and photocatalytic performance of reduced graphene oxide–TiO2 nanocomposites for orange II degradation under UV light irradiation. Environmental Science and Pollution Research 2017, 24 (13) , 12416-12425. https://doi.org/10.1007/s11356-017-8927-3
  91. Seyed Majid Hosseini, Hassan Hosseini-Monfared, Vahideh Abbasi. Silver ferrite-graphene nanocomposite and its good photocatalytic performance in air and visible light for organic dye removal. Applied Organometallic Chemistry 2017, 31 (4) , e3589. https://doi.org/10.1002/aoc.3589
  92. Mingzheng Ge, Jingsheng Cai, James Iocozzia, Chunyan Cao, Jianying Huang, Xinnan Zhang, Jiali Shen, Shanchi Wang, Songnan Zhang, Ke-Qin Zhang, Yuekun Lai, Zhiqun Lin. A review of TiO 2 nanostructured catalysts for sustainable H 2 generation. International Journal of Hydrogen Energy 2017, 42 (12) , 8418-8449. https://doi.org/10.1016/j.ijhydene.2016.12.052
  93. Elaheh Kowsari. Carbon-Based Nanocomposites for Visible Light-Induced Photocatalysis. 2017,,, 203-249. https://doi.org/10.1007/978-3-319-62446-4_8
  94. A. Aronne, M. Fantauzzi, C. Imparato, D. Atzei, L. De Stefano, G. D'Errico, F. Sannino, I. Rea, D. Pirozzi, B. Elsener, P. Pernice, A. Rossi. Electronic properties of TiO 2 -based materials characterized by high Ti 3+ self-doping and low recombination rate of electron–hole pairs. RSC Advances 2017, 7 (4) , 2373-2381. https://doi.org/10.1039/C6RA27111A
  95. Jindou Hu, Yali Cao, Kun Wang, Dianzeng Jia. Green solid-state synthesis and photocatalytic hydrogen production activity of anatase TiO 2 nanoplates with super heat-stability. RSC Advances 2017, 7 (20) , 11827-11833. https://doi.org/10.1039/C6RA27160J
  96. Zhaoyong Lin, Lihua Li, Lili Yu, Weijia Li, Guowei Yang. Modifying photocatalysts for solar hydrogen evolution based on the electron behavior. Journal of Materials Chemistry A 2017, 5 (11) , 5235-5259. https://doi.org/10.1039/C6TA10497E
  97. Yanhui Zhang, Rongying Dai, Shirong Hu. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO 2. Physical Chemistry Chemical Physics 2017, 19 (10) , 7307-7315. https://doi.org/10.1039/C7CP00630F
  98. Hai Yang, Liangyong Mei, Pengcheng Wang, Joseph Genereux, Yinsheng Wang, Bing Yi, Chaktong Au, Limin Dang, Pingyun Feng. Photocatalytic degradation of norfloxacin on different TiO 2−X polymorphs under visible light in water. RSC Adv. 2017, 7 (72) , 45721-45732. https://doi.org/10.1039/C7RA09022F
  99. Suneel Kumar, Ashish Kumar, Ashish Bahuguna, Vipul Sharma, Venkata Krishnan. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications. Beilstein Journal of Nanotechnology 2017, 8 , 1571-1600. https://doi.org/10.3762/bjnano.8.159
  100. Yongqing Cai, Yuan Ping Feng. Review on charge transfer and chemical activity of TiO 2 : Mechanism and applications. Progress in Surface Science 2016, 91 (4) , 183-202. https://doi.org/10.1016/j.progsurf.2016.11.001
Load all citations