RETURN TO ISSUEPREVResearch ArticleNEXT

Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage

View Author Information
Nano & Energy Materials Lab, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
*E-mail: [email protected]. Tel: +82-32-860-7476.
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 23, 14558–14563
Publication Date (Web):May 24, 2016
https://doi.org/10.1021/acsami.6b03099
Copyright © 2016 American Chemical Society
Article Views
1016
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (1)»

Abstract

The perpendicularly oriented anatase TiO2 microcones for Li-ion battery application were synthesized via anodization of a Ti foil in aqueous HF + H3PO4 solution. The TiO2 microcones exhibited a high active surface area with a hollow core depending on applied voltage and reaction time, confirmed by SEM, XRD and TEM with EDS mapping. Li insertion/desertion into TiO2 microcones was evaluated for the first time in half-cell configuration in terms of various current density and long-term cyclability. The electrochemical experiments demonstrated that the as-prepared TiO2 microcones as anode material exhibited 3 times higher capacity as compared with TiO2 nanotubular structures, excellent rate performance (0.054 mAhcm–2 even at 50 C) and reliable capacity retention during 500 cycles, which was attributed to facile diffusion of Li-ions induced in hollow anatase TiO2 microcones structure with multilayered nanofragment.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional curves and figures including LSV, SEM, and XRD. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b03099.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 33 publications.

  1. Weijia Meng, Jun Han, Zhenzhen Dang, Diansen Li, Lei Jiang. Dual Doping of Titania for Enhanced Na Storage Performance. ACS Applied Materials & Interfaces 2021, 13 (37) , 44214-44223. https://doi.org/10.1021/acsami.1c10506
  2. Yu Jiang, Charles Hall, Ning Song, Derwin Lau, Patrick A. Burr, Robert Patterson, Da-Wei Wang, Zi Ouyang, Alison Lennon. Evidence for Fast Lithium-Ion Diffusion and Charge-Transfer Reactions in Amorphous TiOx Nanotubes: Insights for High-Rate Electrochemical Energy Storage. ACS Applied Materials & Interfaces 2018, 10 (49) , 42513-42523. https://doi.org/10.1021/acsami.8b16994
  3. Jihyeon Park, Sudeok Kim, Gibaek Lee, Jinsub Choi. RGO-Coated TiO2 Microcones for High-Rate Lithium-Ion Batteries. ACS Omega 2018, 3 (8) , 10205-10210. https://doi.org/10.1021/acsomega.8b00926
  4. Sangkyu Lee, Wonsik Eom, Hun Park, and Tae Hee Han . High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces 2017, 9 (30) , 25332-25338. https://doi.org/10.1021/acsami.7b06631
  5. Ting-Ting Wei, Fan-Fan Wang, Xue-Zhong Li, Jun-Hong Zhang, Yan-Rong Zhu, Ting-Feng Yi. Towards high-performance battery systems by regulating morphology of TiO2 materials. Sustainable Materials and Technologies 2021, 30 , e00355. https://doi.org/10.1016/j.susmat.2021.e00355
  6. Ximing Lu, Feiyang Luo, Qinghua Tian, Wei Zhang, Zhuyin Sui, Jizhang Chen. Anatase TiO2 nanowires intertangled with CNT for conductive additive-free lithium-ion battery anodes. Journal of Physics and Chemistry of Solids 2021, 153 , 110037. https://doi.org/10.1016/j.jpcs.2021.110037
  7. Shimei Guo, Yuan Wang, Lijuan Chen, Duo Pan, Zhanhu Guo, Shubiao Xia. Porous TiO2–[email protected] nanocomposites as anode for high-performance lithium-ion batteries. Journal of Alloys and Compounds 2021, 858 , 157635. https://doi.org/10.1016/j.jallcom.2020.157635
  8. Janaina Soares Santos, Patrícia dos Santos Araújo, Yasmin Bastos Pissolitto, Paula Prenholatto Lopes, Anna Paulla Simon, Mariana de Souza Sikora, Francisco Trivinho-Strixino. The Use of Anodic Oxides in Practical and Sustainable Devices for Energy Conversion and Storage. Materials 2021, 14 (2) , 383. https://doi.org/10.3390/ma14020383
  9. Qiang Li, Jian Zhou, Fan Li, Zhimei Sun. Spring-roll-like Ti 3 C 2 MXene/carbon-coated Fe 3 O 4 composite as a long-life Li-ion storage material. Inorganic Chemistry Frontiers 2020, 7 (18) , 3491-3499. https://doi.org/10.1039/D0QI00571A
  10. Xiaohong Wang, Hongyu Wang. Microwave‐Synthesized TiO 2 Nanotube as a Durable Li + ‐Storage Electrode Material. ChemistrySelect 2020, 5 (29) , 9022-9029. https://doi.org/10.1002/slct.202001870
  11. Yu Jiang, Charles Hall, Patrick A. Burr, Ning Song, Derwin Lau, Jodie Yuwono, Da-Wei Wang, Zi Ouyang, Alison Lennon. Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. Journal of Power Sources 2020, 463 , 228205. https://doi.org/10.1016/j.jpowsour.2020.228205
  12. Yong‐Tae Kim, Ji Ho Youk, Jinsub Choi. Inverse‐direction Growth of TiO 2 Microcones by Subsequent Anodization in HClO 4 for Increased Performance of Lithium‐Ion Batteries. ChemElectroChem 2020, 7 (5) , 1248-1255. https://doi.org/10.1002/celc.202000114
  13. Jihyeon Park, Hyeonseok Yoo, Jinsub Choi. 3D ant-nest network of α-Fe2O3 on stainless steel for all-in-one anode for Li-ion battery. Journal of Power Sources 2019, 431 , 25-30. https://doi.org/10.1016/j.jpowsour.2019.05.054
  14. Hyeonseok Yoo, Gibaek Lee, Jinsub Choi. Binder-free SnO 2 –TiO 2 composite anode with high durability for lithium-ion batteries. RSC Advances 2019, 9 (12) , 6589-6595. https://doi.org/10.1039/C8RA10358E
  15. Datao Wang, Ke Wang, Li Sun, Hengcai Wu, Jing Wang, Yuxing Zhao, Lingjia Yan, Yufeng Luo, Kaili Jiang, Qunqing Li, Shoushan Fan, Ju Li, Jiaping Wang. MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. Carbon 2018, 139 , 145-155. https://doi.org/10.1016/j.carbon.2018.06.046
  16. Xiaotian Guo, Guangxun Zhang, Qing Li, Huaiguo Xue, Huan Pang. Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Materials 2018, 15 , 171-201. https://doi.org/10.1016/j.ensm.2018.04.002
  17. Yi Wei, Jiaxin Zhu, Yixin Gan, Gang Cheng. Titanium glycolate-derived TiO 2 nanomaterials: Synthesis and applications. Advanced Powder Technology 2018, 29 (10) , 2289-2311. https://doi.org/10.1016/j.apt.2018.05.016
  18. Jihyeon Park, Jinsub Choi. Formation of well dispersed TiO2 microcones; the 20% surface occupation. Applied Surface Science 2018, 448 , 212-218. https://doi.org/10.1016/j.apsusc.2018.04.033
  19. R. Ajay Kumar, A. Venkateswara Rao, Ch. Rajesh. Electrochemical studies of mesoporous and copper-modified mesoporous TiO2 -anode material. The European Physical Journal Plus 2018, 133 (5) https://doi.org/10.1140/epjp/i2018-11992-1
  20. Qili Wu, Shiman He, Xianfeng Yang, Jingling Yang, Gaoren Li, Yuying Meng, Shengfu Tong, Liqiang Mai, Mingmei Wu. Ultrathin nanobelts-assembled Chinese knot-like 3D TiO2 for fast and stable lithium storage. Nano Research 2018, 11 (4) , 2116-2128. https://doi.org/10.1007/s12274-017-1829-3
  21. Zhijie Chen, Honsen Li, Langyuan Wu, Xiaoxia Lu, Xiaogang Zhang. Li 4 Ti 5 O 12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices. The Chemical Record 2018, 18 (3) , 350-380. https://doi.org/10.1002/tcr.201700042
  22. Yonglai Zhang, Ruijie Ye, Dirk Henkensmeier, Rolf Hempelmann, Ruiyong Chen. “Water-in-ionic liquid” solutions towards wide electrochemical stability windows for aqueous rechargeable batteries. Electrochimica Acta 2018, 263 , 47-52. https://doi.org/10.1016/j.electacta.2018.01.050
  23. Gyu Jin Choi, Hyemin Jung, Dong Ho Kim, Youngku Sohn, Jin Seog Gwag. Photoelectrocatalytic effect of unbalanced RF magnetron sputtered TiO 2 thin film on ITO-coated patterned SiO 2 nanocone arrays. Catalysis Science & Technology 2018, 8 (3) , 898-906. https://doi.org/10.1039/C7CY02371E
  24. David McNulty, Alex Lonergan, Sally O'Hanlon, Colm O'Dwyer. 3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes. Solid State Ionics 2018, 314 , 195-203. https://doi.org/10.1016/j.ssi.2017.10.008
  25. Gibaek Lee, Sudeok Kim, Sunkyu Kim, Jinsub Choi. SiO 2 /TiO 2 Composite Film for High Capacity and Excellent Cycling Stability in Lithium-Ion Battery Anodes. Advanced Functional Materials 2017, 27 (39) , 1703538. https://doi.org/10.1002/adfm.201703538
  26. Moonsu Kim, Hyeonseok Yoo, Gibaek Lee, Jinsub Choi. Enhanced VRB electrochemical performance using tungsten as an electrolyte additive. Electrochimica Acta 2017, 246 , 190-196. https://doi.org/10.1016/j.electacta.2017.05.203
  27. Jianli Cheng, Guifang Gu, Wei Ni, Qun Guan, Yinchuan Li, Bin Wang. Graphene oxide hydrogel as a restricted-area nanoreactor for synthesis of 3D graphene-supported ultrafine TiO 2 nanorod nanocomposites for high-rate lithium-ion battery anodes. Nanotechnology 2017, 28 (30) , 305401. https://doi.org/10.1088/1361-6528/aa77c6
  28. Mao-xiang Jing, Jing-quan Li, Chong Han, Shan-shan Yao, Ji Zhang, Hong-ai Zhai, Li-li Chen, Xiang-qian Shen, Ke-song Xiao. Electrospinning preparation of oxygen-deficient nano TiO 2-x /carbon fibre membrane as a self-standing high performance anode for Li-ion batteries. Royal Society Open Science 2017, 4 (7) , 170323. https://doi.org/10.1098/rsos.170323
  29. Hyeji Park, Hyelim Choi, Kyungju Nam, Sukyung Lee, Ji Hyun Um, Kyungbae Kim, Jae-Hun Kim, Won-Sub Yoon, Heeman Choe. Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries. Journal of Electronic Materials 2017, 46 (6) , 3789-3795. https://doi.org/10.1007/s11664-017-5289-z
  30. Ting Huang, Jinlong Lu, Rongshi Xiao, Qiang Wu, Wuxiong Yang. Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate. Applied Surface Science 2017, 403 , 584-589. https://doi.org/10.1016/j.apsusc.2017.01.203
  31. Tauseef Anwar, Wang Li, Rizwan Ur Rehman Sagar, Farhat Nosheen, Rajan Singh, Hasnain Mehdi Jafri, Khurram Shehzad, Liang Tongxiang. Cathodic titania nanotube arrays as anode material for lithium-ion batteries. Journal of Materials Science 2017, 52 (8) , 4323-4332. https://doi.org/10.1007/s10853-016-0530-3
  32. Mahdi Kazazi, Pedram Abdollahi, Mahdi Mirzaei-Moghadam. High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics 2017, 300 , 32-37. https://doi.org/10.1016/j.ssi.2016.11.028
  33. Jihyeon Park, Gibaek Lee, Jinsub Choi. Key Anodization Factors for Determining the Formation of TiO 2 Microcones vs Nanotubes. Journal of The Electrochemical Society 2017, 164 (9) , D640-D644. https://doi.org/10.1149/2.1601709jes