RETURN TO ISSUEPREVResearch ArticleNEXT

Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium–Lithium Cell

View Author Information
Institute of General and Inorganic Chemistry and Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
§ Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
*Phone: +359 2 9793915. Fax: +359 2 8705024. E-mail: [email protected]
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 27, 17321–17333
Publication Date (Web):June 17, 2016
https://doi.org/10.1021/acsami.6b05075
Copyright © 2016 American Chemical Society
Article Views
812
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (10 MB)
Supporting Info (1)»

Abstract

The development of lithium and sodium ion batteries without using lithium and sodium metal as anodes gives the impetus for elaboration of low-cost and environmentally friendly energy storage devices. In this contribution we demonstrate the design and construction of a new type of hybrid sodium–lithium ion cell by using unique electrode combination (Li4Ti5O12 spinel as a negative electrode and layered Na3/4Co1/3Ni1/3Mn1/3O2 as a positive electrode) and conventional lithium electrolyte (LiPF6 salt dissolved in EC/DMC). The cell operates at an average potential of 2.35 V by delivering a reversible capacity of about 100 mAh/g. The mechanism of the electrochemical reaction in the full sodium–lithium ion cell is studied by means of postmortem analysis, as well as ex situ X-ray diffraction analysis, HR-TEM, and electron paramagnetic resonance spectroscopy (EPR). The changes in the surface composition of electrodes are examined by ex situ X-ray photoelectron spectroscopy (XPS).

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b05075.

  • XRD patterns of Li4Ti5O12 spinel and P3–Na0.75Co1/3Ni1/3Mn1/3O2 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 24 publications.

  1. Mainul Akhtar, Subhasish B. Majumder. Effect of Nickel Doping on the Electrochemical Performances of Carbon-Coated Na3V2(PO4)3 Cathodes for Hybrid Lithium-Ion Batteries. ACS Applied Energy Materials 2021, Article ASAP.
  2. Hristo Rasheev, Radostina Stoyanova, Alia Tadjer. Rivalry at the Interface: Ion Desolvation and Electrolyte Degradation in Model Ethylene Carbonate Complexes of Li+, Na+, and Mg2+ with PF6– on the Li4Ti5O12 (111) Surface. ACS Omega 2021, 6 (44) , 29735-29745. https://doi.org/10.1021/acsomega.1c04161
  3. Mainul Akhtar, Sunil Kumar Pradhan, Jeng-Kuei Chang, Subhasish Basu Majumder. A Lithium-Ion Rechargeable Full Cell Using the Flower-like Na3V2(PO4)[email protected] Cathode and Li4Ti5O12 Anode. ACS Sustainable Chemistry & Engineering 2020, 8 (19) , 7523-7535. https://doi.org/10.1021/acssuschemeng.0c02609
  4. Mitsunori Kitta, Riki Kataoka, Shingo Tanaka, Nobuhiko Takeichi, Masanori Kohyama. Spinel-Type Sodium Titanium Oxide: A Promising Sodium-Insertion Material of Sodium-Ion Batteries. ACS Applied Energy Materials 2019, 2 (6) , 4345-4353. https://doi.org/10.1021/acsaem.9b00541
  5. Mariya Kalapsazova, Hristo Rasheev, Ekaterina Zhecheva, Alia Tadjer, Radostina Stoyanova. Insights into the Function of Electrode and Electrolyte Materials in a Hybrid Lithium–Sodium Ion Cell. The Journal of Physical Chemistry C 2019, 123 (18) , 11508-11521. https://doi.org/10.1021/acs.jpcc.9b01993
  6. María J. Aragón, Pedro Lavela, Gregorio F. Ortiz, Ricardo Alcántara, and José L. Tirado . Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. Inorganic Chemistry 2017, 56 (19) , 11845-11853. https://doi.org/10.1021/acs.inorgchem.7b01846
  7. Maria L. Kalapsazova, Ekaterina N. Zhecheva, Georgi T. Tyuliev, Diana D. Nihtianova, Lyuben Mihaylov, and Radostina K. Stoyanova . Effects of the Particle Size Distribution and of the Electrolyte Salt on the Intercalation Properties of P3-Na2/3Ni1/2Mn1/2O2. The Journal of Physical Chemistry C 2017, 121 (11) , 5931-5940. https://doi.org/10.1021/acs.jpcc.6b12887
  8. Suqin Wang, Jie Zhang, Zhixin Xu, Jiulin Wang. Enhanced Cycle Stability of Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 Cathode with Sodium Oxalyldifluoroborate Electrolyte Salt for Hybrid Li‐Na Ion Battery. ChemistrySelect 2021, 6 (44) , 12288-12294. https://doi.org/10.1002/slct.202102683
  9. Assumpta Chinwe Nwanya, Miranda M. Ndipingwi, Ofomatah Anthony, Fabian I. Ezema, Malik Maaza, Emmanuel I. Iwuoha. Impedance studies of biosynthesized Na 0. 8 Ni 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 applied in an aqueous sodium‐ion battery. International Journal of Energy Research 2021, 45 (7) , 11123-11134. https://doi.org/10.1002/er.6594
  10. Longwei Liang, Xiaoying Li, Fei Zhao, Jinyang Zhang, Yang Liu, Linrui Hou, Changzhou Yuan. Construction and Operating Mechanism of High‐Rate Mo‐Doped Na 3 V 2 (PO 4 ) 3 @C Nanowires toward Practicable Wide‐Temperature‐Tolerance Na‐Ion and Hybrid Li/Na‐Ion Batteries. Advanced Energy Materials 2021, 11 (21) , 2100287. https://doi.org/10.1002/aenm.202100287
  11. Qiuyu Shen, Yongchang Liu, Lifang Jiao, Xuanhui Qu, Jun Chen. Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Materials 2021, 35 , 400-430. https://doi.org/10.1016/j.ensm.2020.11.002
  12. Zhuo Yang, Xiao‐Hao Liu, Xiang‐Xi He, Wei‐Hong Lai, Li Li, Yun Qiao, Shu‐Lei Chou, Minghong Wu. Rechargeable Sodium‐Based Hybrid Metal‐Ion Batteries toward Advanced Energy Storage. Advanced Functional Materials 2021, 31 (8) , 2006457. https://doi.org/10.1002/adfm.202006457
  13. C.-A. Zhou, Z.J. Yao, X.H. Xia, X.L. Wang, C.D. Gu, J.P. Tu. Low-strain titanium-based oxide electrodes for electrochemical energy storage devices: design, modification, and application. Materials Today Nano 2020, 11 , 100085. https://doi.org/10.1016/j.mtnano.2020.100085
  14. Li Du, Huanhuan Duan, Qi Xia, Chan Jiang, Yurong Yan, Songping Wu. Hybrid Charge‐Storage Route to Nb 2 CT x MXene as Anode for Sodium‐Ion Batteries. ChemistrySelect 2020, 5 (3) , 1186-1192. https://doi.org/10.1002/slct.201903888
  15. Subramanian Natarajan, Krishnan Subramanyan, Vanchiappan Aravindan. Focus on Spinel Li 4 Ti 5 O 12 as Insertion Type Anode for High‐Performance Na‐Ion Batteries. Small 2019, 15 (49) , 1904484. https://doi.org/10.1002/smll.201904484
  16. L. Mihaylov, T. Boyadzhieva, R. Tomov, V. Kumar, V. Koleva, R. Stoyanova, T. Spassov. LiMnPO 4 -olivine deposited on a nanoporous alloy as an additive-free electrode for lithium ion batteries. Dalton Transactions 2019, 48 (45) , 17037-17044. https://doi.org/10.1039/C9DT02879J
  17. Kohei Tada, Mitsunori Kitta, Hiroyuki Ozaki, Shingo Tanaka. A comparative study of Na3LiTi5O12 and Li4Ti5O12: Geometric and electronic structures obtained by density functional theory calculations. Chemical Physics Letters 2019, 731 , 136598. https://doi.org/10.1016/j.cplett.2019.136598
  18. Yongxin Huang, Luzi Zhao, Li Li, Man Xie, Feng Wu, Renjie Chen. Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application. Advanced Materials 2019, 31 (21) , 1808393. https://doi.org/10.1002/adma.201808393
  19. Radostina Stoyanova, Violeta Koleva, Antonia Stoyanova. Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. The Chemical Record 2019, 19 (2-3) , 474-501. https://doi.org/10.1002/tcr.201800081
  20. Mitsunori KITTA, Masanori KOHYAMA. Mechanism of the Na-substituted Spinel Phase Generation in a Li4Ti5O12 Electrode via Sodium-ion Battery Cycling. Electrochemistry 2018, 86 (4) , 194-197. https://doi.org/10.5796/electrochemistry.18-00029
  21. Zulipiya Shadike, Enyue Zhao, Yong-Ning Zhou, Xiqian Yu, Yong Yang, Enyuan Hu, Seongmin Bak, Lin Gu, Xiao-Qing Yang. Advanced Characterization Techniques for Sodium-Ion Battery Studies. Advanced Energy Materials 2018, 8 (17) , 1702588. https://doi.org/10.1002/aenm.201702588
  22. Jin-Zhi Guo, Yang Yang, Dao-Sheng Liu, Xing-Long Wu, Bao-Hua Hou, Wei-Lin Pang, Ke-Cheng Huang, Jing-Ping Zhang, Zhong-Min Su. A Practicable Li/Na-Ion Hybrid Full Battery Assembled by a High-Voltage Cathode and Commercial Graphite Anode: Superior Energy Storage Performance and Working Mechanism. Advanced Energy Materials 2018, 8 (10) , 1702504. https://doi.org/10.1002/aenm.201702504
  23. Delyana M. Marinova, Rosica R. Kukeva, Ekaterina N. Zhecheva, Radostina K. Stoyanova. Selective sodium intercalation into sodium nickel–manganese sulfate for dual Na–Li-ion batteries. Physical Chemistry Chemical Physics 2018, 20 (18) , 12755-12766. https://doi.org/10.1039/C8CP01667D
  24. M. Kalapsazova, S. Ivanova, R. Kukeva, S. Simova, S. Wegner, E. Zhecheva, R. Stoyanova. Combined use of EPR and 23 Na MAS NMR spectroscopy for assessing the properties of the mixed cobalt–nickel–manganese layers of P3-Na y Co 1−2x Ni x Mn x O 2. Phys. Chem. Chem. Phys. 2017, 19 (39) , 27065-27073. https://doi.org/10.1039/C7CP04849A