RETURN TO ISSUEPREVResearch ArticleNEXT

Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO2 Nanotubes Directly During Anodic Growth

  • Haidong Bian
    Haidong Bian
    Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
    More by Haidong Bian
  • Nhat Truong Nguyen
    Nhat Truong Nguyen
    Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
  • JeongEun Yoo
    JeongEun Yoo
    Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
    More by JeongEun Yoo
  • Seyedsina Hejazi
    Seyedsina Hejazi
    Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
  • Shiva Mohajernia
    Shiva Mohajernia
    Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
  • Julian Müller
    Julian Müller
    Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstraße 6, D-91058 Erlangen, Germany
  • Erdmann Spiecker
    Erdmann Spiecker
    Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstraße 6, D-91058 Erlangen, Germany
  • Hiroaki Tsuchiya
    Hiroaki Tsuchiya
    Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, 565-0871 Suita, Osaka, Japan
  • Ondrej Tomanec
    Ondrej Tomanec
    Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic
  • Beatriz E. Sanabria-Arenas
    Beatriz E. Sanabria-Arenas
    Laboratorio di Corrosione dei Materiali “Pietro Pedeferri”, Politecnico di Milano, 20131 Milan, Italy
  • Radek Zboril
    Radek Zboril
    Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic
    More by Radek Zboril
  • Yang Yang Li*
    Yang Yang Li
    Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
    *E-mail: [email protected] (Y.Y.L.).
    More by Yang Yang Li
  • , and 
  • Patrik Schmuki*
    Patrik Schmuki
    Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
    Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic
    Chemistry Department, Faculty of Sciences, King Abdulaziz University, 80203 Jeddah, Saudi Arabia
    *E-mail: [email protected] (P.S.).
Cite this: ACS Appl. Mater. Interfaces 2018, 10, 21, 18220–18226
Publication Date (Web):May 9, 2018
https://doi.org/10.1021/acsami.8b03713
Copyright © 2018 American Chemical Society
Article Views
984
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO2 nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO2 nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H2 generation, with a H2 production rate of 12.04 μL h–1 under solar light. This represents a strongly enhanced activity as compared to TiO2 NTs decorated with monometallic particles of Au (7 μL h–1) or Pt (9.96 μL h–1).

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b03713.

  • Additional SEM and TEM images, TEM-EDS result, size distribution of the nanoparticles, XPS spectra and diffuse reflectance spectra (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 24 publications.

  1. Lianlian Deng, Mai Thanh Nguyen, Jingming Shi, Yuen-ting Rachel Chau, Tomoharu Tokunaga, Masaki Kudo, Syo Matsumura, Naoyuki Hashimoto, Tetsu Yonezawa. Highly Correlated Size and Composition of Pt/Au Alloy Nanoparticles via Magnetron Sputtering onto Liquid. Langmuir 2020, 36 (12) , 3004-3015. https://doi.org/10.1021/acs.langmuir.0c00152
  2. Wataru Kurashige, Rui Hayashi, Kosuke Wakamatsu, Yuki Kataoka, Sakiat Hossain, Akihide Iwase, Akihiko Kudo, Seiji Yamazoe, Yuichi Negishi. Atomic-Level Understanding of the Effect of Heteroatom Doping of the Cocatalyst on Water-Splitting Activity in AuPd or AuPt Alloy Cluster-Loaded BaLa4Ti4O15. ACS Applied Energy Materials 2019, 2 (6) , 4175-4187. https://doi.org/10.1021/acsaem.9b00426
  3. Kousik Bhunia, Moumita Chandra, Santimoy Khilari, Debabrata Pradhan. Bimetallic PtAu Alloy Nanoparticles-Integrated g-C3N4 Hybrid as an Efficient Photocatalyst for Water-to-Hydrogen Conversion. ACS Applied Materials & Interfaces 2019, 11 (1) , 478-488. https://doi.org/10.1021/acsami.8b12183
  4. Qadeer-Ul Hassan, Dou Yang, Jian-Ping Zhou, Yu-Xi Lei, Jing-Zhou Wang, Saif Ullah Awan. Novel Single-Crystal Hollandite K1.46Fe0.8Ti7.2O16 Microrods: Synthesis, Double Absorption, and Magnetism. Inorganic Chemistry 2018, 57 (24) , 15187-15197. https://doi.org/10.1021/acs.inorgchem.8b02481
  5. Yue Wang, Imgon Hwang, Zhenni Wu, Patrik Schmuki. Self-assembled monolayers enhance the efficiency of Pt single atom co-catalysts in photocatalytic H2 generation. Electrochemistry Communications 2021, 133 , 107166. https://doi.org/10.1016/j.elecom.2021.107166
  6. Zhenni Wu, Imgon Hwang, Gihoon Cha, Shanshan Qin, Ondřej Tomanec, Zdenek Badura, Stepan Kment, Radek Zboril, Patrik Schmuki. Optimized Pt Single Atom Harvesting on TiO 2 Nanotubes—Towards a Most Efficient Photocatalyst. Small 2021, 17 , 2104892. https://doi.org/10.1002/smll.202104892
  7. Shu‐Lan Li, Peng Jiang, Feng‐Lei Jiang, Yi Liu. Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy. Advanced Functional Materials 2021, 31 (22) , 2100243. https://doi.org/10.1002/adfm.202100243
  8. Hiroaki TSUCHIYA. Anodization of Ti and its Alloys: Current Status and Perspectives. Journal of The Surface Finishing Society of Japan 2021, 72 (4) , 211-215. https://doi.org/10.4139/sfj.72.211
  9. Tokuhisa Kawawaki, Yuki Kataoka, Shuhei Ozaki, Masanobu Kawachi, Momoko Hirata, Yuichi Negishi. Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications 2021, 57 (4) , 417-440. https://doi.org/10.1039/D0CC06809H
  10. Hyeonkwon Lee, Vijay S. Kumbhar, Jaewon Lee, Hyunchul Oh, Kiyoung Lee. Boosted photocatalytic hydrogen evolution by tuning inner pore size and co-catalyst thickness of the anodic TiO2 nanotubes. Catalysis Today 2021, 359 , 3-8. https://doi.org/10.1016/j.cattod.2019.03.066
  11. Albina A. Valeeva, Irina B. Dorosheva, Ekaterina A. Kozlova, Anna A. Sushnikova, Anna Yu Kurenkova, Аndrey А. Saraev, Hartrmuth Schroettner, Аndrey А. Rempel. Solar photocatalysts based on titanium dioxide nanotubes for hydrogen evolution from aqueous solutions of ethanol. International Journal of Hydrogen Energy 2021, 830 https://doi.org/10.1016/j.ijhydene.2020.12.190
  12. Yue-Hua Li, Jing-Yu Li, Yi-Jun Xu. Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. EnergyChem 2021, 3 (1) , 100047. https://doi.org/10.1016/j.enchem.2020.100047
  13. Shiyan Fu, Ruihao Yang, Lei Zhang, Weiwei Liu, Guangyuan Du, Yang Cao, Zhigang Xu, Hongjuan Cui, Yuejun Kang, Peng Xue. Biomimetic [email protected] nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials 2020, 257 , 120279. https://doi.org/10.1016/j.biomaterials.2020.120279
  14. Tokuhisa Kawawaki, Yutaro Mori, Kosuke Wakamatsu, Shuhei Ozaki, Masanobu Kawachi, Sakiat Hossain, Yuichi Negishi. Controlled colloidal metal nanoparticles and nanoclusters: recent applications as cocatalysts for improving photocatalytic water-splitting activity. Journal of Materials Chemistry A 2020, 8 (32) , 16081-16113. https://doi.org/10.1039/D0TA04750C
  15. Shuxian Zhong, Yamin Xi, Shijie Wu, Qian Liu, Leihong Zhao, Song Bai. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry A 2020, 8 (30) , 14863-14894. https://doi.org/10.1039/D0TA04977H
  16. Hiroaki Tsuchiya, Patrik Schmuki. Less known facts and findings about TiO 2 nanotubes. Nanoscale 2020, 12 (15) , 8119-8132. https://doi.org/10.1039/D0NR00367K
  17. R. Kavitha, S. Girish Kumar. Review on bimetallic-deposited TiO2: preparation methods, charge carrier transfer pathways and photocatalytic applications. Chemical Papers 2020, 74 (3) , 717-756. https://doi.org/10.1007/s11696-019-00995-4
  18. Lei Ji, Davide Spanu, Nikita Denisov, Sandro Recchia, Patrik Schmuki, Marco Altomare. A Dewetted‐Dealloyed Nanoporous Pt Co‐Catalyst Formed on TiO 2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H 2 Production. Chemistry – An Asian Journal 2020, 15 (2) , 301-309. https://doi.org/10.1002/asia.201901545
  19. Mohsen Sheikhzadeh, Seyedsina Hejazi, Shiva Mohajernia, Ondrej Tomanec, Mohamed Mokhtar, Abdulmohsen Alshehri, Sohrab Sanjabi, Radek Zboril, Patrik Schmuki. Photocatalytic H 2 Evolution: Dealloying as Efficient Tool for the Fabrication of Rh‐decorated TiO 2 Nanotubes. ChemCatChem 2019, 11 (24) , 6258-6262. https://doi.org/10.1002/cctc.201901183
  20. Shuhui Zhou, Shikai Liu, Kai Su, Kunlun Jia. Facile synthesis of Ti3+ self-doped and sulfur-doped TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance. Journal of Alloys and Compounds 2019, 804 , 10-17. https://doi.org/10.1016/j.jallcom.2019.06.294
  21. Ling Cheng, Yuhang Li, Aiping Chen, Yihua Zhu, Chunzhong Li. Subnano‐Sized Pt–Au Alloyed Clusters as Enhanced Cocatalyst for Photocatalytic Hydrogen Evolution. Chemistry – An Asian Journal 2019, 14 (12) , 2112-2115. https://doi.org/10.1002/asia.201900453
  22. Rui-Zhi Zhang, Qi-Wen Chen, Yu-Xi Lei, Jian-Ping Zhou. Growth of MoS2 nanosheets on TiO2/g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability. Journal of Materials Science: Materials in Electronics 2019, 30 (6) , 5393-5403. https://doi.org/10.1007/s10854-019-00832-0
  23. Beatriz Eugenia Sanabria-Arenas, Anca Mazare, Jeongeun Yoo, Nhat Truong Nguyen, Seyedsina Hejazi, Haidong Bian, Maria Vittoria Diamanti, Maria Pia Pedeferri, Patrik Schmuki. Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation. Electrochimica Acta 2018, 292 , 865-870. https://doi.org/10.1016/j.electacta.2018.09.206
  24. Nhat Truong Nguyen, Selda Ozkan, Ondrej Tomanec, Xuemei Zhou, Radek Zboril, Patrik Schmuki. Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting–dealloying on an ordered TiO 2 nanotube surface lead to significantly enhanced photocatalytic H 2 generation. Journal of Materials Chemistry A 2018, 6 (28) , 13599-13606. https://doi.org/10.1039/C8TA04495C