Nanoporous CeO2–ZrO2 Oxides for Oxidation of Volatile Organic Compounds

  • Florian Jonas
    Florian Jonas
    Université de Lorraine, CNRS, L2CM 7053, Faculté des Sciences et Technologies, F-54000 Vandoeuvre-lès-Nancy cedex, France
  • Bénédicte Lebeau*
    Bénédicte Lebeau
    Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, ENSCMu, F-68100 Mulhouse cedex, France
    Université de Strasbourg, 67000 Strasbourg, France
    *Email: [email protected]. Tel. +33 3 89 33 68 82.
  • Stéphane Siffert*
    Stéphane Siffert
    Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) UR-4492, Equipe “Traitement catalytique et énergie propre”, MREI 1—Université du Littoral—Côte d’Opale, SFR Condorcet FR CNRS 3417, F-59140 Dunkerque, France
    *Email: [email protected]. Tel. + 33 3 28 65 82 56.
  • Laure Michelin
    Laure Michelin
    Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, ENSCMu, F-68100 Mulhouse cedex, France
    Université de Strasbourg, 67000 Strasbourg, France
  • Christophe Poupin
    Christophe Poupin
    Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) UR-4492, Equipe “Traitement catalytique et énergie propre”, MREI 1—Université du Littoral—Côte d’Opale, SFR Condorcet FR CNRS 3417, F-59140 Dunkerque, France
  • Renaud Cousin
    Renaud Cousin
    Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) UR-4492, Equipe “Traitement catalytique et énergie propre”, MREI 1—Université du Littoral—Côte d’Opale, SFR Condorcet FR CNRS 3417, F-59140 Dunkerque, France
  • Ludovic Josien
    Ludovic Josien
    Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, ENSCMu, F-68100 Mulhouse cedex, France
    Université de Strasbourg, 67000 Strasbourg, France
  • Loïc Vidal
    Loïc Vidal
    Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, ENSCMu, F-68100 Mulhouse cedex, France
    Université de Strasbourg, 67000 Strasbourg, France
    More by Loïc Vidal
  • Martine Mallet
    Martine Mallet
    Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
  • Pierrick Gaudin
    Pierrick Gaudin
    Université de Lorraine, CNRS, L2CM 7053, Faculté des Sciences et Technologies, F-54000 Vandoeuvre-lès-Nancy cedex, France
  • , and 
  • Jean-Luc Blin*
    Jean-Luc Blin
    Université de Lorraine, CNRS, L2CM 7053, Faculté des Sciences et Technologies, F-54000 Vandoeuvre-lès-Nancy cedex, France
    *Email: [email protected]. Tel. +33 3 83 68 43 70.
Cite this: ACS Appl. Nano Mater. 2021, 4, 2, 1786–1797
Publication Date (Web):February 11, 2021
https://doi.org/10.1021/acsanm.0c03212
Copyright © 2021 American Chemical Society
Article Views
330
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (8 MB)
Supporting Info (1)»

Abstract

Here, mixed nanostructured ceria/zirconia oxides have been prepared either by wet impregnation on nanostructured ZrO2 or by co-condensation through an evaporation-induced self-assembly (EISA)-derived pathway. This latter method and impregnation on amorphous ZrO2, followed or not by heating at 480 °C, lead to a uniform cerium distribution in the zirconia framework, and solid solutions are formed. Stabilization of the tetragonal structure of nano-ZrO2 with the increase of the cerium content is observed by X-ray diffraction (XRD) and Raman spectroscopy. The surface Ce/Zr molar ratio determined by X-ray photoelectron spectrometry (XPS) is very close to the bulk one, calculated from the X-ray fluorescence analysis. In contrast to the appearance of nanosized ceria particles with the increase of the cerium content, a monoclinic/tetragonal mixture and enrichment of the surface in cerium are noted if the impregnation is carried out on nanostructured ZrO2 previously calcined at 480 °C. The obtained catalysts have been tested for the oxidation of toluene, used as a model volatile organic compound. The catalytic efficiency of the mixed oxides has also been compared to that of pure commercial ceria. Results show that the preparation method has a significant effect on the catalytic properties of the materials. Although pure ceria presents the best activity and selectivity, the nanostructured ZrO2 previously calcined at 480 °C and impregnated by 10 mol % CeO2 is almost as efficient as pure ceria.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsanm.0c03212.

  • Textural parameters of the CeO2–ZrO2 nanoporous oxides (Table S1); variation of the position of the (101) reflection of the tetragonal phase as a function of the targeted cerium content (Figure S1); evolution of the Raman spectra as a function of the targeted cerium content (Figure S2); SAXS patterns as a function of the targeted cerium content (Figure S3); TEM images of samples prepared in the presence of 10 mol % of Ce (Figure S4); Evolution of the nitrogen adsorption/desorption isotherms as a function of the targeted cerium content (Figure S5); Evolution of the mesopore size distribution as a function of the targeted cerium content (Figure S6); Zr 3d and O 1s XPS spectra of the CeO2/ZrO2 material prepared by impregnation on amorphous ZrO2 (Figure S7); evolution of CO2 (A) and CO (B) content as a function of the targeted cerium content (Figure S8) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 1 publications.

  1. Kaiwen Zha, Huimin Liu, Linshuang Xue, Zhen Huang, Hualong Xu, Wei Shen. Co3O4 Nanoparticle-Decorated SiO2 Nanotube Catalysts for Propane Oxidation. ACS Applied Nano Materials 2021, 4 (9) , 8937-8949. https://doi.org/10.1021/acsanm.1c01558