RETURN TO ISSUEPREVResearch ArticleNEXT

Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction

View Author Information
Northeastern University Center for Renewable Energy Technology (NUCRET), Department of Chemistry and Chemical Biology, Northeastern University, 317 Egan Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
*E-mail for S.M.: [email protected]
Cite this: ACS Catal. 2016, 6, 1, 155–161
Publication Date (Web):November 20, 2015
https://doi.org/10.1021/acscatal.5b01481
Copyright © 2015 American Chemical Society
Article Views
7888
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Ni–Fe and Ni–Fe–Co mixed-metal oxide (MMO) films were investigated as electrocatalysts for the oxygen evolution reaction (OER) in 0.1 M KOH. In an effort to optimize MMO morphology, aniline was used as a capping agent to produce high-surface-area Ni–Fe–Co films on Raney nickel supports. This catalyst exhibits enhanced mass activity in comparison to the Ni–Fe OER electrocatalysts reported to date. Cyclic voltammetry shows changes in the potential of the Ni2+/3+ transitions in Fe- or Co-containing MMO films. In situ X-ray absorption spectroscopy (XAS) analysis confirms that Fe acts to stabilize Ni in the 2+ oxidation state, while Co facilitates oxidation to the 3+ state. The results of this study support the recent claims that Fe (not Ni) is the OER active site. The OER enhancement of the ternary Ni–Fe–Co catalyst results from two effects: (1) the charge-transfer effects of Co result in the formation of the conductive NiIIIOOH phase at lower overpotential, thus activating the Fe sites which are otherwise inaccessible to electron transfer in the nonconductive NiII(OH)2 host lattice, and (2) XAS analysis shows that the presence of Co effectively “shrinks” the Ni and Fe local geometry, likely resulting in an optimized Fe–OH/OOH bond strength. In addition, analysis of heat-treatment effects indicates that calcination at 400 °C improves the OER activity of Ni–Fe–Co but deactivates Ni–Fe. Annealing studies under argon show that MMO surfaces with a hydrated Ni(OH)2 phase and a crystalline NiO phase exhibit nearly identical OER activities. Finally, the morphology of the MMO catalyst film on Raney Ni support provides excellent catalyst dispersion and should result in high active-site utilization for use in technologically relevant gas-diffusion electrodes.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.5b01481.

  • Additional characterization via XRD, SEM, and TEM (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 291 publications.

  1. Pengpeng Wang, Ping Fu, Jiangping Ma, Yuying Gao, Zheng Li, Hong Wang, Fengtao Fan, Jingying Shi, Can Li. Ultrathin Cobalt Oxide Interlayer Facilitated Hole Storage for Sustained Water Oxidation over Composited Tantalum Nitride Photoanodes. ACS Catalysis 2021, 11 (20) , 12736-12744. https://doi.org/10.1021/acscatal.1c03298
  2. Yong-Chao Zhang, Caidi Han, Jian Gao, Lun Pan, Jinting Wu, Xiao-Dong Zhu, Ji-Jun Zou. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis 2021, 11 (20) , 12485-12509. https://doi.org/10.1021/acscatal.1c03260
  3. Dan Wu, Xinyi Shen, Xiaokang Liu, Tong Liu, Qiquan Luo, Dong Liu, Tao Ding, Tao Chen, Lan Wang, Linlin Cao, Tao Yao. Insight into Fe Activating One-Dimensional α-Ni(OH)2 Nanobelts for Efficient Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2021, 125 (37) , 20301-20308. https://doi.org/10.1021/acs.jpcc.1c05148
  4. Jaeyun Ha, Moonsu Kim, Yong-Tae Kim, Jinsub Choi. Ni0.67Fe0.33 Hydroxide Incorporated with Oxalate for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (36) , 42870-42879. https://doi.org/10.1021/acsami.1c12155
  5. Kriti Seth, Albert J. Darling, Cameron F. Holder, Yihuang Xiong, Jeffrey R. Shallenberger, Raymond E. Schaak. In Situ Evolution of Ru4Al13 Crystals into a Highly Active Catalyst for the Hydrogen Evolution Reaction. Chemistry of Materials 2021, 33 (17) , 7124-7131. https://doi.org/10.1021/acs.chemmater.1c02583
  6. Peng Zhang, Ying-Rui Lu, Nian-Tzu Suen. Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (17) , 13607-13614. https://doi.org/10.1021/acs.inorgchem.1c01909
  7. Birhanu Bayissa Gicha, Lemma Teshome Tufa, Youngeun Choi, Jaebeom Lee. Amorphous Ni1–xFex Oxyhydroxide Nanosheets with Integrated Bulk and Surface Iron for a High and Stable Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (7) , 6833-6841. https://doi.org/10.1021/acsaem.1c00955
  8. Raina A. Krivina, Yingqing Ou, Qiucheng Xu, Liam P. Twight, T. Nathan Stovall, Shannon W. Boettcher. Oxygen Electrocatalysis on Mixed-Metal Oxides/Oxyhydroxides: From Fundamentals to Membrane Electrolyzer Technology. Accounts of Materials Research 2021, 2 (7) , 548-558. https://doi.org/10.1021/accountsmr.1c00087
  9. Sergei V. Porokhin, Victoria A. Nikitina, Dmitry A. Aksyonov, Dmitry S. Filimonov, Egor M. Pazhetnov, Ivan V. Mikheev, Artem M. Abakumov. Mixed-Cation Perovskite La0.6Ca0.4Fe0.7Ni0.3O2.9 as a Stable and Efficient Catalyst for the Oxygen Evolution Reaction. ACS Catalysis 2021, 11 (13) , 8338-8348. https://doi.org/10.1021/acscatal.1c00796
  10. Shannon McGee, Yu Lei, James Goff, Collin J. Wilkinson, Nabila Nabi Nova, Cody Matthew Kindle, Fu Zhang, Kazunori Fujisawa, Edgar Dimitrov, Susan B. Sinnott, Ismaila Dabo, Mauricio Terrones, Lauren D. Zarzar. Single-Step Direct Laser Writing of Multimetal Oxygen Evolution Catalysts from Liquid Precursors. ACS Nano 2021, 15 (6) , 9796-9807. https://doi.org/10.1021/acsnano.1c00650
  11. Nishad G. Deshpande, Dong Su Kim, Cheol Hyoun Ahn, Sung Hyeon Jung, Young Been Kim, Ho Seong Lee, Hyung Koun Cho. β-like FeOOH Nanoswords Activated by Ni Foam and Encapsulated by rGO toward High Current Densities, Durability, and Efficient Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (16) , 18772-18783. https://doi.org/10.1021/acsami.1c01428
  12. Yao Yang, Yin Xiong, Rui Zeng, Xinyao Lu, Mihail Krumov, Xin Huang, Weixuan Xu, Hongsen Wang, Francis J. DiSalvo, Joel. D. Brock, David A. Muller, Héctor D. Abruña. Operando Methods in Electrocatalysis. ACS Catalysis 2021, 11 (3) , 1136-1178. https://doi.org/10.1021/acscatal.0c04789
  13. Arun Karmakar, Kannimuthu Karthick, Sangeetha Kumaravel, Selvasundarasekar Sam Sankar, Subrata Kundu. Enabling and Inducing Oxygen Vacancies in Cobalt Iron Layer Double Hydroxide via Selenization as Precatalysts for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. Inorganic Chemistry 2021, 60 (3) , 2023-2036. https://doi.org/10.1021/acs.inorgchem.0c03514
  14. Janis Timoshenko, Beatriz Roldan Cuenya. In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chemical Reviews 2021, 121 (2) , 882-961. https://doi.org/10.1021/acs.chemrev.0c00396
  15. Niranji Thilini Ekanayake, Shideh Ahmadi, Nicholas J. Mosey. Quantum Chemical Modeling of Oxygen Evolution Reaction Pathways Mediated by Metal (Oxy)hydroxide Complexes. The Journal of Physical Chemistry C 2021, 125 (2) , 1345-1354. https://doi.org/10.1021/acs.jpcc.0c08854
  16. Audrey K. Taylor, Tiffany Mou, Ana Sonea, Jiayue Chen, Brenden B. Yee, Byron D. Gates. Arrays of Microscale Linear Ridges with Self-Cleaning Functionality for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (2) , 2399-2413. https://doi.org/10.1021/acsami.0c15240
  17. Chang Chen, Yifan Li, Dan Cheng, Hua He, Kebin Zhou. Graphite Nanoarrays-Confined Fe and Co Single-Atoms within Graphene Sponges as Bifunctional Oxygen Electrocatalyst for Ultralong Lasting Zinc-Air Battery. ACS Applied Materials & Interfaces 2020, 12 (36) , 40415-40425. https://doi.org/10.1021/acsami.0c12801
  18. Yujia Zhang, Orhan Kizilkaya, Hubert K. Bilan, Richard Kurtz, Elizabeth J. Podlaha. Activity and Regeneration of Electrodeposited Fe–Ni–Co-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (8) , 7239-7245. https://doi.org/10.1021/acsaem.0c00985
  19. Xueyi Lu, Nobuyuki Sakai, Daiming Tang, Xinming Li, Takaaki Taniguchi, Renzhi Ma, Takayoshi Sasaki. CoNiFe Layered Double Hydroxide/RuO2.1 Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li–O2 Batteries. ACS Applied Materials & Interfaces 2020, 12 (29) , 33083-33093. https://doi.org/10.1021/acsami.0c07656
  20. Peng Wei, Xueping Sun, Qirui Liang, Xiaogang Li, Zhimin He, Xiangsheng Hu, Jinxu Zhang, Minhui Wang, Qing Li, Hui Yang, Jiantao Han, Yunhui Huang. Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces 2020, 12 (28) , 31503-31513. https://doi.org/10.1021/acsami.0c08271
  21. Wen-Jie Jiang, Tang Tang, Yun Zhang, Jin-Song Hu. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Accounts of Chemical Research 2020, 53 (6) , 1111-1123. https://doi.org/10.1021/acs.accounts.0c00127
  22. Yecheng Zhou, Núria López. The Role of Fe Species on NiOOH in Oxygen Evolution Reactions. ACS Catalysis 2020, 10 (11) , 6254-6261. https://doi.org/10.1021/acscatal.0c00304
  23. Xin Bo, Yibing Li, Xianjue Chen, Chuan Zhao. Operando Raman Spectroscopy Reveals Cr-Induced-Phase Reconstruction of NiFe and CoFe Oxyhydroxides for Enhanced Electrocatalytic Water Oxidation. Chemistry of Materials 2020, 32 (10) , 4303-4311. https://doi.org/10.1021/acs.chemmater.0c01067
  24. Wenjamin Moschkowitsch, Kapil Dhaka, Shmuel Gonen, Rinat Attias, Yoed Tsur, Maytal Caspary Toroker, Lior Elbaz. Ternary NiFeTiOOH Catalyst for the Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings. ACS Catalysis 2020, 10 (9) , 4879-4887. https://doi.org/10.1021/acscatal.0c00105
  25. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  26. Audrey K. Taylor, Irene Andreu, Mikayla Louie, Byron D. Gates. Electrochemically Aged Ni Electrodes Supporting NiFe2O4 Nanoparticles for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (1) , 387-400. https://doi.org/10.1021/acsaem.9b01644
  27. Rida Farhat, Jihan Dhainy, Lara I. Halaoui. OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis 2020, 10 (1) , 20-35. https://doi.org/10.1021/acscatal.9b02580
  28. Rajender Boddula, Beidou Guo, Akbar Ali, Guancai Xie, Yawen Dai, Chang Zhao, Yuxuan Wei, Saad Ullah Jan, Jian Ru Gong. Synergetic Effects of Dual Electrocatalysts for High-Performance Solar-Driven Water Oxidation. ACS Applied Energy Materials 2019, 2 (10) , 7256-7262. https://doi.org/10.1021/acsaem.9b01209
  29. Prashant Acharya, Zachary J. Nelson, Mourad Benamara, Ryan H. Manso, Sergio I. Perez Bakovic, Mojtaba Abolhassani, Sungsik Lee, Benjamin Reinhart, Jingyi Chen, Lauren F. Greenlee. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4 (17) , 17209-17222. https://doi.org/10.1021/acsomega.9b01692
  30. Ranjith Bose, K. Karuppasamy, Hashikaa Rajan, Dhinesh Babu Velusamy, Hyun-Seok Kim, Akram Alfantazi. Electrodeposition of Unary Oxide on a Bimetallic Hydroxide as a Highly Active and Stable Catalyst for Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16392-16400. https://doi.org/10.1021/acssuschemeng.9b03496
  31. Young Kyeong Kim, Jin Hyun Kim, Yim Hyun Jo, Jae Sung Lee. Precipitating Metal Nitrate Deposition of Amorphous Metal Oxyhydroxide Electrodes Containing Ni, Fe, and Co for Electrocatalytic Water Oxidation. ACS Catalysis 2019, 9 (10) , 9650-9662. https://doi.org/10.1021/acscatal.9b02701
  32. Yuanyang Rong, Matthew J. Large, Manoj Tripathi, Sean P. Ogilvie, Aline Amorim Graf, Boyang Mao, Jacob Tunesi, Jonathan P. Salvage, Alice A. K. King, Alessia Pasquazi, Marco Peccianti, Richard Malpass-Evans, Neil B. McKeown, Frank Marken, Alan B. Dalton. Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Interfaces 2019, 11 (34) , 31191-31199. https://doi.org/10.1021/acsami.9b09832
  33. Shraboni Ghoshal, Sarah Zaccarine, Grace C. Anderson, Madison B. Martinez, Katherine E. Hurst, Svitlana Pylypenko, Bryan S. Pivovar, Shaun M. Alia. ZIF 67 Based Highly Active Electrocatalysts as Oxygen Electrodes in Water Electrolyzer. ACS Applied Energy Materials 2019, 2 (8) , 5568-5576. https://doi.org/10.1021/acsaem.9b00733
  34. Lifeng Lin, Min Chen, Limin Wu. Hierarchical Iron-Doped Nickel Diselenide Hollow Spheres for Efficient Oxygen Evolution Electrocatalysis. ACS Applied Energy Materials 2019, 2 (7) , 4737-4744. https://doi.org/10.1021/acsaem.9b00337
  35. Mahesh P. Suryawanshi, Uma V. Ghorpade, Seung Wook Shin, Umesh P. Suryawanshi, Eunae Jo, Jin Hyeok Kim. Hierarchically Coupled Ni:FeOOH Nanosheets on 3D N-Doped Graphite Foam as Self-Supported Electrocatalysts for Efficient and Durable Water Oxidation. ACS Catalysis 2019, 9 (6) , 5025-5034. https://doi.org/10.1021/acscatal.9b00492
  36. Zhi Tan, Lekha Sharma, Rita Kakkar, Tao Meng, Yan Jiang, Minhua Cao. Arousing the Reactive Fe Sites in Pyrite (FeS2) via Integration of Electronic Structure Reconfiguration and in Situ Electrochemical Topotactic Transformation for Highly Efficient Oxygen Evolution Reaction. Inorganic Chemistry 2019, 58 (11) , 7615-7627. https://doi.org/10.1021/acs.inorgchem.9b01017
  37. Sören Dresp, Fabio Dionigi, Malte Klingenhof, Peter Strasser. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Letters 2019, 4 (4) , 933-942. https://doi.org/10.1021/acsenergylett.9b00220
  38. Mingquan Yu, Gunhee Moon, Eckhard Bill, Harun Tüysüz. Optimizing Ni–Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials 2019, 2 (2) , 1199-1209. https://doi.org/10.1021/acsaem.8b01769
  39. Zheng Wang, Xia Long, Shihe Yang. Effects of Metal Combinations on the Electrocatalytic Properties of Transition-Metal-Based Layered Double Hydroxides for Water Oxidation: A Perspective with Insights. ACS Omega 2018, 3 (12) , 16529-16541. https://doi.org/10.1021/acsomega.8b02565
  40. Bryan R. Wygant, Kenta Kawashima, C. Buddie Mullins. Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts. ACS Energy Letters 2018, 3 (12) , 2956-2966. https://doi.org/10.1021/acsenergylett.8b01774
  41. Chaoqun Dong, Lulu Han, Chi Zhang, Zhonghua Zhang. Scalable Dealloying Route to Mesoporous Ternary CoNiFe Layered Double Hydroxides for Efficient Oxygen Evolution. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16096-16104. https://doi.org/10.1021/acssuschemeng.8b02656
  42. Xiaomei Wang, Weiguang Ma, Chunmei Ding, Zhiqiang Xu, Hong Wang, Xu Zong, Can Li. Amorphous Multi-elements Electrocatalysts with Tunable Bifunctionality toward Overall Water Splitting. ACS Catalysis 2018, 8 (11) , 9926-9935. https://doi.org/10.1021/acscatal.8b01839
  43. Mengjiao Wang, Zhiya Dang, Mirko Prato, Dipak V. Shinde, Luca De Trizio, Liberato Manna. Ni–Co–S–Se Alloy Nanocrystals: Influence of the Composition on Their in Situ Transformation and Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Nano Materials 2018, 1 (10) , 5753-5762. https://doi.org/10.1021/acsanm.8b01418
  44. Moumita Rana, Sanjit Mondal, Lipipuspa Sahoo, Kaustav Chatterjee, Pitchiah E. Karthik, Ujjal K. Gautam. Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces 2018, 10 (40) , 33737-33767. https://doi.org/10.1021/acsami.8b09024
  45. Ruohao Dong, Haoran Du, Yixuan Sun, Kuangfu Huang, Wen Li, Baoyou Geng. Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 13420-13426. https://doi.org/10.1021/acssuschemeng.8b03153
  46. Shikha Saini, Debalaya Sarker, Pooja Basera, Sergey V. Levchenko, Luca M. Ghiringhelli, Saswata Bhattacharya. Structure and Electronic Properties of Transition-Metal/Mg Bimetallic Clusters at Realistic Temperatures and Oxygen Partial Pressures. The Journal of Physical Chemistry C 2018, 122 (29) , 16788-16794. https://doi.org/10.1021/acs.jpcc.8b03787
  47. Guoxing Zhu, Xulan Xie, Xiaoyun Li, Yuanjun Liu, Xiaoping Shen, Keqiang Xu, Shaowei Chen. Nanocomposites Based on CoSe2-Decorated FeSe2 Nanoparticles Supported on Reduced Graphene Oxide as High-Performance Electrocatalysts toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (22) , 19258-19270. https://doi.org/10.1021/acsami.8b04024
  48. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  49. Qianqian Zhou, Ting-Ting Li, Jinjie Qian, Wei Xu, Yue Hu, Yue-Qing Zheng. CuO Nanorod Arrays Shelled with Amorphous NiFe Layered Double Hydroxide Film for Enhanced Electrocatalytic Water Oxidation Activity. ACS Applied Energy Materials 2018, 1 (3) , 1364-1373. https://doi.org/10.1021/acsaem.8b00076
  50. Helmut Schäfer, Marian Chatenet. Steel: The Resurrection of a Forgotten Water-Splitting Catalyst. ACS Energy Letters 2018, 3 (3) , 574-591. https://doi.org/10.1021/acsenergylett.8b00024
  51. Ziliang Chen, Yuan Ha, Yang Liu, Hao Wang, Hongyuan Yang, Hongbin Xu, Yanjun Li, and Renbing Wu . In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (8) , 7134-7144. https://doi.org/10.1021/acsami.7b18858
  52. Kewei Liu, Changlin Zhang, Yuandong Sun, Guanghui Zhang, Xiaochen Shen, Feng Zou, Haichang Zhang, Zhenwei Wu, Evan C. Wegener, Clinton J. Taubert, Jeffrey T. Miller, Zhenmeng Peng, and Yu Zhu . High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano 2018, 12 (1) , 158-167. https://doi.org/10.1021/acsnano.7b04646
  53. Akila C. Thenuwara, Nuwan H. Attanayake, Jie Yu, John P. Perdew, Evert J. Elzinga, Qimin Yan, and Daniel R. Strongin . Cobalt Intercalated Layered NiFe Double Hydroxides for the Oxygen Evolution Reaction. The Journal of Physical Chemistry B 2018, 122 (2) , 847-854. https://doi.org/10.1021/acs.jpcb.7b06935
  54. Gao-Feng Chen, Yaru Luo, Liang-Xin Ding, and Haihui Wang . Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. ACS Catalysis 2018, 8 (1) , 526-530. https://doi.org/10.1021/acscatal.7b03319
  55. Adam S. Batchellor, Gihan Kwon, Forrest A. L. Laskowski, David M. Tiede, and Shannon W. Boettcher . Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. The Journal of Physical Chemistry C 2017, 121 (45) , 25421-25429. https://doi.org/10.1021/acs.jpcc.7b10306
  56. Ashraf Abdel Haleem, Samit Majumder, Nagaraju Perumandla, Zaki N. Zahran, and Yoshinori Naruta . Enhanced Performance of Pristine Ta3N5 Photoanodes for Solar Water Splitting by Modification with Fe–Ni–Co Mixed-Metal Oxide Cocatalysts. The Journal of Physical Chemistry C 2017, 121 (37) , 20093-20100. https://doi.org/10.1021/acs.jpcc.7b04403
  57. Cuijuan Zhang, Xinyue Zhang, Katelynn Daly, Curtis P. Berlinguette, and Simon Trudel . Water Oxidation Catalysis: Tuning the Electrocatalytic Properties of Amorphous Lanthanum Cobaltite through Calcium Doping. ACS Catalysis 2017, 7 (9) , 6385-6391. https://doi.org/10.1021/acscatal.7b02145
  58. Haidong Yang, Yang Liu, Sha Luo, Ziming Zhao, Xiang Wang, Yutong Luo, Zhixiu Wang, Jun Jin, and Jiantai Ma . Lateral-Size-Mediated Efficient Oxygen Evolution Reaction: Insights into the Atomically Thin Quantum Dot Structure of NiFe2O4. ACS Catalysis 2017, 7 (8) , 5557-5567. https://doi.org/10.1021/acscatal.7b00007
  59. Xuan Liu, Bo You, and Yujie Sun . Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2017, 5 (6) , 4778-4784. https://doi.org/10.1021/acssuschemeng.7b00182
  60. Mikaela Görlin, Jorge Ferreira de Araújo, Henrike Schmies, Denis Bernsmeier, Sören Dresp, Manuel Gliech, Zenonas Jusys, Petko Chernev, Ralph Kraehnert, Holger Dau, and Peter Strasser . Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Journal of the American Chemical Society 2017, 139 (5) , 2070-2082. https://doi.org/10.1021/jacs.6b12250
  61. Kun Xu, Han Cheng, Linqi Liu, Haifeng Lv, Xiaojun Wu, Changzheng Wu, and Yi Xie . Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media. Nano Letters 2017, 17 (1) , 578-583. https://doi.org/10.1021/acs.nanolett.6b04732
  62. Jun Chi, Hongmei Yu, Bowen Qin, Li Fu, Jia Jia, Baolian Yi, and Zhigang Shao . Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (1) , 464-471. https://doi.org/10.1021/acsami.6b13360
  63. Chao Wang, Reza B. Moghaddam, Michael J. Brett, and Steven H. Bergens . Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 1106-1112. https://doi.org/10.1021/acssuschemeng.6b02391
  64. Gong Zhang, Guichang Wang, Yang Liu, Huijuan Liu, Jiuhui Qu, and Jinghong Li . Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society 2016, 138 (44) , 14686-14693. https://doi.org/10.1021/jacs.6b08491
  65. Mikaela Görlin, Petko Chernev, Jorge Ferreira de Araújo, Tobias Reier, Sören Dresp, Benjamin Paul, Ralph Krähnert, Holger Dau, and Peter Strasser . Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts. Journal of the American Chemical Society 2016, 138 (17) , 5603-5614. https://doi.org/10.1021/jacs.6b00332
  66. Lei Chen, Yunpeng Wang, Xin Zhao, Yuchao Wang, Qian Li, Qichen Wang, Yougen Tang, Yongpeng Lei. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. Journal of Materials Science & Technology 2022, 110 , 128-135. https://doi.org/10.1016/j.jmst.2021.08.083
  67. Houqiang Fan, Yuhao Ma, Weirui Chen, Yiming Tang, Laisheng Li, Jing Wang. Facile one-step electrodeposition of two-dimensional nickel-iron bimetallic sulfides for efficient electrocatalytic oxygen evolution. Journal of Alloys and Compounds 2022, 894 , 162533. https://doi.org/10.1016/j.jallcom.2021.162533
  68. Chen Qiao, Zahid Usman, Tai Cao, Souleymen Rafai, Zhitao Wang, Youqi Zhu, Chuanbao Cao, Jiatao Zhang. High-valence Ni and Fe sites on sulfated NiFe-LDH nanosheets to enhance O-O coupling for water oxidation. Chemical Engineering Journal 2021, 426 , 130873. https://doi.org/10.1016/j.cej.2021.130873
  69. Xinyu Du, Junling Guo, Mingpeng Chen, Weng-Chon Cheong, Yuyun Chen, Dong Liu, Shi Chen, Xuesen Wang, Kin Ho Lo, Jin-Song Hu, Hui Pan. Surface reconstruction on silver nanoparticles decorated trimetallic hydroxide nanosheets to generate highly active oxygen-deficient (oxy)hydroxide layer for high-efficient water oxidation. Chemical Engineering Journal 2021, 425 , 131662. https://doi.org/10.1016/j.cej.2021.131662
  70. Yanrong Xue, Mengyuan Liu, Yangyuanxiang Qin, Yufeng Zhang, Xuejiang Zhang, Jinjie Fang, Xu Zhang, Wei Zhu, Zhongbin Zhuang. Ultrathin NiFeS nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters 2021, 64 https://doi.org/10.1016/j.cclet.2021.11.085
  71. Shaoxuan Yang, Yihuan Yu, Xinjin Gao, Zhengping Zhang, Feng Wang. Recent advances in electrocatalysis with phthalocyanines. Chemical Society Reviews 2021, 50 (23) , 12985-13011. https://doi.org/10.1039/D0CS01605E
  72. Xiaocong Gu, Zong Liu, Meng Li, Jingqi Tian, Ligang Feng. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Applied Catalysis B: Environmental 2021, 297 , 120462. https://doi.org/10.1016/j.apcatb.2021.120462
  73. Xian Zhang, Mengtian Jin, Qing Lian, Ouwen Peng, Shuzhang Niu, Zhong Ai, Abbas Amini, Shaoxian Song, Chun Cheng. Ion modification of transition cobalt oxide by soaking strategy for enhanced water splitting. Chemical Engineering Journal 2021, 423 , 130218. https://doi.org/10.1016/j.cej.2021.130218
  74. Byeongyoon Kim, Mrinal Kanti Kabiraz, Jaewan Lee, Changhyeok Choi, Hionsuck Baik, Yousung Jung, Hyung-Suk Oh, Sang-Il Choi, Kwangyeol Lee. Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 2021, 4 (11) , 3585-3604. https://doi.org/10.1016/j.matt.2021.09.003
  75. Yan Li, Qizhao Wang, Xingsheng Hu, Yan Meng, Houde She, Lei Wang, Jingwei Huang, Gangqiang Zhu. Constructing NiFe-metal-organic frameworks from NiFe-layered double hydroxide as a highly efficient cocatalyst for BiVO4 photoanode PEC water splitting. Chemical Engineering Journal 2021, 281 , 133592. https://doi.org/10.1016/j.cej.2021.133592
  76. Hüseyin YILDIRIM. Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri. Afyon Kocatepe University Journal of Sciences and Engineering 2021, 21 (5) , 1027-1037. https://doi.org/10.35414/akufemubid.930848
  77. Fan Yang, Xingyuan Gao, Jinhao Xie, Xiaoqing Liu, Jiuxing Jiang, Xihong Lu. Cobalt‐Based Electrocatalysts as Air Cathodes in Rechargeable Zn–Air Batteries: Advances and Challenges. Small Structures 2021, 592 , 2100144. https://doi.org/10.1002/sstr.202100144
  78. Jooyoung Lee, Hyeonjung Jung, Yoo Sei Park, Seongwon Woo, Nayoung Kwon, Yaolong Xing, Sang Ho Oh, Sung Mook Choi, Jeong Woo Han, Byungkwon Lim. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chemical Engineering Journal 2021, 420 , 127670. https://doi.org/10.1016/j.cej.2020.127670
  79. Shuang Wang, Jinguang Cai, Chao Lv, Cun Hu, Hongtai Guan, Junqiang Wang, Yan Shi, Jiangfeng Song, Akira Watanabe, Xingbo Ge. General and scalable preparation of Prussian blue analogues on arbitrary conductive substrates and their derived metal phosphides as highly efficient and ultra-long-life bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal 2021, 420 , 129972. https://doi.org/10.1016/j.cej.2021.129972
  80. Behnam Nourmohammadi Khiarak, Mohammad Golmohammad, Mohammad Maleki Shahraki, Abdolreza Simchi. Facile synthesis and self-assembling of transition metal phosphide nanosheets to microspheres as a high-performance electrocatalyst for full water splitting. Journal of Alloys and Compounds 2021, 875 , 160049. https://doi.org/10.1016/j.jallcom.2021.160049
  81. Mengjie Liu, Kyung‐Ah Min, Byungchan Han, Lawrence Yoon Suk Lee. Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe‐Layered Double Hydroxide. Advanced Energy Materials 2021, 11 (33) , 2101281. https://doi.org/10.1002/aenm.202101281
  82. Behrooz Eftekharinia, Nader Sobhkhiz Vayghan, Ali Esfandiar, Ali Dabirian. Effect of film morphology on water oxidation enhancement in NiFeCo modified hematite photoanodes. Surface and Coatings Technology 2021, 421 , 127362. https://doi.org/10.1016/j.surfcoat.2021.127362
  83. Adil Amin Wani, Murtaza Manzoor Bhat, Feroz Ahmad Sofi, Sajad Ahmad Bhat, Pravin P. Ingole, Nusrat Rashid, Mohsin Ahmad Bhat. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2 O 2. New Journal of Chemistry 2021, 45 (34) , 15544-15554. https://doi.org/10.1039/D1NJ02383G
  84. Likun Gao, Xun Cui, Christopher D. Sewell, Jian Li, Zhiqun Lin. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews 2021, 50 (15) , 8428-8469. https://doi.org/10.1039/D0CS00962H
  85. Yanan Xie, Zhaoyu Zhou, Nianjun Yang, Guohua Zhao. An Overall Reaction Integrated with Highly Selective Oxidation of 5‐Hydroxymethylfurfural and Efficient Hydrogen Evolution. Advanced Functional Materials 2021, 31 (34) , 2102886. https://doi.org/10.1002/adfm.202102886
  86. Hongyuan Yang, Guoliang Dai, Ziliang Chen, Jie Wu, Hui Huang, Yang Liu, Mingwang Shao, Zhenhui Kang. Pseudo‐Periodically Coupling NiO Lattice with CeO Lattice in Ultrathin Heteronanowire Arrays for Efficient Water Oxidation. Small 2021, 17 (32) , 2101727. https://doi.org/10.1002/smll.202101727
  87. Shehnaz, Mati Ullah, Suzhen Ren, Ce Hao, Ghulam Mustafa. Designing three-dimensional hierarchical porous chrysanthemum flower-like CoNiFe2O4/carbon spheres as high-performance electrode for supercapacitors and oxygen reduction reaction. Journal of Materials Science: Materials in Electronics 2021, 32 (15) , 20306-20316. https://doi.org/10.1007/s10854-021-06536-8
  88. Sinwoo Kang, Kahyun Ham, Hyung-Kyu Lim, Jaeyoung Lee. Dischargeable nickel matrix charges iron species for oxygen evolution electrocatalysis. Electrochimica Acta 2021, 386 , 138401. https://doi.org/10.1016/j.electacta.2021.138401
  89. Shangkun Deng, Ziliang Li, Kang Xu, Zhu Liu, Zhuangzhuang Yin, Hai Yu, Jianguo Lv, Lei Yang, Zhaoqi Sun, Miao Zhang. Composition-Balanced Bi-Metallic MOFs Directly Grown on Nickel Foam for High-Efficiency Oxygen Evolution Reaction. Journal of The Electrochemical Society 2021, 168 (8) , 082504. https://doi.org/10.1149/1945-7111/ac18e6
  90. Fenghua Chen, Zhaoqian Zhang, Weiwei Liang, Xiaoyun Qin, Zhen Zhang, Liying Jiang. Synthesis of Co4S3/Co9S8 nanosheets and comparison study toward the OER properties induced by different metal ion doping. Chinese Chemical Letters 2021, 355 https://doi.org/10.1016/j.cclet.2021.08.019
  91. Seçil Öztürk, Gun‐hee Moon, Alex Spieß, Eko Budiyanto, Stefan Roitsch, Harun Tüysüz, Christoph Janiak. A Highly‐Efficient Oxygen Evolution Electrocatalyst Derived from a Metal‐Organic Framework and Ketjenblack Carbon Material. ChemPlusChem 2021, 86 (8) , 1106-1115. https://doi.org/10.1002/cplu.202100278
  92. Victor Charles, Abdulraheem Okehi Anumah, Kayode Adesina Adegoke, Morenike Oluwabunmi Adesina, Ikegwuonu P. Ebuka, Ndepana A. Gaya, Sunday Ogwuche, Mary Ohunene Yakubu. Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustainable Materials and Technologies 2021, 28 , e00252. https://doi.org/10.1016/j.susmat.2021.e00252
  93. Martin A. W. Schoen, Oliver Calderon, Nicholas M. Randell, Santiago Jimenez-Villegas, Katelynn M. Daly, Roman Chernikov, Simon Trudel. Local structural changes in polyamorphous (Ni,Fe)O x electrocatalysts suggest a dual-site oxygen evolution reaction mechanism. Journal of Materials Chemistry A 2021, 9 (22) , 13252-13262. https://doi.org/10.1039/D1TA02104D
  94. Xu Liu, Guangying Zhang, Lei Wang, Honggang Fu. Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery. Small 2021, 7 , 2006766. https://doi.org/10.1002/smll.202006766
  95. Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. Journal of Materials Science & Technology 2021, 77 , 108-116. https://doi.org/10.1016/j.jmst.2020.09.046
  96. Mabrook S. Amer, Prabhakarn Arunachalam, Mohamed A. Ghanem, Matar Al‐Shalwi, Ashfaq Ahmad, Abdulrahman I. Alharthi, Abdullah M. Al‐Mayouf. Synthesis of iron and vanadium co‐doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation. International Journal of Energy Research 2021, 45 (6) , 9422-9437. https://doi.org/10.1002/er.6471
  97. Behnam Nourmohammadi Khiarak, Mahdi Hasanzadeh, Abdolreza Simchi. Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks. Inorganic Chemistry Communications 2021, 127 , 108525. https://doi.org/10.1016/j.inoche.2021.108525
  98. Oscar E. Medina, Jaime Gallego, Sócrates Acevedo, Masoud Riazi, Raúl Ocampo-Pérez, Farid B. Cortés, Camilo A. Franco. Catalytic Conversion of n-C7 Asphaltenes and Resins II into Hydrogen Using CeO2-Based Nanocatalysts. Nanomaterials 2021, 11 (5) , 1301. https://doi.org/10.3390/nano11051301
  99. Haojie Wang, Cuijiao Zhao, Guozhong Wang, Haimin Zhang. In situ transformation of Fe-doped Ni 12 P 5 into low-crystallized NiFe 2 O 4 with high-spin Fe 4+ for efficient electrocatalytic water oxidation. Journal of Materials Chemistry A 2021, 9 (16) , 10289-10296. https://doi.org/10.1039/D1TA01310F
  100. Rinat Attias, Kalimuthu Vijaya Sankar, Kapil Dhaka, Wenjamin Moschkowitsch, Lior Elbaz, Maytal Caspary Toroker, Yoed Tsur. Optimization of Ni−Co−Fe‐Based Catalysts for Oxygen Evolution Reaction by Surface and Relaxation Phenomena Analysis. ChemSusChem 2021, 14 (7) , 1737-1746. https://doi.org/10.1002/cssc.202002946
Load more citations