RETURN TO ISSUEPREVResearch ArticleNEXT

Kinetics and Mechanism of Heterogeneous Water Oxidation by α-Mn2O3 Sintered on an FTO Electrode

View Author Information
Institute of Science and Technology Research, Chubu University, Kasugai 487-8501, Japan
Faculty of Science, Tanta University, Tanta, Egypt
§ JST ACT-C, Kawaguchi, Saitama 332-0012, Japan
Cite this: ACS Catal. 2016, 6, 7, 4470–4476
Publication Date (Web):June 2, 2016
https://doi.org/10.1021/acscatal.6b00413
Copyright © 2016 American Chemical Society
Article Views
1236
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (869 KB)
Supporting Info (1)»

Abstract

Kinetic studies of heterogeneous water oxidation by an α-Mn2O3/FTO electrocatalyst in nonaqueous (CH3CN/0.1 M n-Bu4NPF6 and DMF/0.1 M n-Bu4NPF6) and aqueous 0.1 M KPi (pH 7.0) solutions showed that the rate of water oxidation is first order in catalyst concentration and in H2O concentration. The square wave and cyclic voltammetry measurements reveal the stepwise proton-coupled electron transfer (PCET) oxidations of the active MnII–OH2 site to MnIII–OH and then to MnIV═O and finally an electron transfer oxidation of MnIV═O to MnV═O species. The MnV═O species undergoes a rate-limiting O atom transfer to H2O to give a MnIII–OOH2 species that, in turn, undergoes further oxidations to release O2.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b00413.

  • Experimental details for α-Mn2O3/FTO preparation and characterization and additional figures (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 26 publications.

  1. Assel Amirzhanova, Nesibe Akmanşen, Irmak Karakaya, Ömer Dag. Mesoporous MnCo2O4, NiCo2O4, and ZnCo2O4 Thin-Film Electrodes as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions. ACS Applied Energy Materials 2021, 4 (3) , 2769-2785. https://doi.org/10.1021/acsaem.1c00064
  2. Zaki N. Zahran, Eman A. Mohamed, Yuta Tsubonouchi, Manabu Ishizaki, Takanari Togashi, Masato Kurihara, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Concisely Synthesized FeNiWOx Film as a Highly Efficient and Robust Catalyst for Electrochemical Water Oxidation. ACS Applied Energy Materials 2021, 4 (2) , 1410-1420. https://doi.org/10.1021/acsaem.0c02628
  3. Ravi K. Kunchala, Pushpendra, Rimple Kalia, Boddu S. Naidu. Irregularly Shaped Mn2O3 Nanostructures with High Surface Area for Water Oxidation. ACS Applied Nano Materials 2021, 4 (1) , 396-405. https://doi.org/10.1021/acsanm.0c02747
  4. Lorenzo Bigiani, Chiara Maccato, Teresa Andreu, Alberto Gasparotto, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Joan Ramon Morante, Davide Barreca. Quasi-1D Mn2O3 Nanostructures Functionalized with First-Row Transition-Metal Oxides as Oxygen Evolution Catalysts. ACS Applied Nano Materials 2020, 3 (10) , 9889-9898. https://doi.org/10.1021/acsanm.0c01951
  5. Ping-Ping Liu, Yue-Qing Zheng, Hong-Lin Zhu, Ting-Ting Li. Mn2O3 Hollow Nanotube Arrays on Ni Foam as Efficient Supercapacitors and Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Nano Materials 2019, 2 (2) , 744-749. https://doi.org/10.1021/acsanm.8b01918
  6. Biaobiao Zhang, Hong Chen, Quentin Daniel, Bertrand Philippe, Fengshou Yu, Mario Valvo, Yuanyuan Li, Ram B. Ambre, Peili Zhang, Fei Li, Håkan Rensmo, and Licheng Sun . Defective and “c-Disordered” Hortensia-like Layered MnOx as an Efficient Electrocatalyst for Water Oxidation at Neutral pH. ACS Catalysis 2017, 7 (9) , 6311-6322. https://doi.org/10.1021/acscatal.7b00420
  7. Lorenzo Bigiani, Alberto Gasparotto, Teresa Andreu, Johan Verbeeck, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Juan Ramón Morante, Davide Barreca, Chiara Maccato. Au–Manganese Oxide Nanostructures by a Plasma‐Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemico‐Physical Investigation. Advanced Sustainable Systems 2021, 5 (11) , 2000177. https://doi.org/10.1002/adsu.202000177
  8. Zhaoyu Jin, Allen J. Bard. Surface Interrogation of Electrodeposited MnO x and CaMnO 3 Perovskites by Scanning Electrochemical Microscopy: Probing Active Sites and Kinetics for the Oxygen Evolution Reaction. Angewandte Chemie International Edition 2021, 60 (2) , 794-799. https://doi.org/10.1002/anie.202008052
  9. Zhaoyu Jin, Allen J. Bard. Surface Interrogation of Electrodeposited MnO x and CaMnO 3 Perovskites by Scanning Electrochemical Microscopy: Probing Active Sites and Kinetics for the Oxygen Evolution Reaction. Angewandte Chemie 2021, 133 (2) , 807-812. https://doi.org/10.1002/ange.202008052
  10. Hao Guo, Zhixiang Zhang, Zhi Jiang, Mingxia Chen, Hisahiro Einaga, Wenfeng Shangguan. Catalytic activity of porous manganese oxides for benzene oxidation improved via citric acid solution combustion synthesis. Journal of Environmental Sciences 2020, 98 , 196-204. https://doi.org/10.1016/j.jes.2020.06.008
  11. Sunghak Park, Yoon Ho Lee, Seungwoo Choi, Hongmin Seo, Moo Young Lee, Mani Balamurugan, Ki Tae Nam. Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy & Environmental Science 2020, 13 (8) , 2310-2340. https://doi.org/10.1039/D0EE00815J
  12. Irmak Karakaya, Ferdi Karadas, Burak Ulgut, Ömer Dag. Modification of Mesoporous LiMn 2 O 4 and LiMn 2− x Co x O 4 by SILAR Method for Highly Efficient Water Oxidation Electrocatalysis. Advanced Materials Technologies 2020, 5 (8) , 2000353. https://doi.org/10.1002/admt.202000353
  13. Manjodh Kaur, Manjeet Chhetri, C. N. R. Rao. Photoelectrochemical OER activity by employing BiVO 4 with manganese oxide co-catalysts. Physical Chemistry Chemical Physics 2020, 22 (2) , 811-817. https://doi.org/10.1039/C9CP05293C
  14. Prashanth W. Menezes, Carsten Walter, Jan Niklas Hausmann, Rodrigo Beltrán‐Suito, Christopher Schlesiger, Sebastian Praetz, Valeriy Yu. Verchenko, Andrei V. Shevelkov, Matthias Driess. Steigerung der Wasseroxidation durch In‐situ‐Elektrokonversion eines Mangangallids: Ein intermetallischer Vorläuferansatz. Angewandte Chemie 2019, 131 (46) , 16722-16727. https://doi.org/10.1002/ange.201909904
  15. Prashanth W. Menezes, Carsten Walter, Jan Niklas Hausmann, Rodrigo Beltrán‐Suito, Christopher Schlesiger, Sebastian Praetz, Valeriy Yu. Verchenko, Andrei V. Shevelkov, Matthias Driess. Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach. Angewandte Chemie International Edition 2019, 58 (46) , 16569-16574. https://doi.org/10.1002/anie.201909904
  16. William Elliott, Reza Salemmilani, Syed Mubeen, Carl D. Meinhart, Galen D. Stucky, Martin Moskovits. Changes in the structure of electrodeposited manganese oxide water oxidation catalysts revealed by in-operando Raman spectroscopy. Journal of Catalysis 2019, 371 , 287-290. https://doi.org/10.1016/j.jcat.2019.02.009
  17. Hongyu An, Zheng Chen, Jingxiu Yang, Zhaochi Feng, Xiuli Wang, Fengtao Fan, Can Li. An Operando-Raman study on oxygen evolution of manganese oxides: Roles of phase composition and amorphization. Journal of Catalysis 2018, 367 , 53-61. https://doi.org/10.1016/j.jcat.2018.08.007
  18. Ping-Ping Liu, Ting-Ting Li, Hong-Lin Zhu, Yue-Qing Zheng. Manganese oxide with hollow rambutan-like morphology as highly efficient electrocatalyst for oxygen evolution reaction. Journal of Solid State Electrochemistry 2018, 22 (10) , 2999-3007. https://doi.org/10.1007/s10008-018-4014-z
  19. Qiong Zhang, Dongdong Liu, Cancan Zhang, Yang Tian. Cation-exchange-inducing MnNi-spinel nanocage/rGO as efficient electrocatalysts for water oxidation. Electrochimica Acta 2018, 280 , 266-277. https://doi.org/10.1016/j.electacta.2018.05.131
  20. Biaobiao Zhang, Quentin Daniel, Lizhou Fan, Tianqi Liu, Qijun Meng, Licheng Sun. Identifying MnVII-oxo Species during Electrochemical Water Oxidation by Manganese Oxide. iScience 2018, 4 , 144-152. https://doi.org/10.1016/j.isci.2018.05.018
  21. Jiabin Pang, Fenglian Fu, Zecong Ding, Jianwei Lu, Na Li, Bing Tang. Adsorption behaviors of methylene blue from aqueous solution on mesoporous birnessite. Journal of the Taiwan Institute of Chemical Engineers 2017, 77 , 168-176. https://doi.org/10.1016/j.jtice.2017.04.041
  22. Eman A. Mohamed, Zaki N. Zahran, Yoshinori Naruta. Covalent bonds immobilization of cofacial Mn porphyrin dimers on an ITO electrode for efficient water oxidation in aqueous solutions. Journal of Catalysis 2017, 352 , 293-299. https://doi.org/10.1016/j.jcat.2017.05.018
  23. Samir Bensaid, Carminna Ottone Melis, Simelys Hernández, Marco Armandi, Serena Esposito, Guido Saracco, Barbara Bonelli. A simple model for a complex system: Kinetics of water oxidation with the [Ru(bpy) 3 ] 2+ /S 2 O 8 2− photosystem as catalyzed by Mn 2 O 3 under different illumination conditions. Chemical Engineering Journal 2017, 311 , 143-152. https://doi.org/10.1016/j.cej.2016.11.087
  24. Mohammad Mahdi Najafpour, Navid Jameei Moghaddam, Seyedeh Maedeh Hosseini, Sepideh Madadkhani, Małgorzata Hołyńska, Somayeh Mehrabani, Robabeh Bagheri, Zhenlun Song. Nanolayered manganese oxides: insights from inorganic electrochemistry. Catalysis Science & Technology 2017, 7 (16) , 3499-3510. https://doi.org/10.1039/C7CY00215G
  25. Bruce M. Johnson, Robert Francke, R. Daniel Little, Louise A. Berben. High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator. Chemical Science 2017, 8 (9) , 6493-6498. https://doi.org/10.1039/C7SC02482G
  26. Zaki N. Zahran, Eman A. Mohamed, Yoshinori Naruta. Electrocatalytic water oxidation at low energy cost by a highly active and robust calcium–manganese oxide thin film sintered on an FTO electrode with ethyl methyl imidazolium triflate ionic liquid. Journal of Materials Chemistry A 2017, 5 (29) , 15167-15174. https://doi.org/10.1039/C7TA03665E