Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes

View Author Information
Department of Materials Science WW4, LKO, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569, Saudi Arabia
*E-mail: [email protected]. Tel.: +49 91318517575. Fax: +49 9131 852 7582.
Cite this: ACS Catal. 2017, 7, 5, 3210–3235
Publication Date (Web):March 22, 2017
https://doi.org/10.1021/acscatal.6b03709
Copyright © 2017 American Chemical Society
Article Views
5135
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

Photocatalytic reactions on TiO2 have recently gained an enormous resurgence because of various new strategies and findings that promise to drastically increase efficiency and specificity of such reactions by modifications of the titania scaffold and chemistry. In view of geometry, in particular, anodic TiO2 nanotubes have attracted wide interest, as they allow a high degree of control over the separation of photogenerated charge carriers not only in photocatalytic reactions but also in photoelectrochemical reactions. A key advantage of ordered nanotube arrays is that nanotube modifications can be embedded site specifically into the tube wall; that is, cocatalysts, doping species, or junctions can be placed at highly defined desired locations (or with a desired regular geometry or pattern) along the tube wall. This allows an unprecedented level of engineering of energetics of reaction sites for catalytic and photocatalytic reactions, which target not only higher efficiencies but also the selectivity of reactions. Many recent tube alterations are of a morphologic nature (mesoporous structures, designed faceted crystallites, hybrids, or 1D structures), but a number of color-coded (namely, black, blue, red, green, gray) modifications have attracted wide interest because of the extension of the light absorption spectrum of titania in the visible range and because unique catalytic activity can be induced. The present Perspective gives an overview of TiO2 nanotubes in photocatalysis with an emphasis on the most recent advances in the use of nanotube arrays and discusses the underlying concepts in tailoring their photocatalytic reactivity.

Cited By


This article is cited by 167 publications.

  1. Siew Yee Lim, Carina Hedrich, Lin Jiang, Cheryl Suwen Law, Manohar Chirumamilla, Andrew D. Abell, Robert H. Blick, Robert Zierold, Abel Santos. Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catalysis 2021, 11 (21) , 12947-12962. https://doi.org/10.1021/acscatal.1c03320
  2. Živa Marinko, Luka Suhadolnik, Barbara Šetina Batič, Vid Simon Šelih, Boris Majaron, Janez Kovač, Miran Čeh. Toward a Flexible and Efficient TiO2 Photocatalyst Immobilized on a Titanium Foil. ACS Omega 2021, 6 (36) , 23233-23242. https://doi.org/10.1021/acsomega.1c02862
  3. Shubham Biswas, Ha-Young Lee, Manohar Prasad, Abhishek Sharma, Jong-Sung Yu, Siddhartha Sengupta, Devendra Deo Pathak, Apurba Sinhamahapatra. Black TiO2–x Nanoparticles Decorated with Ni Nanoparticles and Trace Amounts of Pt Nanoparticles for Photocatalytic Hydrogen Generation. ACS Applied Nano Materials 2021, 4 (5) , 4441-4451. https://doi.org/10.1021/acsanm.0c03484
  4. Ming Qiao, Jianfeng Yan, Liangti Qu, Bingquan Zhao, Jiangang Yin, Tianhong Cui, Lan Jiang. Femtosecond Laser Induced Phase Transformation of TiO2 with Exposed Reactive Facets for Improved Photoelectrochemistry Performance. ACS Applied Materials & Interfaces 2020, 12 (37) , 41250-41258. https://doi.org/10.1021/acsami.0c10026
  5. Marcin Pisarek, Mirosław Krawczyk, Marcin Hołdyński, Wojciech Lisowski. Plasma Nitriding of TiO2 Nanotubes: N-Doping in Situ Investigations Using XPS. ACS Omega 2020, 5 (15) , 8647-8658. https://doi.org/10.1021/acsomega.0c00094
  6. Luka Suhadolnik, Živa Marinko, Maja Ponikvar-Svet, Gašper Tavčar, Janez Kovač, Miran Čeh. Influence of Anodization-Electrolyte Aging on the Photocatalytic Activity of TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 2020, 124 (7) , 4073-4080. https://doi.org/10.1021/acs.jpcc.9b09522
  7. Stefano Lettieri, Valentina Gargiulo, Michela Alfè, Matteo Amati, Patrick Zeller, Valentin-Adrian Maraloiu, Fabio Borbone, Michele Pavone, Ana B. Muñoz-García, Pasqualino Maddalena. Simple Ethanol Refluxing Method for Production of Blue-Colored Titanium Dioxide with Oxygen Vacancies and Visible Light-Driven Photocatalytic Properties. The Journal of Physical Chemistry C 2020, 124 (6) , 3564-3576. https://doi.org/10.1021/acs.jpcc.9b08993
  8. Juan Hao, Wenwen Zhan, Liming Sun, Guilin Zhuang, Xiaojun Wang, Xiguang Han. Combining N,S-Codoped C and CeO2: A Unique Hinge-like Structure for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry 2020, 59 (1) , 937-942. https://doi.org/10.1021/acs.inorgchem.9b03204
  9. Meng Du, Shiyu Zhang, Zipeng Xing, Zhenzi Li, Junwei Yin, Jinlong Zou, Qi Zhu, Wei Zhou. All-Solid Z-Scheme Bi–BiOCl/AgCl Heterojunction Microspheres for Improved Electron–Hole Separation and Enhanced Visible Light-Driven Photocatalytic Performance. Langmuir 2019, 35 (24) , 7887-7895. https://doi.org/10.1021/acs.langmuir.9b00581
  10. Maximilian Domaschke, Xuemei Zhou, Lukas Wergen, Stefan Romeis, Matthias E. Miehlich, Karsten Meyer, Wolfgang Peukert, Patrik Schmuki. Magnéli-Phases in Anatase Strongly Promote Cocatalyst-Free Photocatalytic Hydrogen Evolution. ACS Catalysis 2019, 9 (4) , 3627-3632. https://doi.org/10.1021/acscatal.9b00578
  11. Chengzhang Zhu, Yuting Wang, Zhifeng Jiang, Annai Liu, Yu Pu, Qiming Xian, Weixin Zou, Cheng Sun. Ultrafine Bi3TaO7 Nanodot-Decorated V, N Codoped TiO2 Nanoblocks for Visible-Light Photocatalytic Activity: Interfacial Effect and Mechanism Insight. ACS Applied Materials & Interfaces 2019, 11 (13) , 13011-13021. https://doi.org/10.1021/acsami.9b00903
  12. Alberto Naldoni, Marco Altomare, Giorgio Zoppellaro, Ning Liu, Štěpán Kment, Radek Zbořil, Patrik Schmuki. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catalysis 2019, 9 (1) , 345-364. https://doi.org/10.1021/acscatal.8b04068
  13. Jing Wu, Da Li, Jia Liu, Chao Li, Zeng Li, Bruce E. Logan, Yujie Feng. Enhanced Charge Separation of TiO2 Nanotubes Photoelectrode for Efficient Conversion of CO2. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 12953-12960. https://doi.org/10.1021/acssuschemeng.8b02375
  14. Haidong Bian, Nhat Truong Nguyen, JeongEun Yoo, Seyedsina Hejazi, Shiva Mohajernia, Julian Müller, Erdmann Spiecker, Hiroaki Tsuchiya, Ondrej Tomanec, Beatriz E. Sanabria-Arenas, Radek Zboril, Yang Yang Li, Patrik Schmuki. Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO2 Nanotubes Directly During Anodic Growth. ACS Applied Materials & Interfaces 2018, 10 (21) , 18220-18226. https://doi.org/10.1021/acsami.8b03713
  15. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  16. Nagappagari Lakshmana Reddy, Kanakkampalayam Krishnan Cheralathan, Valluri Durga Kumari, Bernaurdshaw Neppolian, Shankar Muthukonda Venkatakrishnan. Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen Generation Using Ni(OH)2 Decorated TiO2 Nanotubes under Solar Light Irradiation. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 3754-3764. https://doi.org/10.1021/acssuschemeng.7b04118
  17. Jiaqi Tang, Xiang Wang, Jiaxu Zhang, Jing Wang, Wanjian Yin, Dong-Sheng Li, Tao Wu. A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24510-0
  18. Jingtao Bi, Qingqing Tao, Xin Huang, Jingkang Wang, Ting Wang, Hongxun Hao. Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. Chemosphere 2021, 284 , 131270. https://doi.org/10.1016/j.chemosphere.2021.131270
  19. Yingtao Zhu, Long Zhang, Lijian Li, Chen Zhao, Jiayin Li, Jinglin Zhang. Explaining improved photocatalytic activity of Double-walled TiO2 Nanotube: A hybrid density functional calculation. Applied Surface Science 2021, 570 , 151021. https://doi.org/10.1016/j.apsusc.2021.151021
  20. M.V. Dozzi, M. Montalbano, G. Marra, L. Mino, E. Selli. Effects of anatase TiO2 morphology and surface fluorination on environmentally relevant photocatalytic reduction and oxidation reactions. Materials Today Chemistry 2021, 22 , 100624. https://doi.org/10.1016/j.mtchem.2021.100624
  21. Yingjie Xu, Qi Zhang, Guiyu Jiang, Hongying Xia, Wuchen Cai, Heng Yan. Activated Carbon Loaded with Ti3+ Self-Doped TiO2 Composite Material Prepared by Microwave Method. Journal of Materials Engineering and Performance 2021, 276 https://doi.org/10.1007/s11665-021-06421-9
  22. Johannes Will, Ewa Wierzbicka, Mingjian Wu, Klaus Götz, Tadahiro Yokosawa, Ning Liu, Alexander B. Tesler, Markus Stiller, Tobias Unruh, Marco Altomare, Patrik Schmuki, Erdmann Spiecker. Hydrogenated anatase TiO 2 single crystals: defects formation and structural changes as microscopic origin of co-catalyst free photocatalytic H 2 evolution activity. Journal of Materials Chemistry A 2021, 9 (44) , 24932-24942. https://doi.org/10.1039/D1TA04809K
  23. Xia Li, Xiaoming Ma, Xianjun Lang. Blue light-powered hydroxynaphthoic acid-titanium dioxide photocatalysis for the selective aerobic oxidation of amines. Journal of Colloid and Interface Science 2021, 602 , 534-543. https://doi.org/10.1016/j.jcis.2021.06.008
  24. Rong Hu, Wei-Hua Xie, Hong-Yan Wang, Xin-Ai Guo, Hua-Ming Sun, Cheng-Bo Li, Xue-Peng Zhang, Rui Cao. Visible Light-driven Carbon-Carbon Reductive Coupling of Aromatic Ketones Activated by Ni-doped CdS Quantum Dots: An Insight into the Mechanism. Applied Catalysis B: Environmental 2021, 10 , 120946. https://doi.org/10.1016/j.apcatb.2021.120946
  25. Amir H. Navidpour, Ahmad Hosseinzadeh, John L. Zhou, Zhenguo Huang. Progress in the application of surface engineering methods in immobilizing TiO 2 and ZnO coatings for environmental photocatalysis. Catalysis Reviews 2021, 8 , 1-52. https://doi.org/10.1080/01614940.2021.1983066
  26. Chan‐Geun Song, Jonghan Won, Inhoon Jang, Hyeunseok Choi. Fabrication of high‐efficiency anatase TiO 2 photocatalysts using electrospinning with ultra‐violet treatment. Journal of the American Ceramic Society 2021, 104 (9) , 4398-4407. https://doi.org/10.1111/jace.17842
  27. Jiayi Li, Ying Huang, Minhua Su, Yuying Xie, Diyun Chen. Dual light-driven p-ZnFe2O4/n-TiO2 catalyst: Benzene-breaking reaction for malachite green. Environmental Research 2021, 189 , 112081. https://doi.org/10.1016/j.envres.2021.112081
  28. Hong‐jian Zhao, Ren‐Jang Wu, Zhe Yu, Xin‐ning Han, Wen‐Xia Zhao, Fu Ma. Synthesis of BiPO 4 / SnO 2 heterojunction for the photocatalytic degradation of RhB under visible light emitting diode irradiation. Journal of the Chinese Chemical Society 2021, 68 (9) , 1663-1672. https://doi.org/10.1002/jccs.202000464
  29. Astrid Kupferer, Alexander Holm, Andriy Lotnyk, Stephan Mändl, Stefan G. Mayr. Compositional Patterning in Carbon Implanted Titania Nanotubes. Advanced Functional Materials 2021, 31 (35) , 2104250. https://doi.org/10.1002/adfm.202104250
  30. Sifan Xu, Tingting Zhao, Lingwei Kong, Wenhuan Zhu, Maolin Bo, Yizhong Huang, Hai Liu. Gas-solid interfacial charge transfer in volatile organic compound detection by CuCrO 2 nanoparticles. Nanotechnology 2021, 32 (31) , 315501. https://doi.org/10.1088/1361-6528/abfa55
  31. Shanshan Qin, Hyesung Kim, Nikita Denisov, Dominik Fehn, Jochen Schmidt, Karsten Meyer, Patrik Schmuki. Grey facet-controlled anatase nanosheets for photocatalytic H 2 evolution without co-catalyst. Journal of Physics: Energy 2021, 3 (3) , 034003. https://doi.org/10.1088/2515-7655/abd5a8
  32. Junxing Liu, Heongwon Suh, Hyeonseok Jee, Jiahao Xu, Erfan Zal Nezhad, Chang-Sik Choi, Sungchul Bae. Synergistic effect of carbon nanotube/TiO2 nanotube multi-scale reinforcement on the mechanical properties and hydration process of portland cement paste. Construction and Building Materials 2021, 293 , 123447. https://doi.org/10.1016/j.conbuildmat.2021.123447
  33. Hugues Kamdem Paumo, Sadou Dalhatou, Lebogang Maureen Katata-Seru, Boniface Pone Kamdem, Jimoh Oladejo Tijani, Venkataraman Vishwanathan, Abdoulaye Kane, Indra Bahadur. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. Journal of Molecular Liquids 2021, 331 , 115458. https://doi.org/10.1016/j.molliq.2021.115458
  34. Majid Mollavali, Sohrab Rohani, Mohammadreza Elahifard, Reza Behjatmanesh-Ardakani, Mohammad Nourany. Band gap reduction of (Mo+N) co-doped TiO2 nanotube arrays with a significant enhancement in visible light photo-conversion: A combination of experimental and theoretical study. International Journal of Hydrogen Energy 2021, 46 (41) , 21475-21498. https://doi.org/10.1016/j.ijhydene.2021.03.249
  35. Maria Antoniadou, Pinelopi P. Falara, Vlassis Likodimos. Photocatalytic degradation of pharmaceuticals and organic contaminants of emerging concern using nanotubular structures. Current Opinion in Green and Sustainable Chemistry 2021, 29 , 100470. https://doi.org/10.1016/j.cogsc.2021.100470
  36. Dan Du, Xiuhua Wei, Jie Huang, Yifeng Tu. Real-time monitoring of ROS secreted by Ana-1 mouse Macrophages by nanomaterial sensitized Electrochemiluminescence. Journal of Electroanalytical Chemistry 2021, 889 , 115230. https://doi.org/10.1016/j.jelechem.2021.115230
  37. Sara Amouzad, Mehdi Khosravi, Niaz Monadi, Behzad Haghighi, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Photo-electrochemistry of metallic titanium/mixed phase titanium oxide. International Journal of Hydrogen Energy 2021, 46 (37) , 19433-19445. https://doi.org/10.1016/j.ijhydene.2021.03.106
  38. Zahra Khalilian, Alireza Najafi Chermahini, Mohamad Mohsen Momeni, Jaleh Najafi Sarpiri, Majid Motalebian. A new catalytic system for oxidative desulfurization of model diesel by hierarchical TiO2 nanotube arrays on titanium foil. Journal of Porous Materials 2021, 28 (2) , 629-640. https://doi.org/10.1007/s10934-020-01021-9
  39. Stefano Lettieri, Michele Pavone, Ambra Fioravanti, Luigi Santamaria Amato, Pasqualino Maddalena. Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials 2021, 14 (7) , 1645. https://doi.org/10.3390/ma14071645
  40. Quang Nguyen, Jae Kwon. Effect of TiO2 nanotube phases and Pt contact morphologies on the properties of Schottky junction. Materials Letters 2021, 284 , 128976. https://doi.org/10.1016/j.matlet.2020.128976
  41. Yanir Kadosh, Eli Korin, Armand Bettelheim. Room-temperature conversion of the photoelectrochemical oxidation of methane into electricity at nanostructured TiO 2. Sustainable Energy & Fuels 2021, 5 (1) , 127-134. https://doi.org/10.1039/D0SE00984A
  42. Fan Fu, Gihoon Cha, Zhenni Wu, Shanshan Qin, Yan Zhang, Yuyue Chen, Patrik Schmuki. Photocatalytic Hydrogen Generation from Water‐Annealed TiO 2 Nanotubes with White and Grey Modification. ChemElectroChem 2021, 8 (1) , 240-245. https://doi.org/10.1002/celc.202001517
  43. Stalin Joseph, Gopalan Saianand, Mercy R. Benzigar, Kavitha Ramadass, Gurwinder Singh, Anantha‐Iyengar Gopalan, Jae Hun Yang, Toshiyuki Mori, Ala'a H. Al‐Muhtaseb, Jiabao Yi, Ajayan Vinu. Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. Advanced Sustainable Systems 2021, 5 (1) , 2000169. https://doi.org/10.1002/adsu.202000169
  44. P. Bamola, S. Rawat, C. Dwivedi, M. Sharma, B. Singh, H. Sharma. Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticles grafted 1D-TiO2 nanotubes. Journal of Materials Science: Materials in Electronics 2021, 32 (2) , 1427-1444. https://doi.org/10.1007/s10854-020-04914-2
  45. Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu, Mohammad B. Kassim. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy 2021, 46 (7) , 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
  46. Weichong Kong, Yunlong Zhao, Jingyue Xuan, Zhaotan Gao, Jun Wang, Shugang Tan, Fuchao Jia, Zhaolong Teng, Meiling Sun, Guangchao Yin. Synchronous etching and W-doping for 3D CdS/ZnO/TiO2 hierarchical heterostructure photoelectrodes to significantly enhance the photoelectrochemical performance. Applied Surface Science 2021, 537 , 147998. https://doi.org/10.1016/j.apsusc.2020.147998
  47. Ankita Yadav, Harish Kumar, Rahul Sharma, Rajni Kumari. Influence of polyaniline on the photocatalytic properties of metal nanocomposites: A review. Colloid and Interface Science Communications 2021, 40 , 100339. https://doi.org/10.1016/j.colcom.2020.100339
  48. Yuanzheng Zhang, Xiang Chen, Siyao Zhang, Lifeng Yin, Yang Yang. Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm. Chemical Engineering Journal 2020, 401 , 126033. https://doi.org/10.1016/j.cej.2020.126033
  49. Andjelika Bjelajac, Rada Petrović, Jelena Vujancevic, Katerina Veltruska, Vladimir Matolin, Zdravko Siketic, George Provatas, Milko Jaksic, George E. Stan, Gabriel Socol, Ion N. Mihailescu, Djordje Janaćković. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. Journal of Physics and Chemistry of Solids 2020, 147 , 109609. https://doi.org/10.1016/j.jpcs.2020.109609
  50. Junxing Liu, Hyeonseok Jee, Myungkwan Lim, Joo Kim, Seung Kwon, Kwang Lee, Erfan Zal Nezhad, Sungchul Bae. Photocatalytic Performance Evaluation of Titanium Dioxide Nanotube-Reinforced Cement Paste. Materials 2020, 13 (23) , 5423. https://doi.org/10.3390/ma13235423
  51. Feng Ouyang, Hanliang Li, Zhengya Gong, Dandan Pang, Lu Qiu, Yun Wang, Fangwei Dai, Gang Cao, Bandna Bharti. Photocatalytic degradation of industrial acrylonitrile wastewater by F–S–Bi–TiO2 catalyst of ultrafine nanoparticles dispersed with SiO2 under natural sunlight. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69012-z
  52. Jun Chen, Yanlong Fu, Fang Sun, Zhengguang Hu, Xing Wang, Ting Zhang, Fengshou Zhang, Xiaoling Wu, Haisheng Chen, Guoan Cheng, Ruiting Zheng. Oxygen vacancies and phase tuning of self-supported black TiO2-X nanotube arrays for enhanced sodium storage. Chemical Engineering Journal 2020, 400 , 125784. https://doi.org/10.1016/j.cej.2020.125784
  53. Xinghou He, Anzhi Wang, Pian Wu, Shibiao Tang, Yong Zhang, Lei Li, Ping Ding. Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of The Total Environment 2020, 743 , 140694. https://doi.org/10.1016/j.scitotenv.2020.140694
  54. Cédric Marien, Marie Le Pivert, Ahmad Dirany, Patrick Drogui, Thomas Cottineau, Didier Robert. Upscaling Anodic Synthesis of TiO 2 Nanotubes Film as Potential Material for Photoelectrocatalytic Applications: Influence of Electrolyte Overheating and Aging on Nanotube Morphology and Stability. Journal of Photocatalysis 2020, 1 (1) , 43-49. https://doi.org/10.2174/2665976X01999200603164023
  55. Zepeng Rao, Gansheng Shi, Zhuang Wang, Asad Mahmood, Xiaofeng Xie, Jing Sun. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths. Chemical Engineering Journal 2020, 395 , 125078. https://doi.org/10.1016/j.cej.2020.125078
  56. Nikita Denisov, Shanshan Qin, Gihoon Cha, JeongEun Yoo, Patrik Schmuki. Photoelectrochemical properties of “increasingly dark” TiO2 nanotube arrays. Journal of Electroanalytical Chemistry 2020, 872 , 114098. https://doi.org/10.1016/j.jelechem.2020.114098
  57. Y. Li, S.C.E. Tsang. Recent progress and strategies for enhancing photocatalytic water splitting. Materials Today Sustainability 2020, 9 , 100032. https://doi.org/10.1016/j.mtsust.2020.100032
  58. Laura Razzaboni, Marco Altomare, Mariapia Pedeferri, Maria Vittoria Diamanti, Patrik Schmuki. Hierarchical Anodic TiO 2 Nanostructures Formed in Ethylene Glycol/o‐H 3 PO 4 Electrolytes for Direct Photocatalysis. ChemElectroChem 2020, 7 (13) , 2859-2863. https://doi.org/10.1002/celc.202000673
  59. Ruimin Hu, Tao Fan, Jinlong Yang, Hang Xiao, Yiping Liu, Ming Lu. Ultrasound and microwave technology for flake-TiO2 growth and immobilization on cotton fabrics in micro-dissolution process. Materials Chemistry and Physics 2020, 249 , 123036. https://doi.org/10.1016/j.matchemphys.2020.123036
  60. Theint Hay Mar Wint, Michael F. Smith, Narong Chanlek, Fuming Chen, Than Zaw Oo, Prayoon Songsiriritthigul. Physical Origin of Diminishing Photocatalytic Efficiency for Recycled TiO2 Nanotubes and Ag-Loaded TiO2 Nanotubes in Organic Aqueous Solution. Catalysts 2020, 10 (7) , 737. https://doi.org/10.3390/catal10070737
  61. Živa Marinko, Luka Suhadolnik, Zoran Samardžija, Janez Kovač, Miran Čeh. The Influence of a Surface Treatment of Metallic Titanium on the Photocatalytic Properties of TiO2 Nanotubes Grown by Anodic Oxidation. Catalysts 2020, 10 (7) , 803. https://doi.org/10.3390/catal10070803
  62. Yudong Xue, Yunting Wang. A review of the α-Fe 2 O 3 (hematite) nanotube structure: recent advances in synthesis, characterization, and applications. Nanoscale 2020, 12 (20) , 10912-10932. https://doi.org/10.1039/D0NR02705G
  63. Xuemei Zhou, Linxiao Chen, George E. Sterbinsky, Debangshu Mukherjee, Raymond R. Unocic, Steven L. Tait. Pt-Ligand single-atom catalysts: tuning activity by oxide support defect density. Catalysis Science & Technology 2020, 10 (10) , 3353-3365. https://doi.org/10.1039/C9CY02594D
  64. A. V. Baglov, L. S. Khoroshko, P. A. Yatskevich. Optimization of two-scale oxide structure configuration for photocatalytic applications. Doklady BGUIR 2020, 18 (3) , 42-48. https://doi.org/10.35596/1729-7648-2020-18-3-42-48
  65. P. Bamola, C. Dwivedi, A. Gautam, M. Sharma, S. Tripathy, A. Mishra, H. Sharma. Strain-induced bimetallic nanoparticles-TiO2 nanohybrids for harvesting light energy. Applied Surface Science 2020, 511 , 145416. https://doi.org/10.1016/j.apsusc.2020.145416
  66. Hanxia Liu, Yongjie Zhang, Rong Yi, Rulin Li, Hui Deng. Nonaqueous synthesis of TiO2 nanorods using inductively coupled plasma. Ceramics International 2020, 46 (7) , 8615-8624. https://doi.org/10.1016/j.ceramint.2019.12.093
  67. Mansour Sarafraz, Morteza Sadeghi, Ahmadreza Yazdanbakhsh, Mostafa M. Amini, Mohsen Sadani, Akbar Eslami. Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment. Process Safety and Environmental Protection 2020, 137 , 261-272. https://doi.org/10.1016/j.psep.2020.02.030
  68. Jun Ma, Boyou Wang, Zhe Gong, Xiande Yang, Yongqian Wang. Morphology-controllable synthesis and application of TiO 2 nanotube arrays with “photocatalysis and self-cleaning” synergism. New Journal of Chemistry 2020, 44 (15) , 5774-5783. https://doi.org/10.1039/D0NJ00743A
  69. Pratyush Mishra, Kurt R. Hebert. Self-organization of anodic aluminum oxide layers by a flow mechanism. Electrochimica Acta 2020, 340 , 135879. https://doi.org/10.1016/j.electacta.2020.135879
  70. Shuhui Zhou, Shikai Liu, Kai Su, Kunlun Jia. Graphite carbon nitride coupled S-doped hydrogenated TiO2 nanotube arrays with improved photoelectrochemical performance. Journal of Electroanalytical Chemistry 2020, 862 , 114008. https://doi.org/10.1016/j.jelechem.2020.114008
  71. Shang Gao, Ran Lu, Xin Wang, Joshua Chou, Na Wang, Xiaochen Huai, Caiyun Wang, Yu Zhao, Su Chen. Immune response of macrophages on super-hydrophilic TiO 2 nanotube arrays. Journal of Biomaterials Applications 2020, 34 (9) , 1239-1253. https://doi.org/10.1177/0885328220903249
  72. Yanyu Ren, Xiumin Shi, Pengcheng Xia, Shuang Li, Mingyang Lv, Yunxin Wang, Zhu Mao. In Situ Raman Investigation of TiO2 Nanotube Array-Based Ultraviolet Photodetectors: Effects of Nanotube Length. Molecules 2020, 25 (8) , 1854. https://doi.org/10.3390/molecules25081854
  73. Xiaoming Ma, Xianjun Lang. Titanate nanotube confined merger of organic photocatalysis and TEMPO catalysis for highly selective aerobic oxidation of sulfides. Sustainable Energy & Fuels 2020, 4 (4) , 1754-1763. https://doi.org/10.1039/C9SE01265F
  74. Jian-Feng Li, Jian Wang, Xiao-Tian Wang, Xiao-Gang Wang, Yan Li, Cheng-Wei Wang. Bandgap engineering of TiO 2 nanotube photonic crystals for enhancement of photocatalytic capability. CrystEngComm 2020, 22 (11) , 1929-1938. https://doi.org/10.1039/C9CE01828J
  75. Panudda Patiphatpanya, Anukorn Phuruangrat, Somchai Thongtem, Phattranit Dumrongrojthanath, Titipun Thongtem. The Influence of pH on Phase and Morphology of BiOIO3 Nanoplates Synthesized by Microwave-Assisted Method and Their Photocatalytic Activities. Journal of Inorganic and Organometallic Polymers and Materials 2020, 30 (3) , 869-878. https://doi.org/10.1007/s10904-019-01282-1
  76. Mehdi Khosravi, Hadi Feizi, Behzad Haghighi, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction. New Journal of Chemistry 2020, 44 (8) , 3514-3523. https://doi.org/10.1039/C9NJ06265C
  77. María Tomás‐Gamasa, José Luis Mascareñas. TiO 2 ‐Based Photocatalysis at the Interface with Biology and Biomedicine. ChemBioChem 2020, 21 (3) , 294-309. https://doi.org/10.1002/cbic.201900229
  78. Luka Suhadolnik, David Bajec, Dušan Žigon, Miran Čeh, Blaž Likozar. Continuous Photo‐Electro‐Catalytic Synthesis of Bio‐Based Adipic Acid with Reaction Kinetics Modeling. Chemical Engineering & Technology 2020, 43 (2) , 375-379. https://doi.org/10.1002/ceat.201900104
  79. Shinsuke Nagamine. Photocatalytic microreactor using TiO2/Ti plates: Formation of TiO2 nanostructure and separation of oxidation/reduction into different channels. Advanced Powder Technology 2020, 31 (2) , 521-527. https://doi.org/10.1016/j.apt.2019.11.008
  80. Xuemei Zhou, Patrik Schmuki. One-dimensional TiO2 nanotube–based photocatalysts: enhanced performance by site-selective decoration. 2020,,, 231-264. https://doi.org/10.1016/B978-0-08-102890-2.00007-5
  81. Qidong Zhao, Xinyong Li, Qiang Zhou, Dan Wang, Huixin Xu. Nanomaterials Developed for Removing Air Pollutants. 2020,,, 203-247. https://doi.org/10.1016/B978-0-12-814796-2.00006-X
  82. Yuanyuan Zhang, Xuefang Lan, Lili Wang, Peizhou Liu, Yuling Zhang, Jinsheng Shi. Novel precursor-reforming strategy to the conversion of honeycomb-like 3DOM TiO2 to ant nest-like macro-mesoporous N-TiO2 for efficient hydrogen production. Solar Energy 2019, 194 , 189-196. https://doi.org/10.1016/j.solener.2019.10.083
  83. M. Rogala, G. Bihlmayer, P. Dabrowski, C. Rodenbücher, D. Wrana, F. Krok, Z. Klusek, K. Szot. Self-reduction of the native TiO2 (110) surface during cooling after thermal annealing – in-operando investigations. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-48837-3
  84. Pham Van Viet, Hai Nguyen Tran. Adsorption and photocatalytic degradation of methylene blue by titanium dioxide nanotubes at different pH conditions. Advances in Natural Sciences: Nanoscience and Nanotechnology 2019, 10 (4) , 045011. https://doi.org/10.1088/2043-6254/ab5100
  85. Siew Yee Lim, Cheryl Suwen Law, Lina Liu, Marijana Markovic, Carina Hedrich, Robert H. Blick, Andrew D. Abell, Robert Zierold, Abel Santos. Electrochemical Engineering of Nanoporous Materials for Photocatalysis: Fundamentals, Advances, and Perspectives. Catalysts 2019, 9 (12) , 988. https://doi.org/10.3390/catal9120988
  86. Mohamad Al-Hashem, Sheikh Akbar, Patricia Morris. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sensors and Actuators B: Chemical 2019, 301 , 126845. https://doi.org/10.1016/j.snb.2019.126845
  87. Vinsensia Ade Sugiawati, Florence Vacandio, Alina Galeyeva, Andrey P. Kurbatov, Thierry Djenizian. Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid. Frontiers in Physics 2019, 7 https://doi.org/10.3389/fphy.2019.00179
  88. Xuewen Wang, Qiuchan Li, Chengxi Zhou, Rongbin Zhang. Iodine-vacancy BiOI1-x ultrathin sheets for improved visible-light photooxidation activities. Applied Surface Science 2019, 493 , 657-664. https://doi.org/10.1016/j.apsusc.2019.06.293
  89. Xinde Jiang, Zhenxi Wang, Xiaohang Zhang, Guixian Jiang, Yong Peng, Sheng Xu, Meng Cao, Xin Dai, Zuhan Liu, Jianye Ma. Enhanced photocatalytic activity of biosynthesized Au-Ag/TiO2 catalyst by removing excess anchored biomolecules. Journal of Nanoparticle Research 2019, 21 (10) https://doi.org/10.1007/s11051-019-4622-2
  90. Jingwei Huang, Pengfei Yue, Lei Wang, Houde She, Qizhao Wang. A review on tungsten-trioxide-based photoanodes for water oxidation. Chinese Journal of Catalysis 2019, 40 (10) , 1408-1420. https://doi.org/10.1016/S1872-2067(19)63399-1
  91. Dongqi Li, Zhaohua Jiang, Qixing Xia, Zhongping Yao. Pre- or post-TiCl4 treated TiO2 nano-array photoanode for QDSSC: Ti3+ self-doping, flat-band level and electron diffusion length. Applied Surface Science 2019, 491 , 319-327. https://doi.org/10.1016/j.apsusc.2019.06.166
  92. Chaorui Xue, Dong Li, Yangsen Li, Ning Li, Fen Zhang, Yanzhong Wang, Qing Chang, Shengliang Hu. 3D-carbon dots decorated black TiO2 nanotube [email protected] foam with enhanced photothermal and photocatalytic activities. Ceramics International 2019, 45 (14) , 17512-17520. https://doi.org/10.1016/j.ceramint.2019.05.313
  93. Shuhui Zhou, Shikai Liu, Kai Su, Kunlun Jia. Facile synthesis of Ti3+ self-doped and sulfur-doped TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance. Journal of Alloys and Compounds 2019, 804 , 10-17. https://doi.org/10.1016/j.jallcom.2019.06.294
  94. Nikita Denisov, JeongEun Yoo, Patrik Schmuki. Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes. Electrochimica Acta 2019, 319 , 61-71. https://doi.org/10.1016/j.electacta.2019.06.173
  95. Hanna Sopha, Alexander T. Tesfaye, Raul Zazpe, Jan Michalicka, Filip Dvorak, Ludek Hromadko, Milos Krbal, Jan Prikryl, Thierry Djenizian, Jan M. Macak. ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem 2019, 17 , 100130. https://doi.org/10.1016/j.flatc.2019.100130
  96. Lei Ji, Xuemei Zhou, Patrik Schmuki. Sulfur and Ti 3+ co‐Doping of TiO 2 Nanotubes Enhance Photocatalytic H 2 Evolution Without the Use of Any co‐catalyst. Chemistry – An Asian Journal 2019, 14 (15) , 2724-2730. https://doi.org/10.1002/asia.201900532
  97. Guangying He, Jinhui Zhang, Yun Hu, Zhaogao Bai, Chaohai Wei. Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance. Applied Catalysis B: Environmental 2019, 250 , 301-312. https://doi.org/10.1016/j.apcatb.2019.03.027
  98. Sakar, Prakash, Do. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 2019, 9 (8) , 680. https://doi.org/10.3390/catal9080680
  99. Jing Wu, Yan Tian, Da Li, Xiaoyu Han, Jia Liu, Yujie Feng. Enhanced photocatalytic CO2 reduction and 2,4-dichlorophenol degradation of TiO2 nanotubes via bi-directionally controlling electrons and holes. Chemosphere 2019, 226 , 704-714. https://doi.org/10.1016/j.chemosphere.2019.03.149
  100. Chaorui Xue, Shengliang Hu, Qing Chang, Ying Li, Ning Li, Chengzhen Li, Jinlong Yang. TiCr alloy anodization for Cr-doped TiO 2 nanotube array with improved photocatalytic activity. Materials Research Express 2019, 6 (7) , 075014. https://doi.org/10.1088/2053-1591/ab118c
Load all citations