Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode

View Author Information
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
*E-mail for L.X.D.: [email protected]
*E-mail for H.H.W.: [email protected]
Cite this: ACS Catal. 2018, 8, 1, 526–530
Publication Date (Web):December 8, 2017
Copyright © 2017 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


Highly active, earth-abundant anode catalysts are urgently required for the development of electrolytic devices for hydrogen generation. However, the reaction efficiencies of most developed electrocatalysts have been intrinsically limited due to their insufficient adsorption of reactants leading to high energy intermediates. Here, we establish that electronegative fluorine can moderate the binding energy between the Fe sites (FeOOH) and reactants (OH or C2H5O), resulting in more optimized adsorption, and can enhance the positive charge densities on the Fe sites to facilitate oxygen evolution reaction (OER) and ethanol oxidation. Consequently, a low electrolytic voltage (1.43 V to achieve 10 mA cm–2) for H2 production was obtained by integrating the efficiently anodic behaviors of OER and ethanol oxidation. The results reported herein point to fluorine moderation as a promising pathway for developing optimal electrocatalysts and contribute to ongoing efforts of mimicking water splitting.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.7b03319.

  • Detailed experimental procedures; supported physical characterizations by SEM, XRD, TEM, XPS, and ICP-MS; electrochemical characterizations by CV, LSV, current–potential curves, and EIS; additional DFT calculations results; gas chromatography and NMR results (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 56 publications.

  1. Farhan Arshad, Tanveer ul Haq, Irshad Hussain, Falak Sher. Recent Advances in Electrocatalysts toward Alcohol-Assisted, Energy-Saving Hydrogen Production. ACS Applied Energy Materials 2021, 4 (9) , 8685-8701. https://doi.org/10.1021/acsaem.1c01932
  2. Yue Liang, Zhongxin Song, Yan Zhang, Bin Zhao, Xuewan Wang, Kun Xiang, Zaochuan Ge, Xian-Zhu Fu, Jing-Li Luo. Core–Shell Structured Cu(OH)[email protected](OH)x Nanotube Electrocatalysts for Methanol Oxidation Based Hydrogen Evolution. ACS Applied Nano Materials 2021, 4 (9) , 8723-8732. https://doi.org/10.1021/acsanm.1c01236
  3. Ying Gao, Nan Zhang, Chunru Wang, Feng Zhao, Ying Yu. Construction of [email protected] Heterojunction Nanotubes for Enhanced Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (1) , 666-674. https://doi.org/10.1021/acsaem.9b01866
  4. Chenyun Zhang, Baohua Zhang, Zhonghao Li, Jingcheng Hao. Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (5) , 3343-3351. https://doi.org/10.1021/acsaem.9b00197
  5. Ying Wang, Zhimin Chen, Hao Wu, Fei Xiao, Erping Cao, Shichao Du, Yiqun Wu, Zhiyu Ren. Self-Assembly-Induced Mosslike Fe2O3 and FeP on Electro-oxidized Carbon Paper for Low-Voltage-Driven Hydrogen Production Plus Hydrazine Degradation. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 15727-15736. https://doi.org/10.1021/acssuschemeng.8b04274
  6. Qi Xue, Xin-Yu Bai, Yue Zhao, Ya-Nan Li, Tian-Jiao Wang, Hui-Ying Sun, Fu-Min Li, Pei Chen, Pujun Jin, Shi-Bin Yin, Yu Chen. Au core-PtAu alloy shell nanowires for formic acid electrolysis. Journal of Energy Chemistry 2022, 65 , 94-102. https://doi.org/10.1016/j.jechem.2021.05.034
  7. You Xu, Mengying Liu, Shengqi Wang, Kaili Ren, Mingzhen Wang, Ziqiang Wang, Xiaonian Li, Liang Wang, Hongjing Wang. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Applied Catalysis B: Environmental 2021, 298 , 120493. https://doi.org/10.1016/j.apcatb.2021.120493
  8. Fang Li, Yuhui Tian, Shibiao Su, Changshui Wang, Dong-Sheng Li, Dandan Cai, Shanqing Zhang. Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Applied Catalysis B: Environmental 2021, 299 , 120665. https://doi.org/10.1016/j.apcatb.2021.120665
  9. Rui Li, Kun Xiang, Zhikun Peng, Yuqin Zou, Shuangyin Wang. Recent Advances on Electrolysis for Simultaneous Generation of Valuable Chemicals at both Anode and Cathode. Advanced Energy Materials 2021, 20 , 2102292. https://doi.org/10.1002/aenm.202102292
  10. Shuang Sheng, Ke Ye, Yinyi Gao, Kai Zhu, Jun Yan, Guiling Wang, Dianxue Cao. Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst. Journal of Colloid and Interface Science 2021, 602 , 325-333. https://doi.org/10.1016/j.jcis.2021.06.001
  11. Hongfei Cheng, Yumei Liu, Jiawen Wu, Zheng Zhang, Xiaogang Li, Xin Wang, Hong Jin Fan. Concurrent H 2 Generation and Formate Production Assisted by CO 2 Absorption in One Electrolyzer. Small Methods 2021, 5 (11) , 2100871. https://doi.org/10.1002/smtd.202100871
  12. Daisuke Kawaguchi, Hitoshi Ogihara, Hideki Kurokawa. Upgrading of Ethanol to 1,1‐Diethoxyethane by Proton‐Exchange Membrane Electrolysis. ChemSusChem 2021, 14 (20) , 4431-4438. https://doi.org/10.1002/cssc.202101188
  13. Zhipeng Yu, Junyuan Xu, Lijian Meng, Lifeng Liu. Efficient hydrogen production by saline water electrolysis at high current densities without the interfering chlorine evolution. Journal of Materials Chemistry A 2021, 9 (39) , 22248-22253. https://doi.org/10.1039/D1TA05703K
  14. Libo Wu, Luo Yu, Brian McElhenny, Xinxin Xing, Dan Luo, Fanghao Zhang, Jiming Bao, Shuo Chen, Zhifeng Ren. Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis. Applied Catalysis B: Environmental 2021, 294 , 120256. https://doi.org/10.1016/j.apcatb.2021.120256
  15. Tian-Jiao Wang, Hui-Ying Sun, Qi Xue, Ming-Jun Zhong, Fu-Min Li, Xinlong Tian, Pei Chen, Shi-Bin Yin, Yu Chen. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution. Science Bulletin 2021, 66 (20) , 2079-2089. https://doi.org/10.1016/j.scib.2021.05.027
  16. Ganceng Yang, Yanqing Jiao, Haijing Yan, Chungui Tian, Honggang Fu. Electronic Structure Modulation of Non‐Noble‐Metal‐Based Catalysts for Biomass Electrooxidation Reactions. Small Structures 2021, 2 (10) , 2100095. https://doi.org/10.1002/sstr.202100095
  17. Xiaoyu Luan, Zhiqiang Zheng, Zhongqiang Wang, Yaqi Gao, Shuya Zhao, Yurui Xue, Yuliang Li. Graphdiyne/CdSe quantum dot heterostructure for efficient photoelectrochemical water oxidation. 2D Materials 2021, 8 (4) , 044017. https://doi.org/10.1088/2053-1583/ac2a73
  18. Guowei Weng, Kun Ouyang, Xuanhe Lin, Jian Xue, Haihui Wang. Proton conducting membranes for hydrogen and ammonia production. Reaction Chemistry & Engineering 2021, 6 (10) , 1739-1770. https://doi.org/10.1039/D1RE00207D
  19. Zhifu Liang, Daochuan Jiang, Xiang Wang, Mohsen Shakouri, Ting Zhang, Zhongjun Li, Pengyi Tang, Jordi Llorca, Lijia Liu, Yupeng Yuan, Marc Heggen, Rafal E. Dunin‐Borkowski, Joan R. Morante, Andreu Cabot, Jordi Arbiol. Molecular Engineering to Tune the Ligand Environment of Atomically Dispersed Nickel for Efficient Alcohol Electrochemical Oxidation. Advanced Functional Materials 2021, , 2106349. https://doi.org/10.1002/adfm.202106349
  20. Shuang Sheng, Yanpeng Song, Linna Sha, Ke Ye, Kai Zhu, Yinyi Gao, Jun Yan, Guiling Wang, Dianxue Cao. Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Applied Surface Science 2021, 561 , 150080. https://doi.org/10.1016/j.apsusc.2021.150080
  21. Ming Xiang, Nenghuan Wang, Zhihua Xu, Han Zhang, Zhaoxiong Yan. Accelerating Hydrogen Evolution by Anodic Electrosynthesis of Value‐Added Chemicals in Water over Non‐Precious Metal Electrocatalysts. ChemPlusChem 2021, 86 (9) , 1307-1315. https://doi.org/10.1002/cplu.202100327
  22. Jianlin Cheng, Baoshou Shen, Yuyan Song, Jiang Liu, Qing Ye, Mao Mao, Yongliang Cheng. FeOOH decorated CoP porous nanofiber for enhanced oxygen evolution activity. Chemical Engineering Journal 2021, 115 , 131130. https://doi.org/10.1016/j.cej.2021.131130
  23. Saisai Li, Jianrui Sun, Jingqi Guan. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chinese Journal of Catalysis 2021, 42 (4) , 511-556. https://doi.org/10.1016/S1872-2067(20)63693-2
  24. Ke Wang, Hongfang Du, Song He, Lei Liu, Kai Yang, Jinmeng Sun, Yuhang Liu, Zhuzhu Du, Linghai Xie, Wei Ai, Wei Huang. Kinetically Controlled, Scalable Synthesis of γ‐FeOOH Nanosheet Arrays on Nickel Foam toward Efficient Oxygen Evolution: The Key Role of In‐Situ‐Generated γ‐NiOOH. Advanced Materials 2021, 33 (11) , 2005587. https://doi.org/10.1002/adma.202005587
  25. Lijie Du, Yujie Sun, Bo You. Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Materials Reports: Energy 2021, 1 (1) , 100004. https://doi.org/10.1016/j.matre.2020.12.001
  26. Meng Li, Hui Liu, Ligang Feng. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review. Electrochemistry Communications 2021, 122 , 106901. https://doi.org/10.1016/j.elecom.2020.106901
  27. Dongbin Zhang, Xuzhao Han, Xianggui Kong, Fazhi Zhang, Xiaodong Lei. The Principle of Introducing Halogen Ions Into β-FeOOH: Controlling Electronic Structure and Electrochemical Performance. Nano-Micro Letters 2020, 12 (1) https://doi.org/10.1007/s40820-020-00440-2
  28. Shuang Sheng, Ke Ye, Linna Sha, Kai Zhu, Yinyi Gao, Jun Yan, Guiling Wang, Dianxue Cao. Rational design of Co-S-P nanosheet arrays as bifunctional electrocatalysts for both ethanol oxidation reaction and hydrogen evolution reaction. Inorganic Chemistry Frontiers 2020, 7 (22) , 4498-4506. https://doi.org/10.1039/D0QI00289E
  29. Xi Liu, Pingwei Cai, Genxiang Wang, Zhenhai Wen. Nickel doped MoS2 nanoparticles as precious-metal free bifunctional electrocatalysts for glucose assisted electrolytic H2 generation. International Journal of Hydrogen Energy 2020, 45 (58) , 32940-32948. https://doi.org/10.1016/j.ijhydene.2020.09.007
  30. Yiqiang Sun, Tao Zhang, Cuncheng Li, Kun Xu, Yue Li. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A 2020, 8 (27) , 13415-13436. https://doi.org/10.1039/D0TA05038E
  31. Houde She, Pengfei Yue, Jingwei Huang, Lei Wang, Qizhao Wang. One-step hydrothermal deposition of F:FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chemical Engineering Journal 2020, 392 , 123703. https://doi.org/10.1016/j.cej.2019.123703
  32. Natalia P. Martínez, Mauricio Isaacs, Kamala Kanta Nanda. Paired electrolysis for simultaneous generation of synthetic fuels and chemicals. New Journal of Chemistry 2020, 44 (15) , 5617-5637. https://doi.org/10.1039/C9NJ06133A
  33. Liying Zhang, Hao Li, Bingwang Yang, Ning Han, Yu Wang, Zongtao Zhang, Ying Zhou, Deliang Chen, Yanfeng Gao. Promote the electrocatalysis activity of amorphous FeOOH to oxygen evolution reaction by coupling with ZnO nanorod array. Journal of Solid State Electrochemistry 2020, 24 (4) , 905-914. https://doi.org/10.1007/s10008-020-04540-2
  34. Jie Xu, Chaoxiong Zhang, Haoxuan Liu, Jiaqiang Sun, Ruicong Xie, Yuan Qiu, Fang Lü, Yifan Liu, Longchao Zhuo, Xijun Liu, Jun Luo. Amorphous MoOX-Stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70 , 104529. https://doi.org/10.1016/j.nanoen.2020.104529
  35. Xiujuan Sun, Rui Ding. Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catalysis Science & Technology 2020, 10 (6) , 1567-1581. https://doi.org/10.1039/C9CY02618E
  36. Changshui Wang, Weibin Chen, Ding Yuan, Shangshu Qian, Dandan Cai, Juantao Jiang, Shanqing Zhang. Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 2020, 69 , 104453. https://doi.org/10.1016/j.nanoen.2020.104453
  37. Tetsuya Yamada, Norihiro Suzuki, Kazuya Nakata, Chiaki Terashima, Nobuhiro Matsushita, Kiyoshi Okada, Akira Fujishima, Ken‐ichi Katsumata. Hydrogen Production System by Light‐Induced α‐FeOOH Coupled with Photoreduction. Chemistry – A European Journal 2020, 26 (11) , 2380-2385. https://doi.org/10.1002/chem.201903642
  38. Chenglong Wang, Shenqi Wei, Feng Li, Xuefeng Long, Tong Wang, Peng Wang, Shuwen Li, Jiantai Ma, Jun Jin. Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. Nanoscale 2020, 12 (5) , 3259-3266. https://doi.org/10.1039/C9NR09502K
  39. Yun Zheng, Xiaojuan Wan, Xin Cheng, Kun Cheng, Zhengfei Dai, Zhihong Liu. Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts 2020, 10 (2) , 166. https://doi.org/10.3390/catal10020166
  40. Xiaohui Deng, Xiaomin Kang, Mei Li, Kun Xiang, Cheng Wang, ZaiPing Guo, Jiujun Zhang, Xian-Zhu Fu, Jing-Li Luo. Coupling efficient biomass upgrading with H 2 production via bifunctional Cu x [email protected] core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A 2020, 8 (3) , 1138-1146. https://doi.org/10.1039/C9TA06917H
  41. Shihui Xing, Zhao Liu, Qi Xue, Shiwei Yin, Fumin Li, Weiwei Cai, Shuni Li, Pei Chen, Pujun Jin, Hongchang Yao, Yu Chen. Rh nanoroses for isopropanol oxidation reaction. Applied Catalysis B: Environmental 2019, 259 , 118082. https://doi.org/10.1016/j.apcatb.2019.118082
  42. Daniel Martín-Yerga, Gunnar Henriksson, Ann Cornell. Effects of Incorporated Iron or Cobalt on the Ethanol Oxidation Activity of Nickel (Oxy)Hydroxides in Alkaline Media. Electrocatalysis 2019, 10 (5) , 489-498. https://doi.org/10.1007/s12678-019-00531-8
  43. Qiuxia Ma, Bolin Li, Furong Huang, Qi Pang, Yibo Chen, Jin Zhong Zhang. Incorporating iron in nickel cobalt layered double hydroxide nanosheet arrays as efficient oxygen evolution electrocatalyst. Electrochimica Acta 2019, 317 , 684-693. https://doi.org/10.1016/j.electacta.2019.06.019
  44. Guang-Rui Xu, Ya-Nan Zhai, Fu-min Li, Guang-Tao Zhao, Shu-Ni Li, Hong-Chang Yao, Jia-Xing Jiang, Yu Chen. Cyanogel auto-reduction induced synthesis of PdCo nanocubes on carbon nanobowls: a highly active electrocatalyst for ethanol electrooxidation. Nanoscale 2019, 11 (28) , 13477-13483. https://doi.org/10.1039/C9NR04767K
  45. Xin Cui, Meiling Chen, Rui Xiong, Jian Sun, Xiaowang Liu, Baoyou Geng. Ultrastable and efficient H 2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo–Ni alloy nanoparticles. Journal of Materials Chemistry A 2019, 7 (27) , 16501-16507. https://doi.org/10.1039/C9TA03924D
  46. Wenbin Wang, Yin‐Bo Zhu, Qunlei Wen, Yutang Wang, Jun Xia, Caicai Li, Ming‐Wei Chen, Youwen Liu, Huiqiao Li, Heng‐An Wu, Tianyou Zhai. Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro‐oxidation. Advanced Materials 2019, 31 (28) , 1900528. https://doi.org/10.1002/adma.201900528
  47. You Xu, Bin Zhang. Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions. ChemElectroChem 2019, 6 (13) , 3214-3226. https://doi.org/10.1002/celc.201900675
  48. Juan Bai, Danye Liu, Jun Yang, Yu Chen. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem 2019, 12 (10) , 2117-2132. https://doi.org/10.1002/cssc.201803063
  49. Yue Zhao, Shihui Xing, Xinying Meng, Jinghui Zeng, Shibin Yin, Xifei Li, Yu Chen. Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. Nanoscale 2019, 11 (19) , 9319-9326. https://doi.org/10.1039/C9NR02153A
  50. Meiyong Zheng, Kailu Guo, Wen-Jie Jiang, Tang Tang, Xuyan Wang, Panpan Zhou, Jing Du, Yongqing Zhao, Cailing Xu, Jin-Song Hu. When MoS2 meets FeOOH: A “one-stone-two-birds’’ heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Applied Catalysis B: Environmental 2019, 244 , 1004-1012. https://doi.org/10.1016/j.apcatb.2018.12.019
  51. Jiujun Deng, Qingzhe Zhang, Kun Feng, Huiwen Lan, Jun Zhong, Mohamed Chaker, Dongling Ma. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts. ChemSusChem 2018, 11 (21) , 3783-3789. https://doi.org/10.1002/cssc.201801751
  52. Abdulsattar H. Ghanim, Jonathan G. Koonce, Bjorn Hasa, Alan M. Rassoolkhani, Wei Cheng, David W. Peate, Joun Lee, Syed Mubeen. Low-Loading of Pt Nanoparticles on 3D Carbon Foam Support for Highly Active and Stable Hydrogen Production. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00523
  53. Bo You, Guanqun Han, Yujie Sun. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chemical Communications 2018, 54 (47) , 5943-5955. https://doi.org/10.1039/C8CC01830H
  54. Panyong Kuang, Bicheng Zhu, Yuliang Li, Huibiao Liu, Jiaguo Yu, Ke Fan. Graphdiyne: a superior carbon additive to boost the activity of water oxidation catalysts. Nanoscale Horizons 2018, 3 (3) , 317-326. https://doi.org/10.1039/C8NH00027A
  55. Lisong Chen, Jianlin Shi. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). Journal of Materials Chemistry A 2018, 6 (28) , 13538-13548. https://doi.org/10.1039/C8TA03741H
  56. Yanhua Zeng, Gao-Feng Chen, Zhouyang Jiang, Liang-Xin Ding, Suqing Wang, Haihui Wang. Confined heat treatment of a Prussian blue analogue for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2018, 6 (33) , 15942-15946. https://doi.org/10.1039/C8TA05677C