Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives

  • Chao Feng
    Chao Feng
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    More by Chao Feng
  • M. Bilal Faheem
    M. Bilal Faheem
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Jie Fu
    Jie Fu
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    More by Jie Fu
  • Yequan Xiao
    Yequan Xiao
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    More by Yequan Xiao
  • Changli Li*
    Changli Li
    School of Materials, Sun Yat-sen University, Guangzhou 510275, China
    *E-mail: [email protected] (C. Li).
    More by Changli Li
  • , and 
  • Yanbo Li*
    Yanbo Li
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
    *E-mail: [email protected] (Y. Li).
    More by Yanbo Li
Cite this: ACS Catal. 2020, 10, 7, 4019–4047
Publication Date (Web):February 26, 2020
https://doi.org/10.1021/acscatal.9b05445
Copyright © 2020 American Chemical Society
Article Views
7951
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (13 MB)

Abstract

Electrocatalytic oxygen evolution reaction (OER) is a core reaction responsible for converting renewable electricity into storable fuels; yet, it is kinetically challenging, because of the complex proton-coupled multielectron transfer process. Transition-metal-based electrocatalysts, which provide the possibility for the realization of low-cost, high-activity, and stable OER in alkaline solution, therefore have attracted significant research interest in recent years. A fundamental understanding of composition–structure–activity relationships for these electrocatalysts is essential to guide the design of practical electrocatalysts for industrial applications. With more advanced ex situ and in situ techniques to determine the active sites, there has been increasing evidence revealing the critical role of Fe in the high performance of Fe-containing transition metal-based electrocatalysts. Here, we present a critical review of recent progress in Fe-containing electrocatalysts for OER, highlighting the significant role of Fe in enhancing the OER activity. We outline the historical development of the Fe-containing electrocatalysts, summarize the conflicting viewpoints on catalytic active sites, and offer guidelines for more rigorous identification. The synthesis techniques and the major challenges in improving the intrinsic catalytic activity and stability are discussed. Finally, a perspective regarding emerging issues yet to be explored for developing OER electrocatalysts for practical applications are also provided.

Cited By


This article is cited by 146 publications.

  1. Shifeng Li, Zihao Liu, Fangfang Wang, Feifei Yuan, Yonghong Ni. Ce-Doped FeNi-Layered Double Hydroxide Nanosheets Grown on an Open-Framework Nickel Phosphate Nanorod Array for Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (11) , 12836-12847. https://doi.org/10.1021/acsaem.1c02531
  2. Ching Thian Moi, Sourav Bhowmick, Mohammad Qureshi. Hierarchical FeO(OH)–CoCeV (Oxy)hydroxide as a Water Cleavage Promoter. ACS Applied Materials & Interfaces 2021, 13 (43) , 51151-51160. https://doi.org/10.1021/acsami.1c17470
  3. Yong-Chao Zhang, Caidi Han, Jian Gao, Lun Pan, Jinting Wu, Xiao-Dong Zhu, Ji-Jun Zou. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis 2021, 11 (20) , 12485-12509. https://doi.org/10.1021/acscatal.1c03260
  4. Ahmed S. M. Ismail, Ivan Garcia-Torregrosa, Jeroen C. Vollenbroek, Laura Folkertsma, Johan G. Bomer, Ties Haarman, Mahnaz Ghiasi, Meike Schellhorn, Maarten Nachtegaal, Mathieu Odijk, Albert van den Berg, Bert M. Weckhuysen, Frank M. F. de Groot. Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis 2021, 11 (19) , 12324-12335. https://doi.org/10.1021/acscatal.1c02566
  5. Yan Duan, Biswarup Chakraborty, Chandan Kumar Tiwari, Mark Baranov, Tal Tubul, Nitai Leffler, Alevtina Neyman, Ira A. Weinstock. Solution-State Catalysis of Visible Light-Driven Water Oxidation by Macroanion-Like Inorganic Complexes of γ-FeOOH Nanocrystals. ACS Catalysis 2021, 11 (18) , 11385-11395. https://doi.org/10.1021/acscatal.1c02824
  6. Qi Wang, Zhe Zhang, Chao Cai, Maoyu Wang, Zhi Liang Zhao, Menghao Li, Xiang Huang, Shaobo Han, Hua Zhou, Zhenxing Feng, Lei Li, Jun Li, Hu Xu, Joseph S. Francisco, Meng Gu. Single Iridium Atom Doped Ni2P Catalyst for Optimal Oxygen Evolution. Journal of the American Chemical Society 2021, 143 (34) , 13605-13615. https://doi.org/10.1021/jacs.1c04682
  7. Fuxi Bao, Erno Kemppainen, Iris Dorbandt, Fanxing Xi, Radu Bors, Natalia Maticiuc, Robert Wenisch, Rory Bagacki, Christian Schary, Ursula Michalczik, Peter Bogdanoff, Iver Lauermann, Roel van de Krol, Rutger Schlatmann, Sonya Calnan. Host, Suppressor, and Promoter—The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media. ACS Catalysis 2021, 11 (16) , 10537-10552. https://doi.org/10.1021/acscatal.1c01190
  8. Lu Li, Gengwei Zhang, Bin Wang, Daolong Zhu, Dan Liu, Yuanyuan Liu, Shengchun Yang. Fe2O3/NiO Interface for the Electrochemical Oxygen Evolution in Seawater and Domestic Sewage. ACS Applied Materials & Interfaces 2021, 13 (31) , 37152-37161. https://doi.org/10.1021/acsami.1c09274
  9. Birhanu Bayissa Gicha, Lemma Teshome Tufa, Youngeun Choi, Jaebeom Lee. Amorphous Ni1–xFex Oxyhydroxide Nanosheets with Integrated Bulk and Surface Iron for a High and Stable Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (7) , 6833-6841. https://doi.org/10.1021/acsaem.1c00955
  10. Masahiro Nishimoto, Sho Kitano, Damian Kowalski, Yoshitaka Aoki, Hiroki Habazaki. Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9465-9473. https://doi.org/10.1021/acssuschemeng.1c03116
  11. Lingbo Kong, Zhiyuan Wang, Xiangfei Kong, Lu Wang, Zhiyong Ji, Xiaomei Wang, Xu Zhang. Large-Scale Fabrication of Form-Stable Phase Change Nanotube Composite for Photothermal/Electrothermal Energy Conversion and Storage. ACS Applied Materials & Interfaces 2021, 13 (25) , 29965-29974. https://doi.org/10.1021/acsami.1c07160
  12. Zichen Xu, Chia-Lin Yeh, Yuanjuan Jiang, Xinru Yun, Chun-Ting Li, Kuo-Chuan Ho, Jiann T. Lin, Ryan Yeh-Yung Lin. Orientation-Adjustable Metal–Organic Framework Nanorods for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (24) , 28242-28251. https://doi.org/10.1021/acsami.1c05944
  13. Shenghua Ye, Jingpeng Wang, Jing Hu, Zhida Chen, Lirong Zheng, Yonghuan Fu, Yaqi Lei, Xiangzhong Ren, Chuanxin He, Qianling Zhang, Jianhong Liu. Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis 2021, 11 (10) , 6104-6112. https://doi.org/10.1021/acscatal.1c01300
  14. Mengjun Xiao, Qianbao Wu, Lei Li, Shijia Mu, Mads Nybo Sørensen, Wei Wang, Chunhua Cui. Regenerable Catalyst for Highly Alkaline Water Oxidation. ACS Energy Letters 2021, 6 (5) , 1677-1683. https://doi.org/10.1021/acsenergylett.1c00127
  15. Yuuki Sugawara, Keigo Kamata, Atsushi Ishikawa, Yoshitaka Tateyama, Takeo Yamaguchi. Efficient Oxygen Evolution Electrocatalysis on CaFe2O4 and Its Reaction Mechanism. ACS Applied Energy Materials 2021, 4 (4) , 3057-3066. https://doi.org/10.1021/acsaem.0c02710
  16. Mahya Salmanion, Mohammad Mahdi Najafpour. Dendrimer-Ni-Based Material: Toward an Efficient Ni–Fe Layered Double Hydroxide for Oxygen-Evolution Reaction. Inorganic Chemistry 2021, 60 (8) , 6073-6085. https://doi.org/10.1021/acs.inorgchem.1c00561
  17. Hainan Sun, Wei Zhou. Progress on X-ray Absorption Spectroscopy for the Characterization of Perovskite-Type Oxide Electrocatalysts. Energy & Fuels 2021, 35 (7) , 5716-5737. https://doi.org/10.1021/acs.energyfuels.1c00534
  18. Niranji Thilini Ekanayake, Shideh Ahmadi, Nicholas J. Mosey. Quantum Chemical Modeling of Oxygen Evolution Reaction Pathways Mediated by Metal (Oxy)hydroxide Complexes. The Journal of Physical Chemistry C 2021, 125 (2) , 1345-1354. https://doi.org/10.1021/acs.jpcc.0c08854
  19. Yawen Dai, Jie Yu, Zhenbao Zhang, Chun Cheng, Peng Tan, Zongping Shao, Meng Ni. Interfacial La Diffusion in the CeO2/LaFeO3 Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Interfaces 2021, 13 (2) , 2799-2806. https://doi.org/10.1021/acsami.0c21859
  20. Yanan Wang, Shuguang Zhang, Xiuxia Meng, Ting Wang, Yu Feng, Weimin Zhang, Yu-Shi He, Yucheng Huang, Naitao Yang, Zi-Feng Ma. Surface Tuning to Promote the Electrocatalysis for Oxygen Evolution Reaction: From Metal-Free to Cobalt-Based Carbon Electrocatalysts. ACS Applied Materials & Interfaces 2021, 13 (1) , 503-513. https://doi.org/10.1021/acsami.0c17599
  21. Xingcui Peng, Xuezhong Nie, Lei Zhang, Taiping Liang, Yi Liu, Peng Liu, Yu-Long Men, Lin Niu, Jian Zhou, Daxiang Cui, Yun-Xiang Pan. Carbon-Coated Tungsten Oxide Nanospheres Triggering Flexible Electron Transfer for Efficient Electrocatalytic Oxidation of Water and Glucose. ACS Applied Materials & Interfaces 2020, 12 (51) , 56943-56953. https://doi.org/10.1021/acsami.0c13547
  22. Florian Le Formal, Lucas Yerly, Elizaveta Potapova Mensi, Xavier Pereira Da Costa, Florent Boudoire, Nestor Guijarro, Mariana Spodaryk, Andreas Züttel, Kevin Sivula. Influence of Composition on Performance in Metallic Iron–Nickel–Cobalt Ternary Anodes for Alkaline Water Electrolysis. ACS Catalysis 2020, 10 (20) , 12139-12147. https://doi.org/10.1021/acscatal.0c03523
  23. Hainan Sun, Jie Dai, Wei Zhou, Zongping Shao. Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. Energy & Fuels 2020, 34 (9) , 10547-10567. https://doi.org/10.1021/acs.energyfuels.0c02313
  24. Yujia Zhang, Orhan Kizilkaya, Hubert K. Bilan, Richard Kurtz, Elizabeth J. Podlaha. Activity and Regeneration of Electrodeposited Fe–Ni–Co-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (8) , 7239-7245. https://doi.org/10.1021/acsaem.0c00985
  25. Shanfu Sun, Xin Zhou, Bowen Cong, Weizhao Hong, Gang Chen. Tailoring the d-Band Centers Endows (NixFe1–x)2P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catalysis 2020, 10 (16) , 9086-9097. https://doi.org/10.1021/acscatal.0c01273
  26. Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution. Journal of Materials Science & Technology 2022, 106 , 90-97. https://doi.org/10.1016/j.jmst.2021.08.007
  27. Zhijie Chen, Renji Zheng, Wenfei Wei, Wei Wei, Wensong Zou, Jing Li, Bing-Jie Ni, Hong Chen. Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resources, Conservation and Recycling 2022, 178 , 106037. https://doi.org/10.1016/j.resconrec.2021.106037
  28. Yixin Chen, Lin Shen, Congcong Wang, Siyang Feng, Nan Zhang, Kai Zhang, Bai Yang. Utilizing tannic acid and polypyrrle to induce reconstruction to optimize the activity of MOF-derived electrocatalyst for water oxidation in seawater. Chemical Engineering Journal 2022, 430 , 132632. https://doi.org/10.1016/j.cej.2021.132632
  29. Jing Yao, Mingyi Zhang, Xinzhi Ma, Lingling Xu, Feng Gao, Junpeng Xiao, Hong Gao. Interfacial electronic modulation of CoP-CoO p-p type heterojunction for enhancing oxygen evolution reaction. Journal of Colloid and Interface Science 2022, 607 , 1343-1352. https://doi.org/10.1016/j.jcis.2021.09.097
  30. Zhenyuan Zhang, Xiao Wu, Zongkui Kou, Na Song, Guangdi Nie, Ce Wang, Francis Verpoort, Shichun Mu. Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chemical Engineering Journal 2022, 428 , 131133. https://doi.org/10.1016/j.cej.2021.131133
  31. Dazhong Zhong, Tan Li, Dong Wang, Lina Li, Jiancheng Wang, Genyan Hao, Guang Liu, Qiang Zhao, Jinping Li. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Research 2022, 15 (1) , 162-169. https://doi.org/10.1007/s12274-021-3451-7
  32. Junying Li, Ming Zhao, Lingya Yi, Bomin Feng, Changxiang Fang, Zeping Peng, Weihua Hu. Sacrificial templating synthesis of metal-organic framework hybrid nanosheets as efficient pre-electrocatalyst for oxygen evolution reaction in alkaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 632 , 127745. https://doi.org/10.1016/j.colsurfa.2021.127745
  33. Seunghwa Lee, Aliki Moysiadou, You-Chiuan Chu, Hao Ming Chen, Xile Hu. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides. Energy & Environmental Science 2022, 6 https://doi.org/10.1039/D1EE02999A
  34. Sauvik Raha, Md. Ahmaruzzaman. Novel magnetically retrievable In2O3/MoS2/Fe3O4 nanocomposite materials for enhanced photocatalytic performance. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-85532-8
  35. Kai Chen, Rajmohan Rajendiran, Dae Hoon Lee, Jinxiang Diao, Oi Lun Li. Core-double shells heterostructure γ[email protected]@C nanocubics with energy level matching double interfaces to boost the oxygen evolution reaction. Journal of Alloys and Compounds 2021, 885 , 160986. https://doi.org/10.1016/j.jallcom.2021.160986
  36. Yuyan Song, Jianlin Cheng, Jiang Liu, Qing Ye, Xiang Gao, Jinjun Lu, Yongliang Cheng. Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Applied Catalysis B: Environmental 2021, 298 , 120488. https://doi.org/10.1016/j.apcatb.2021.120488
  37. Thi Xuyen Nguyen, Zi-Ting Huang, Jyh-Ming Ting. Iron-concentration adjusted Multi-Metal oxides for optimized oxygen evolution reaction performance. Applied Surface Science 2021, 570 , 151160. https://doi.org/10.1016/j.apsusc.2021.151160
  38. Chao Feng, Faze Wang, Zhi Liu, Mamiko Nakabayashi, Yequan Xiao, Qiugui Zeng, Jie Fu, Qianbao Wu, Chunhua Cui, Yifan Han, Naoya Shibata, Kazunari Domen, Ian D. Sharp, Yanbo Li. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26281-0
  39. Kang Huang, Dongdong Peng, Zhixiang Yao, Jiuyang Xia, Bowei Zhang, Hai Liu, Zhibin Chen, Fei Wu, Junsheng Wu, Yizhong Huang. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chemical Engineering Journal 2021, 425 , 131533. https://doi.org/10.1016/j.cej.2021.131533
  40. Sanzhao Song, Jian Sun, Jing Zhou, Zhiwei Hu, Hong-Ji Lin, Ting-Shan Chan, Chien-Te Chen, Nian Zhang, Chao Jing, Jun Hu, Linjuan Zhang, Jian-Qiang Wang. Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal 2021, 425 , 130681. https://doi.org/10.1016/j.cej.2021.130681
  41. Jingfu He, Yuanli Li, Aoxue Huang, Qinghua Liu, Changli Li. Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction. Electrochemical Energy Reviews 2021, 4 (4) , 680-717. https://doi.org/10.1007/s41918-021-00100-y
  42. Yun-Wu Li, Shi-Kun Su, Cai-Zhen Yue, Jun Shu, Peng-Fang Zhang, Fang-Hui Du, Su-Na Wang, Hui-Yan Ma, Jie Yin, Xin Shao. Hierarchical Fe–Mn binary metal oxide core–shell nano-polyhedron as a bifunctional electrocatalyst for efficient water splitting. Dalton Transactions 2021, 50 (46) , 17265-17274. https://doi.org/10.1039/D1DT03048E
  43. Hainan Sun, Jiapeng Liu, Gao Chen, Hyunseung Kim, Sangwoo Kim, Zhiwei Hu, Jin‐Ming Chen, Shu‐Chih Haw, Francesco Ciucci, WooChul Jung. Hierarchical Structure of CuO Nanowires Decorated with Ni(OH) 2 Supported on Cu Foam for Hydrogen Production via Urea Electrocatalysis. Small Methods 2021, 133 , 2101017. https://doi.org/10.1002/smtd.202101017
  44. Didier Astruc. On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry – A European Journal 2021, 27 (66) , 16291-16308. https://doi.org/10.1002/chem.202102477
  45. Qinglan Ye, Lingfeng Li, Hangyang Li, Xiangyang Gu, Boming Han, Xuetang Xu, Fan Wang, Bin Li. Quasi‐Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Large‐Current‐Density Oxygen Evolution Electrocatalysis. ChemSusChem 2021, 37 https://doi.org/10.1002/cssc.202101873
  46. Zhijie Chen, Renji Zheng, Shimao Deng, Wenfei Wei, Wei Wei, Bing-Jie Ni, Hong Chen. Modular design of an efficient heterostructured FeS 2 /TiO 2 oxygen evolution electrocatalyst via sulfidation of natural ilmenites. Journal of Materials Chemistry A 2021, 9 (44) , 25032-25041. https://doi.org/10.1039/D1TA08168C
  47. Hang Liu, Lenus Syama, Like Zhang, Carmen Lee, Chuntai Liu, Zhengfei Dai, Qingyu Yan. High‐entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat 2021, 8 https://doi.org/10.1002/sus2.32
  48. Yi Wei, Cheol-Hwan Shin, Caleb Gyan-Barimah, Emmanuel Batsa Tetteh, Gisang Park, Jong-Sung Yu. Positive self-reconstruction in an FeNiMo phosphide electrocatalyst for enhanced overall water splitting. Sustainable Energy & Fuels 2021, 5 (22) , 5789-5797. https://doi.org/10.1039/D1SE01541A
  49. Zonghua Pu, Tingting Liu, Gaixia Zhang, Hariprasad Ranganathan, Zhangxing Chen, Shuhui Sun. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem 2021, 14 (21) , 4636-4657. https://doi.org/10.1002/cssc.202101461
  50. Kai Wan, Jiangshui Luo, Xuan Zhang, Palaniappan Subramanian, Jan Fransaer. Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction. Journal of Energy Chemistry 2021, 62 , 198-203. https://doi.org/10.1016/j.jechem.2021.03.013
  51. Fang Shen, Zhenglin Wang, Yamei Wang, Guangfu Qian, Miaojing Pan, Lin Luo, Guoning Chen, Hailang Wei, Shibin Yin. Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Research 2021, 14 (11) , 4356-4361. https://doi.org/10.1007/s12274-021-3548-z
  52. Huibing Liu, Xinchen Xu, Haoxiang Xu, Shitao Wang, Ziqiang Niu, Qiaohuan Jia, Liu Yang, Rui Cao, Lirong Zheng, Dapeng Cao. Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction. Applied Catalysis B: Environmental 2021, 297 , 120451. https://doi.org/10.1016/j.apcatb.2021.120451
  53. Qinglin Han, Yuhong Luo, Jingde Li, Xiaohang Du, Shujuan Sun, Yanji Wang, Guihua Liu, Zhongwei Chen. Efficient NiFe-based Oxygen Evolution Electrocatalysts and Origin of their Distinct Activity. Applied Catalysis B: Environmental 2021, 10 , 120937. https://doi.org/10.1016/j.apcatb.2021.120937
  54. Thi Xuyen Nguyen, Yen‐Hsun Su, Chia‐Chun Lin, Jyh‐Ming Ting. Self‐Reconstruction of Sulfate‐Containing High Entropy Sulfide for Exceptionally High‐Performance Oxygen Evolution Reaction Electrocatalyst. Advanced Functional Materials 2021, 31 (48) , 2106229. https://doi.org/10.1002/adfm.202106229
  55. Vy Anh Tran, Ha Huu Do, Van Thuan Le, Yasser Vasseghian, Vien Vo, Sang Hyun Ahn, Soo Young Kim, Sang-Wha Lee. Metal-organic-framework-derived metals and metal compounds as electrocatalysts for oxygen evolution reaction: A review. International Journal of Hydrogen Energy 2021, 37 https://doi.org/10.1016/j.ijhydene.2021.11.063
  56. Maryam Shamloofard, Saeed Shahrokhian. Dual-electrocatalysis behavior of star-like zinc–cobalt-sulfide decorated with cobalt–molybdenum-phosphide in hydrogen and oxygen evolution reactions. Nanoscale 2021, 13 (41) , 17576-17591. https://doi.org/10.1039/D1NR04374A
  57. Ruiqin Gao, Meng Deng, Qing Yan, Zhenxing Fang, Lichun Li, Haoyu Shen, Zhengfei Chen. Structural Variations of Metal Oxide‐Based Electrocatalysts for Oxygen Evolution Reaction. Small Methods 2021, 218 , 2100834. https://doi.org/10.1002/smtd.202100834
  58. Kamran Dastafkan, Shuhao Wang, Chengli Rong, Quentin Meyer, Yibing Li, Qiang Zhang, Chuan Zhao. Cosynergistic Molybdate Oxo‐Anionic Modification of FeNi‐Based Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Functional Materials 2021, , 2107342. https://doi.org/10.1002/adfm.202107342
  59. Xiying Feng, Yali Xiao, Hai‐Hua Huang, Qiushi Wang, Jinyi Wu, Zhuofeng Ke, Yexiang Tong, Jianyong Zhang. Phytic Acid‐Based FeCo Bimetallic Metal‐Organic Gels for Electrocatalytic Oxygen Evolution Reaction. Chemistry – An Asian Journal 2021, 16 (20) , 3213-3220. https://doi.org/10.1002/asia.202100700
  60. Guoqing Zhao, Jiao Zou, Xiaoqing Chen, Lukai Liu, Yinke Wang, Shu Zhou, Xinqi Long, Jingang Yu, Feipeng Jiao. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chemical Engineering Journal 2021, 421 , 127845. https://doi.org/10.1016/j.cej.2020.127845
  61. Shuai Cao, Haijian Huang, Kun Shi, Li Wei, Ning You, Xiaoming Fan, Zeheng Yang, Weixin Zhang. Engineering superhydrophilic/superaerophobic hierarchical structures of [email protected]/NF to boost the oxygen evolution reaction. Chemical Engineering Journal 2021, 422 , 130123. https://doi.org/10.1016/j.cej.2021.130123
  62. Hainan Sun, Sanzhao Song, Xiaomin Xu, Jie Dai, Jie Yu, Wei Zhou, Zongping Shao, WooChul Jung. Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials 2021, 11 (37) , 2101937. https://doi.org/10.1002/aenm.202101937
  63. Biswajit Mondal, Neeta Karjule, Chanderpratap Singh, Ran Shimoni, Michael Volokh, Idan Hod, Menny Shalom. Unraveling the Mechanisms of Electrocatalytic Oxygenation and Dehydrogenation of Organic Molecules to Value‐Added Chemicals Over a Ni–Fe Oxide Catalyst. Advanced Energy Materials 2021, 11 (37) , 2101858. https://doi.org/10.1002/aenm.202101858
  64. Fuqin Zheng, Wanfu Zhang, Xiaoxia Zhang, Youlin Zhang, Wei Chen. Sub‐2 nm Ultrathin and Robust 2D FeNi Layered Double Hydroxide Nanosheets Packed with 1D FeNi‐MOFs for Enhanced Oxygen Evolution Electrocatalysis. Advanced Functional Materials 2021, 31 (43) , 2103318. https://doi.org/10.1002/adfm.202103318
  65. A. Rajapriya, S. Keerthana, A. Rebekah, C. Viswanathan, N. Ponpandian. Enriched oxygen vacancy promoted heteroatoms (B, P, N, and S) doped CeO2: Challenging electrocatalysts for oxygen evolution reaction (OER) in alkaline medium. International Journal of Hydrogen Energy 2021, 46 (75) , 37281-37293. https://doi.org/10.1016/j.ijhydene.2021.09.003
  66. Shuangshuang Jiang, Li Zhu, Zhanzhan Yang, Yingang Wang. Self-supported hierarchical porous FeNiCo-based amorphous alloys as high-efficiency bifunctional electrocatalysts toward overall water splitting. International Journal of Hydrogen Energy 2021, 46 (74) , 36731-36741. https://doi.org/10.1016/j.ijhydene.2021.08.223
  67. Yi Zhou, Jialai Hu, Lichun Yang, Qingsheng Gao. Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation. Chinese Chemical Letters 2021, 265 https://doi.org/10.1016/j.cclet.2021.10.034
  68. Jingfu He, Chenghui Wu, Yanming Li, Changli Li. Design of pre-catalysts for heterogeneous CO 2 electrochemical reduction. Journal of Materials Chemistry A 2021, 9 (35) , 19508-19533. https://doi.org/10.1039/D1TA03624F
  69. Qikang Wu, Songrui Wang, Jiahui Guo, Xueqing Feng, Han Li, Shanshan Lv, Yan Zhou, Zheng Chen. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction. Nano Research 2021, 10 https://doi.org/10.1007/s12274-021-3800-6
  70. Zhiwei Liu, Ran Wang, Xiujuan Liu, Shanshan Luo, Kun Li, Tifeng Jiao. Facile Preparation of Nickel Hydroxide Composite Material as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Integrated Ferroelectrics 2021, 219 (1) , 84-91. https://doi.org/10.1080/10584587.2021.1911357
  71. Xiaoning Li, Ying Bai, Zhenxiang Cheng. Revealing the Correlation of OER with Magnetism: A New Descriptor of Curie/Neel Temperature for Magnetic Electrocatalysts. Advanced Science 2021, 8 (17) , 2101000. https://doi.org/10.1002/advs.202101000
  72. Hainan Sun, Yinlong Zhu, WooChul Jung. Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules 2021, 26 (18) , 5476. https://doi.org/10.3390/molecules26185476
  73. Hyo-Young Kim, Young-Wan Ju. Influence of cobalt dopant in NiFe2-xCoxO4 (0≤x≤2) on electrochemical catalytic properties. International Journal of Hydrogen Energy 2021, 16 https://doi.org/10.1016/j.ijhydene.2021.09.065
  74. Hak-Joo Lee, Deok-Hye Park, Woo-Jun Lee, Sang-Beom Han, Min-Ha Kim, Jeong-Hyeon Byeon, Kyung-Won Park. Mesoporous Spinel Ir-doped NiCo2O4 Nanostructure as an Efficient Catalyst for Oxygen Evolution Reaction. Applied Catalysis A: General 2021, 626 , 118377. https://doi.org/10.1016/j.apcata.2021.118377
  75. Xitong Li, Bo Yang, Ke Xiao, Huabo Duan, Jinquan Wan, Huazhang Zhao. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Research 2021, 203 , 117541. https://doi.org/10.1016/j.watres.2021.117541
  76. An Zhang, Yongxiang Liang, Han Zhang, Zhigang Geng, Jie Zeng. Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews 2021, 50 (17) , 9817-9844. https://doi.org/10.1039/D1CS00330E
  77. Yali Xiao, Qiushi Wang, Xiying Feng, Jinyi Wu, Peisen Liao, Yexiang Tong, Jianyong Zhang. Self-sorting multimetal–organic gel electrocatalysts for a highly efficient oxygen evolution reaction. Journal of Materials Chemistry A 2021, 9 (32) , 17451-17458. https://doi.org/10.1039/D1TA04455A
  78. Yi Zhou, Jialai Hu, Dan Li, Qingsheng Gao. Single-layer CoFe hydroxides for efficient electrocatalytic oxygen evolution. Chemical Communications 2021, 57 (62) , 7653-7656. https://doi.org/10.1039/D1CC03253D
  79. Preetha Chandrasekharan Meenu, Saraswati Roy, Chanchal Chakraborty, Sounak Roy. Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution?. Advanced Powder Technology 2021, 32 (8) , 2663-2689. https://doi.org/10.1016/j.apt.2021.06.018
  80. Shova Neupane, Sri Hastuty, Neelima Yadav, Nilima Singh, Dipak K. Gupta, Brahamdeo Yadav, Sanjay Singh, Nabin Karki, Anju Kumari Das, Vivek Subedi, Krishna B. Nakarmi, Amar P. Yadav. Effects of NH 4 + , Na + , and Mg 2+ ions on the corrosion behavior of galvanized steel in wet–dry cyclic conditions. Materials and Corrosion 2021, 72 (8) , 1388-1395. https://doi.org/10.1002/maco.202112360
  81. Ramesh K. Singh, Kalaiyarasi Rajavelu, Michael Montag, Alex Schechter. Advances in Catalytic Electrooxidation of Urea: A Review. Energy Technology 2021, 9 (8) , 2100017. https://doi.org/10.1002/ente.202100017
  82. Jinfa Chang, Guanzhi Wang, Zhenzhong Yang, Boyang Li, Qi Wang, Ruslan Kuliiev, Nina Orlovskaya, Meng Gu, Yingge Du, Guofeng Wang, Yang Yang. Dual‐Doping and Synergism toward High‐Performance Seawater Electrolysis. Advanced Materials 2021, 33 (33) , 2101425. https://doi.org/10.1002/adma.202101425
  83. Hainan Sun, WooChul Jung. Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A 2021, 9 (28) , 15506-15521. https://doi.org/10.1039/D1TA03452A
  84. Lin-Wei Chen, Hai-Wei Liang. Ir-based bifunctional electrocatalysts for overall water splitting. Catalysis Science & Technology 2021, 11 (14) , 4673-4689. https://doi.org/10.1039/D1CY00650A
  85. Jinxiao Xu, Yingjun Ma, Jie Wang, Xuyun Guo, Linghao Su, Chuanli Ma, Liangyu Gong, Ye Zhu, Cuijuan Xuan. Constructing defect-rich Ni 9 S 8 /Fe 5 Ni 4 S 8 heterostructure nanoparticles for efficient oxygen evolution reaction and overall water splitting. Journal of Physics: Materials 2021, 4 (3) , 034006. https://doi.org/10.1088/2515-7639/abf3ae
  86. Dong Cao, Jiayi Wang, Huimin Zhang, Haoxiang Xu, Daojian Cheng. Growth of IrCu nanoislands with rich IrCu/Ir interfaces enables highly efficient overall water splitting in non-acidic electrolytes. Chemical Engineering Journal 2021, 416 , 129128. https://doi.org/10.1016/j.cej.2021.129128
  87. Zhenxing Li, Mingliang Hu, Ping Wang, Jiahao Liu, Jiasai Yao, Chenyu Li. Heterojunction catalyst in electrocatalytic water splitting. Coordination Chemistry Reviews 2021, 439 , 213953. https://doi.org/10.1016/j.ccr.2021.213953
  88. J. Niklas Hausmann, Rodrigo Beltrán‐Suito, Stefan Mebs, Viktor Hlukhyy, Thomas F. Fässler, Holger Dau, Matthias Driess, Prashanth W. Menezes. Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5‐Hydroxymethylfurfural. Advanced Materials 2021, 33 (27) , 2008823. https://doi.org/10.1002/adma.202008823
  89. Huimin Liu, Qinglei Liu, Yarong Wang, Yongfei Wang, Shulei Chou, Zhizhi Hu, Zhiqiang Zhang. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chinese Chemical Letters 2021, 31 https://doi.org/10.1016/j.cclet.2021.07.038
  90. Boying Zhang, Wenbo Wang, Linan Liang, Zhice Xu, Xiaoyun Li, Shanlin Qiao. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews 2021, 436 , 213782. https://doi.org/10.1016/j.ccr.2021.213782
  91. Jindong Ji, Jingjing Xu, Guoli Fan, Tao Guo, Lan Yang, Feng Li. Controlled synthesis of CeOx-NiCo2O4 nanocomposite with 3D umbrella-shaped hierarchical structure: A sharp-tip enhanced electrocatalyst for efficient oxygen evolution reaction over a broad pH region. Electrochimica Acta 2021, 382 , 138345. https://doi.org/10.1016/j.electacta.2021.138345
  92. Qing Yao, Bolong Huang, Yong Xu, Leigang Li, Qi Shao, Xiaoqing Huang. A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy 2021, 84 , 105909. https://doi.org/10.1016/j.nanoen.2021.105909
  93. Birhanu Bayissa Gicha, Lemma Teshome Tufa, Sohyun Kang, Mahendra Goddati, Eneyew Tilahun Bekele, Jaebeom Lee. Transition Metal-Based 2D Layered Double Hydroxide Nanosheets: Design Strategies and Applications in Oxygen Evolution Reaction. Nanomaterials 2021, 11 (6) , 1388. https://doi.org/10.3390/nano11061388
  94. Lingjie Zhang, Weiwei Cai, Ningzhong Bao. Top‐Level Design Strategy to Construct an Advanced High‐Entropy Co–Cu–Fe–Mo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolution Reaction. Advanced Materials 2021, 33 (22) , 2100745. https://doi.org/10.1002/adma.202100745
  95. Syed Asad Abbas, Ahyeon Ma, Dongho Seo, Haeun Jung, Yun Ji Lim, Asad Mehmood, Ki Min Nam. Synthesis of [email protected] core-shell catalysts with controlled shell composition for robust oxygen evolution reaction. Applied Surface Science 2021, 551 , 149445. https://doi.org/10.1016/j.apsusc.2021.149445
  96. Mohammad Alharthy, Munzir H. Suliman, Abdul-Rahman Al-Betar, Yuan Wang, Ziqi Tian, Qasem A. Drmosh, Zain H. Yamani, Mohammad Qamar. Reaping the catalytic benefits of both surface (NiFe 2 O 4 ) and underneath (Ni 3 Fe) layers for the oxygen evolution reaction. Sustainable Energy & Fuels 2021, 5 (10) , 2704-2714. https://doi.org/10.1039/D0SE01926G
  97. Yaqi Lei, Tingting Xu, Shenghua Ye, Lirong Zheng, Peng Liao, Wei Xiong, Jing Hu, Yajie Wang, Jingpeng Wang, Xiangzhong Ren, Chuanxin He, Qianling Zhang, Jianhong Liu, Xueliang Sun. Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. Applied Catalysis B: Environmental 2021, 285 , 119809. https://doi.org/10.1016/j.apcatb.2020.119809
  98. Youjun Li, Kamran Dastafkan, Qiangqiang Sun, Yi Ma, Xiuhang Wang, Xueying Yang, Zenglin Wang, Chuan Zhao. Ni-based 3D hierarchical heterostructures achieved by selective electrodeposition as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta 2021, 379 , 138042. https://doi.org/10.1016/j.electacta.2021.138042
  99. Nina Popov, Marko Bošković, Marija Perović, Zoltán Németh, Junhu Wang, Zhichong Kuang, Michael Reissner, Ernő Kuzmann, Zoltán Homonnay, Shiro Kubuki, Marijan Marciuš, Mira Ristić, Svetozar Musić, Dalibor Stanković, Stjepko Krehula. Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods. Journal of Physics and Chemistry of Solids 2021, 152 , 109929. https://doi.org/10.1016/j.jpcs.2020.109929
  100. Md. Samim Hassan, Pooja Basera, Soniya Gahlawat, Pravin P. Ingole, Saswata Bhattacharya, Sameer Sapra. Understanding the efficient electrocatalytic activities of MoSe 2 –Cu 2 S nanoheterostructures. Journal of Materials Chemistry A 2021, 9 (15) , 9837-9848. https://doi.org/10.1039/D1TA01255J
Load all citations