Steel: The Resurrection of a Forgotten Water-Splitting Catalyst

Cite this: ACS Energy Lett. 2018, 3, 3, 574–591
Publication Date (Web):February 2, 2018
https://doi.org/10.1021/acsenergylett.8b00024
Copyright © 2018 American Chemical Society
Article Views
2482
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (10 MB)

Abstract

Because of the limited availability of fossil fuels, the splitting of water into oxygen and hydrogen upon exploitation of solar energy becomes an increasingly important clean energy production and storage technique. Despite its early use as a hydrogen-evolution catalyst in alkaline electrolysis, steel was until very recently supposed to be neither an active and stable water-splitting catalyst nor an interesting scientific subject at all. The authors of this contribution not only have shown in recent papers the potential of steel in terms of pure material properties but also have revealed the qualities of steel as a striking scientific topic. They herewith review what is known about the water-splitting properties of untreated and surface-modified steel and try to determine a potential transfer to a broader application of modified steels in heterogeneous catalysis. The synopsis is basically limited to the usage of steel as a real electrocatalyst, thus presenting the catalytic active species itself.

Cited By


This article is cited by 75 publications.

  1. Bhagyashri Todankar, Pradeep Desai, Ajinkya K. Ranade, Yazid Yaakob, Toru Asaka, Golap Kalita, Masaki Tanemura. Influence on Electrochemical Reactivity and Synthesis of Stainless Steel/Nitrogen-Doped Carbon Nanofibers. The Journal of Physical Chemistry C 2021, 125 (45) , 25197-25206. https://doi.org/10.1021/acs.jpcc.1c06234
  2. Masahiro Nishimoto, Sho Kitano, Damian Kowalski, Yoshitaka Aoki, Hiroki Habazaki. Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9465-9473. https://doi.org/10.1021/acssuschemeng.1c03116
  3. Naohito Yamada, Sho Kitano, Yuya Yato, Damian Kowalski, Yoshitaka Aoki, Hiroki Habazaki. In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials 2020, 3 (12) , 12316-12326. https://doi.org/10.1021/acsaem.0c02362
  4. Sengeni Anantharaj, Hisashi Sugime, Suguru Noda. Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (12) , 12596-12606. https://doi.org/10.1021/acsaem.0c02505
  5. Florian Le Formal, Lucas Yerly, Elizaveta Potapova Mensi, Xavier Pereira Da Costa, Florent Boudoire, Nestor Guijarro, Mariana Spodaryk, Andreas Züttel, Kevin Sivula. Influence of Composition on Performance in Metallic Iron–Nickel–Cobalt Ternary Anodes for Alkaline Water Electrolysis. ACS Catalysis 2020, 10 (20) , 12139-12147. https://doi.org/10.1021/acscatal.0c03523
  6. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  7. Mingyong Cai, Weijian Liu, Xiao Luo, Changhao Chen, Rui Pan, Hongjun Zhang, Minlin Zhong. Three-Dimensional and In Situ-Activated Spinel Oxide Nanoporous Clusters Derived from Stainless Steel for Efficient and Durable Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (12) , 13971-13981. https://doi.org/10.1021/acsami.0c00701
  8. Xueqiang Zhang, Tadashi Ogitsu, Brandon C. Wood, Tuan Anh Pham, Sylwia Ptasinska. Oxidation-Induced Polymerization of InP Surface and Implications for Optoelectronic Applications. The Journal of Physical Chemistry C 2019, 123 (51) , 30893-30902. https://doi.org/10.1021/acs.jpcc.9b07260
  9. Naoto Todoroki, Toshimasa Wadayama. Heterolayered Ni–Fe Hydroxide/Oxide Nanostructures Generated on a Stainless-Steel Substrate for Efficient Alkaline Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (47) , 44161-44169. https://doi.org/10.1021/acsami.9b14213
  10. Adriano Ambrosi, Martin Pumera. Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16968-16975. https://doi.org/10.1021/acssuschemeng.8b04327
  11. Heba H. Farrag, Alaa A. Abbas, Sayed Youssef Sayed, Hafsa H. Alalawy, Bahgat E. El-Anadouli, Ahmad M. Mohammad, Nageh K. Allam. From Rusting to Solar Power Plants: A Successful Nano-Pattering of Stainless Steel 316L for Visible Light-Induced Photoelectrocatalytic Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 17352-17358. https://doi.org/10.1021/acssuschemeng.8b04899
  12. Waqas Qamar Zaman, Wei Sun, Zhen-hua Zhou, Yiyi Wu, Limei Cao, Ji Yang. Anchoring of IrO2 on One-Dimensional Co3O4 Nanorods for Robust Electrocatalytic Water Splitting in an Acidic Environment. ACS Applied Energy Materials 2018, 1 (11) , 6374-6380. https://doi.org/10.1021/acsaem.8b01349
  13. Helmut Schäfer, Karsten Kuepper, Jonas Koppe, Philipp Selter, Martin Steinhart, Michael Ryan Hansen, Diemo Daum. Intercalation of Li+ into a Co-Containing Steel-Ceramic Composite: Substantial Oxygen Evolution at Almost Zero Overpotential. ACS Catalysis 2018, 8 (11) , 10914-10925. https://doi.org/10.1021/acscatal.8b03566
  14. Hui Xu, Jingjing Wei, Ke Zhang, Yukihide Shiraishi, Yukou Du. Hierarchical NiMo Phosphide Nanosheets Strongly Anchored on Carbon Nanotubes as Robust Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (35) , 29647-29655. https://doi.org/10.1021/acsami.8b10314
  15. Minoh Lee, Michael Shincheon Jee, Seung Yeon Lee, Min Kyung Cho, Jae-Pyoung Ahn, Hyung-Suk Oh, Woong Kim, Yun Jeong Hwang, Byoung Koun Min. Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (29) , 24499-24507. https://doi.org/10.1021/acsami.8b04871
  16. A. Bahrawy, M. M. El-Rabiei, Salah F. Abdellah, H. Nady, Mosaad Negem. Efficient Hydrogen Evolution Reaction Using FeCrMn Alloy as Novel Electrocatalyst in Acidic and Alkaline Media. Journal of Bio- and Tribo-Corrosion 2021, 7 (4) https://doi.org/10.1007/s40735-021-00592-7
  17. Sengeni Anantharaj, Hisashi Sugime, Suguru Noda. Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?. Journal of Electroanalytical Chemistry 2021, 903 , 115842. https://doi.org/10.1016/j.jelechem.2021.115842
  18. Xiaomei Wang, Xu Zong, Bo Liu, Guifa Long, Aoqi Wang, Zhiqiang Xu, Rui Song, Weiguang Ma, Hong Wang, Can Li. Boosting Electrochemical Water Oxidation on NiFe (oxy) Hydroxides by Constructing Schottky Junction toward Water Electrolysis under Industrial Conditions. Small 2021, , 2105544. https://doi.org/10.1002/smll.202105544
  19. Sengeni Anantharaj, Suguru Noda, Vasanth Rajendiran Jothi, SungChul Yi, Matthias Driess, Prashanth W. Menezes. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie 2021, 133 (35) , 19129-19154. https://doi.org/10.1002/ange.202015738
  20. Sengeni Anantharaj, Suguru Noda, Vasanth Rajendiran Jothi, SungChul Yi, Matthias Driess, Prashanth W. Menezes. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie International Edition 2021, 60 (35) , 18981-19006. https://doi.org/10.1002/anie.202015738
  21. Chunfeng Zhu, Zhongyuan Yu, Tong Lin, Jintang Li, Xuetao Luo. Structural design of cobalt phosphate on nickel foam for electrocatalytic oxygen evolution. Nanotechnology 2021, 32 (30) , 305702. https://doi.org/10.1088/1361-6528/abf454
  22. Adèle Peugeot, Charles E. Creissen, Moritz W. Schreiber, Marc Fontecave. Advancing the Anode Compartment for Energy Efficient CO 2 Reduction at Neutral pH. ChemElectroChem 2021, 8 (14) , 2726-2736. https://doi.org/10.1002/celc.202100742
  23. Moonsu Kim, Jaeyun Ha, Yong-Tae Kim, Jinsub Choi. Trace amounts of Ru-doped Ni–Fe oxide bone-like structures via single-step anodization: a flexible and bifunctional electrode for efficient overall water splitting. Journal of Materials Chemistry A 2021, 9 (20) , 12041-12050. https://doi.org/10.1039/D1TA01409A
  24. Martin Ďurovič, Jaromír Hnát, Karel Bouzek. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources 2021, 493 , 229708. https://doi.org/10.1016/j.jpowsour.2021.229708
  25. Xupo Liu, Mingxing Gong, Shaofeng Deng, Tonghui Zhao, Tao Shen, Jian Zhang, Deli Wang. Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting. Advanced Functional Materials 2021, 31 (11) , 2009032. https://doi.org/10.1002/adfm.202009032
  26. V. Maruthapandian, S. Muralidharan, V. Saraswathy. From waste high speed steel alloy to valuable oxygen evolution reaction catalyst in alkaline medium. Electrochimica Acta 2021, 371 , 137848. https://doi.org/10.1016/j.electacta.2021.137848
  27. Billal Zayat, Debanjan Mitra, Ahamed Irshad, Aravamuthan Sundar Rajan, Sri R Narayanan. Inexpensive and robust iron-based electrode substrates for water electrolysis and energy storage. Current Opinion in Electrochemistry 2021, 25 , 100628. https://doi.org/10.1016/j.coelec.2020.08.010
  28. Frank C. Walsh, Luis F. Arenas, Carlos Ponce de León. Editors’ Choice—Critical Review—The Bipolar Trickle Tower Reactor: Concept, Development and Applications. Journal of The Electrochemical Society 2021, 168 (2) , 023503. https://doi.org/10.1149/1945-7111/abdd7a
  29. Naoto Todoroki, Toshimasa Wadayama. Electrochemical stability of stainless-steel-made anode for alkaline water electrolysis: Surface catalyst nanostructures and oxygen evolution overpotentials under applying potential cycle loading. Electrochemistry Communications 2021, 122 , 106902. https://doi.org/10.1016/j.elecom.2020.106902
  30. Md Abu Sayeed, Jonathan Heron, Jonathan Love, Anthony P. O'Mullane. Activating Iron Based Materials for Overall Electrochemical Water Splitting via the Incorporation of Noble Metals. Chemistry – An Asian Journal 2020, 15 (24) , 4339-4346. https://doi.org/10.1002/asia.202001113
  31. Moonsu Kim, Jaeyun Ha, Nahyun Shin, Yong-Tae Kim, Jinsub Choi. Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction. Electrochimica Acta 2020, 364 , 137315. https://doi.org/10.1016/j.electacta.2020.137315
  32. Huifen Peng, Wulin Zhang, Yan Song, Fuxing Yin, Chengwei Zhang, Lei Zhang. In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Catalysis Today 2020, 355 , 286-294. https://doi.org/10.1016/j.cattod.2019.05.003
  33. Yao Xiao, Tao Hu, Xing Zhao, Fang Xin Hu, Hong Bin Yang, Chang Ming Li. Thermo-selenizing to rationally tune surface composition and evolve structure of stainless steel to electrocatalytically boost oxygen evolution reaction. Nano Energy 2020, 75 , 104949. https://doi.org/10.1016/j.nanoen.2020.104949
  34. Moonsu Kim, Yong-Tae Kim, Jinsub Choi. Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties. Electrochemistry Communications 2020, 117 , 106770. https://doi.org/10.1016/j.elecom.2020.106770
  35. Damien Le Bideau, Philippe Mandin, Mohamed Benbouzid, Myeongsub Kim, Mathieu Sellier, Fabrizio Ganci, Rosalinda Inguanta. Eulerian Two-Fluid Model of Alkaline Water Electrolysis for Hydrogen Production. Energies 2020, 13 (13) , 3394. https://doi.org/10.3390/en13133394
  36. Guoxing Zhu, Xiaoyun Li, Yuanjun Liu, Yu Mao, Zhiwu Liang, Zhenyuan Ji, Xiaoping Shen, Jian Sun, Xiaofang Cheng, Junjie Mao. Scalable surface engineering of commercial metal foams for defect-rich hydroxides towards improved oxygen evolution. Journal of Materials Chemistry A 2020, 8 (25) , 12603-12612. https://doi.org/10.1039/D0TA02858D
  37. S. Song, L. Yu, X. Xiao, Z. Qin, W. Zhang, D. Wang, J. Bao, H. Zhou, Q. Zhang, S. Chen, Z. Ren. Outstanding oxygen evolution reaction performance of nickel iron selenide/stainless steel mat for water electrolysis. Materials Today Physics 2020, 13 , 100216. https://doi.org/10.1016/j.mtphys.2020.100216
  38. Marten Huck, Lisa Ring, Karsten Küpper, Johann Klare, Diemo Daum, Helmut Schäfer. Water splitting mediated by an electrocatalytically driven cyclic process involving iron oxide species. Journal of Materials Chemistry A 2020, 8 (19) , 9896-9910. https://doi.org/10.1039/D0TA03340E
  39. Jiajia Song, Chao Wei, Zhen-Feng Huang, Chuntai Liu, Lin Zeng, Xin Wang, Zhichuan J. Xu. A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews 2020, 49 (7) , 2196-2214. https://doi.org/10.1039/C9CS00607A
  40. F. C. Walsh, L. F. Arenas, C. Ponce de León. A virtuous cycle in materials engineering and surface finishing: design-print-image. Transactions of the IMF 2020, 98 (2) , 65-72. https://doi.org/10.1080/00202967.2020.1718410
  41. Zhong Liang, Peng Zhou, Zeyan Wang, Peng Wang, Yuanyuan Liu, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai, Zhaoke Zheng, Baibiao Huang. Electrodeposition of NiFe layered double hydroxide on Ni3S2 nanosheets for efficient electrocatalytic water oxidation. International Journal of Hydrogen Energy 2020, 45 (15) , 8659-8666. https://doi.org/10.1016/j.ijhydene.2020.01.113
  42. Mengqi Yao, Haohui Hu, Ni Wang, Wencheng Hu, Sridhar Komarneni. Quaternary (Fe/Ni)(P/S) mesoporous nanorods templated on stainless steel mesh lead to stable oxygen evolution reaction for over two months. Journal of Colloid and Interface Science 2020, 561 , 576-584. https://doi.org/10.1016/j.jcis.2019.11.032
  43. Haojie Zhang, Juliana Martins, Souza E. Silva, Cristine Santos de Oliveira, Xubin Lu, Stefan L. Schweizer, A. Wouter Maijenburg, Michael Bron, Ralf B. Wehrspohn. Optimization of Chemical Vapor Deposition Process for Carbon Nanotubes Growth on Stainless Steel: Towards Efficient Hydrogen Evolution Reaction. MRS Advances 2020, 5 (8-9) , 363-368. https://doi.org/10.1557/adv.2020.4
  44. Peican Wang, Yuqun Lin, Lei Wan, Baoguo Wang. Autologous growth of Fe-doped Ni(OH)2 nanosheets with low overpotential for oxygen evolution reaction. International Journal of Hydrogen Energy 2020, 45 (11) , 6416-6424. https://doi.org/10.1016/j.ijhydene.2019.12.156
  45. Silu Zhu, Cuiping Chang, Yanzhi Sun, Guoyi Duan, Yongmei Chen, Junqing Pan, Yang Tang, Pingyu Wan. Modification of stainless steel fiber felt via in situ self-growth by electrochemical induction as a robust catalysis electrode for oxygen evolution reaction. International Journal of Hydrogen Energy 2020, 45 (3) , 1810-1821. https://doi.org/10.1016/j.ijhydene.2019.11.052
  46. Vitaly B. Svetovoy, Alexander V. Prokaznikov, Alexander V. Postnikov, Ilia V. Uvarov, George Palasantzas. Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. Energies 2020, 13 (1) , 20. https://doi.org/10.3390/en13010020
  47. Florian Moureaux, Philippe Stevens, Gwenaëlle Toussaint, Marian Chatenet. Timely-activated 316L stainless steel: A low cost, durable and active electrode for oxygen evolution reaction in concentrated alkaline environments. Applied Catalysis B: Environmental 2019, 258 , 117963. https://doi.org/10.1016/j.apcatb.2019.117963
  48. Lisa Ring, Bruno G. Pollet, Marian Chatenet, Sofyane Abbou, Karsten Küpper, Mercedes Schmidt, Marten Huck, Aurelia Gries, Martin Steinhart, Helmut Schäfer. From Bad Electrochemical Practices to an Environmental and Waste Reducing Approach for the Generation of Active Hydrogen Evolving Electrodes. Angewandte Chemie 2019, 131 (48) , 17544-17553. https://doi.org/10.1002/ange.201908649
  49. Lisa Ring, Bruno G. Pollet, Marian Chatenet, Sofyane Abbou, Karsten Küpper, Mercedes Schmidt, Marten Huck, Aurelia Gries, Martin Steinhart, Helmut Schäfer. From Bad Electrochemical Practices to an Environmental and Waste Reducing Approach for the Generation of Active Hydrogen Evolving Electrodes. Angewandte Chemie International Edition 2019, 58 (48) , 17383-17392. https://doi.org/10.1002/anie.201908649
  50. Chong‐Yong Lee, Adam C. Taylor, Stephen Beirne, Gordon G. Wallace. A 3D‐Printed Electrochemical Water Splitting Cell. Advanced Materials Technologies 2019, 4 (10) , 1900433. https://doi.org/10.1002/admt.201900433
  51. Junyeong Kim, Jun Neoung Heo, Jeong Yeon Do, Rama Krishna Chava, Misook Kang. Electrochemical Synergies of Heterostructured Fe2O3-MnO Catalyst for Oxygen Evolution Reaction in Alkaline Water Splitting. Nanomaterials 2019, 9 (10) , 1486. https://doi.org/10.3390/nano9101486
  52. Haojie Zhang, Juliana Martins de Souza e Silva, Xubin Lu, Cristine Santos de Oliveira, Bin Cui, Xiaopeng Li, Chao Lin, Stefan L. Schweizer, A. Wouter Maijenburg, Michael Bron, Ralf B. Wehrspohn. Novel Stable 3D Stainless Steel‐Based Electrodes for Efficient Water Splitting. Advanced Materials Interfaces 2019, 6 (18) , 1900774. https://doi.org/10.1002/admi.201900774
  53. M.J.K. Lodhi, K.M. Deen, Waseem Haider. Additively manufactured 316L stainless steel: An efficient electrocatalyst. International Journal of Hydrogen Energy 2019, 44 (45) , 24698-24704. https://doi.org/10.1016/j.ijhydene.2019.07.217
  54. Hongxia Li, Xiaoyang Wang, Junhua Xi, Gang Du, Zhaodong Li, Zhenguo Ji. Efficient photoelectrochemical water splitting of stainless steel electrocatalyst modified TiO2 films. Journal of Alloys and Compounds 2019, 803 , 546-553. https://doi.org/10.1016/j.jallcom.2019.06.315
  55. Leideng Zou, Rui Qu, Hong Gao, Xin Guan, Xiaofei Qi, Cheng Liu, Zhiyong Zhang, Xiaoyi Lei. MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results in Physics 2019, 14 , 102458. https://doi.org/10.1016/j.rinp.2019.102458
  56. Shuai Chang, Xiaolei Huang, Chun Yee Aaron Ong, Liping Zhao, Liqun Li, Xuesen Wang, Jun Ding. High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. Journal of Materials Chemistry A 2019, 7 (31) , 18338-18347. https://doi.org/10.1039/C9TA05161A
  57. L.F. Arenas, C. Ponce de León, F.C. Walsh. Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Current Opinion in Electrochemistry 2019, 16 , 1-9. https://doi.org/10.1016/j.coelec.2019.02.002
  58. Yanhong Lyu, Ruilun Wang, Li Tao, Yuqin Zou, Huaijuan Zhou, Tingting Liu, Yangyang Zhou, Jia Huo, San Ping Jiang, Jianyun Zheng, Shuangyin Wang. In-situ evolution of active layers on commercial stainless steel for stable water splitting. Applied Catalysis B: Environmental 2019, 248 , 277-285. https://doi.org/10.1016/j.apcatb.2019.02.032
  59. Mengqi Yao, Baolong Sun, Ni Wang, Wencheng Hu, Sridhar Komarneni. Self-generated N-doped anodized stainless steel mesh for an efficient and stable overall water splitting electrocatalyst. Applied Surface Science 2019, 480 , 655-664. https://doi.org/10.1016/j.apsusc.2019.03.036
  60. Shuang Cao, Zhijiao Wu, Bing Fu, Haining Yu, Lingyu Piao. Polymerization pyrolysis derived self-supported Mo-Ni-O electrocatalyst for oxygen evolution. Catalysis Today 2019, 330 , 246-251. https://doi.org/10.1016/j.cattod.2018.03.023
  61. Wen-Hua Li, Jiangquan Lv, Qiaohong Li, Jiafang Xie, Naoki Ogiwara, Yiyin Huang, Huijie Jiang, Hiroshi Kitagawa, Gang Xu, Yaobing Wang. Conductive metal–organic framework nanowire arrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2019, 7 (17) , 10431-10438. https://doi.org/10.1039/C9TA02169H
  62. Shuo Geng, Weiwei Yang, Yongsheng Yu. Fabrication of NiC/MoC/NiMoO 4 Heterostructured Nanorod Arrays as Stable Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Chemistry – An Asian Journal 2019, 14 (7) , 1013-1020. https://doi.org/10.1002/asia.201801871
  63. Baicheng Weng, Xiaoming Wang, Corey R. Grice, Fenghua Xu, Yanfa Yan. A new metal–organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A 2019, 7 (12) , 7168-7178. https://doi.org/10.1039/C9TA00404A
  64. Xiaodi Cheng, Zhiyan Pan, Chaojun Lei, Yangjun Jin, Bin Yang, Zhongjian Li, Xingwang Zhang, Lecheng Lei, Chris Yuan, Yang Hou. A strongly coupled 3D ternary Fe 2 O 3 @Ni 2 P/Ni(PO 3 ) 2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. Journal of Materials Chemistry A 2019, 7 (3) , 965-971. https://doi.org/10.1039/C8TA11223A
  65. Xiaodi Cheng, Chaojun Lei, Jian Yang, Bin Yang, Zhongjian Li, Jianguo Lu, Xingwang Zhang, Lecheng Lei, Yang Hou, Kostya (Ken) Ostrikov. Efficient Electrocatalytic Oxygen Evolution at Extremely High Current Density over 3D Ultrasmall Zero‐Valent Iron‐Coupled Nickel Sulfide Nanosheets. ChemElectroChem 2018, 5 (24) , 3866-3872. https://doi.org/10.1002/celc.201801104
  66. Hui Xu, Jingjing Wei, Ke Zhang, Min Zhang, Chaofan Liu, Jun Guo, Yukou Du. Constructing bundle-like Co-Mn oxides and Co-Mn selenides for efficient overall water splitting. Journal of Materials Chemistry A 2018, 6 (45) , 22697-22704. https://doi.org/10.1039/C8TA07449F
  67. Xiaoqiang Du, Wenzhen Lian, Xiaoshuang Zhang. Homogeneous core–shell NiCo2S4 nanorods as flexible electrode for overall water splitting. International Journal of Hydrogen Energy 2018, 43 (45) , 20627-20635. https://doi.org/10.1016/j.ijhydene.2018.09.123
  68. Weijia Han, Karsten Kuepper, Peilong Hou, Wajiha Akram, Henning Eickmeier, Jörg Hardege, Martin Steinhart, Helmut Schäfer. Free‐Sustaining Three‐Dimensional S235 Steel‐Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution. ChemSusChem 2018, 11 (20) , 3661-3671. https://doi.org/10.1002/cssc.201801351
  69. Xia Shi, Aiping Wu, Haijing Yan, Lin Zhang, Chungui Tian, Lei Wang, Honggang Fu. A “MOFs plus MOFs” strategy toward Co–Mo 2 N tubes for efficient electrocatalytic overall water splitting. Journal of Materials Chemistry A 2018, 6 (41) , 20100-20109. https://doi.org/10.1039/C8TA07906D
  70. Rakesh Sharma, Verónica Müller, Marian Chatenet, Elisabeth Djurado. Oxygen Reduction Reaction Electrocatalysis in Alkaline Electrolyte on Glassy-Carbon-Supported Nanostructured Pr6O11 Thin-Films. Catalysts 2018, 8 (10) , 461. https://doi.org/10.3390/catal8100461
  71. Wai Ling Kwong, Cheng Choo Lee, Andrey Shchukarev, Erik Björn, Johannes Messinger. High-performance iron (III) oxide electrocatalyst for water oxidation in strongly acidic media. Journal of Catalysis 2018, 365 , 29-35. https://doi.org/10.1016/j.jcat.2018.06.018
  72. Dandan Li, Congcong Wei, Qiang Wang, Lin Liu, Dazhong Zhong, Genyan Hao, Jinping Li, Qiang Zhao. In-situ ammonia-modulated silver oxide as efficient oxygen evolution catalyst in neutral organic carboxylate buffer. International Journal of Hydrogen Energy 2018, 43 (31) , 14379-14387. https://doi.org/10.1016/j.ijhydene.2018.06.016
  73. Harshad Bandal, K. Koteshwara Reddy, Avinash Chaugule, Hern Kim. Iron-based heterogeneous catalysts for oxygen evolution reaction; change in perspective from activity promoter to active catalyst. Journal of Power Sources 2018, 395 , 106-127. https://doi.org/10.1016/j.jpowsour.2018.05.047
  74. Junyu Shen, Mei Wang, Liang Zhao, Peili Zhang, Jian Jiang, Jinxuan Liu. Amorphous Ni(Fe)O H -coated nanocone arrays self-supported on stainless steel mesh as a promising oxygen-evolving anode for large scale water splitting. Journal of Power Sources 2018, 389 , 160-168. https://doi.org/10.1016/j.jpowsour.2018.04.023
  75. Helmut Schäfer, Karsten Küpper, Mercedes Schmidt, Klaus Müller-Buschbaum, Johannes Stangl, Diemo Daum, Martin Steinhart, Christine Schulz-Kölbel, Weijia Han, Joachim Wollschläger, Ulrich Krupp, Peilong Hou, Xiaogang Liu. Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media. Catalysis Science & Technology 2018, 8 (8) , 2104-2116. https://doi.org/10.1039/C7CY02194A