Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts

Cite this: ACS Energy Lett. 2018, 3, 12, 2956–2966
Publication Date (Web):November 5, 2018
https://doi.org/10.1021/acsenergylett.8b01774
Copyright © 2018 American Chemical Society
Article Views
3676
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Metal chalcogenides, pnictides, and carbides, labeled collectively as metal X-ides, have become an exciting new class of water oxidation electrocatalysts, but there is a lack of agreement regarding the composition of the “true” catalyst. The most prominent theories are that the X-ides are either completely oxidized, left unoxidized, or transformed into [email protected] particles upon testing. Here, we examine examples of each conjecture, summarizing the conflicting viewpoints on catalyst identity and offering guidelines for more rigorous identification in the future. Most studies indicate that at least partial oxidation of the catalyst surface is critical to high performance, likely caused by an increased catalyst surface area upon oxidation or improved charge transfer in the X-ide cores. Therefore, more thorough and uniform long-term testing and nanoscale chemical analysis are essential to determine how these factors relate to catalyst performance.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.8b01774.

  • Table providing information about catalysts discussed in the text, including oxidation type, catalyst form, overpotential, stability, loading, analytical techniques, electrolyte pH, and testing potential, and Pourbaix diagrams and Gibbs free energy overlays for a series of nickel-based X-ide samples (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 157 publications.

  1. Andraž Mavrič, Chunhua Cui. Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides. ACS Applied Energy Materials 2021, 4 (11) , 12032-12055. https://doi.org/10.1021/acsaem.1c02604
  2. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  3. Junheng Huang, Soren B. Scott, Ib Chorkendorff, Zhenhai Wen. Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis 2021, 11 (20) , 12745-12753. https://doi.org/10.1021/acscatal.1c03430
  4. Yong-Chao Zhang, Caidi Han, Jian Gao, Lun Pan, Jinting Wu, Xiao-Dong Zhu, Ji-Jun Zou. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis 2021, 11 (20) , 12485-12509. https://doi.org/10.1021/acscatal.1c03260
  5. Guangming Zhao, Yunduo Yao, Wei Lu, Guanyu Liu, Xuyun Guo, Antonio Tricoli, Ye Zhu. Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy. Nano Letters 2021, 21 (16) , 7012-7020. https://doi.org/10.1021/acs.nanolett.1c02378
  6. Weiran Zheng, Lawrence Yoon Suk Lee. Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?. ACS Energy Letters 2021, 6 (8) , 2838-2843. https://doi.org/10.1021/acsenergylett.1c01350
  7. Julia Linnemann, Kannasoot Kanokkanchana, Kristina Tschulik. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catalysis 2021, 11 (9) , 5318-5346. https://doi.org/10.1021/acscatal.0c04118
  8. Denis A. Kuznetsov, Zixuan Chen, Paula M. Abdala, Olga V. Safonova, Alexey Fedorov, Christoph R. Müller. Single-Atom-Substituted Mo2CTx:Fe-Layered Carbide for Selective Oxygen Reduction to Hydrogen Peroxide: Tracking the Evolution of the MXene Phase. Journal of the American Chemical Society 2021, 143 (15) , 5771-5778. https://doi.org/10.1021/jacs.1c00504
  9. Umanga De Silva, Jennifer See, Wipula P. R. Liyanage, Jahangir Masud, Jinpeng Wu, Wanli Yang, Wei-Ting Chen, David Prendergast, Manashi Nath. Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation. Energy & Fuels 2021, 35 (5) , 4387-4403. https://doi.org/10.1021/acs.energyfuels.0c04089
  10. Zehao Zang, Xuewei Wang, Xiang Li, Qingling Zhao, Lanlan Li, Xiaojing Yang, Xiaofei Yu, Xinghua Zhang, Zunming Lu. Co9S8 Nanosheet Coupled Cu2S Nanorod Heterostructure as Efficient Catalyst for Overall Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (8) , 9865-9874. https://doi.org/10.1021/acsami.0c20820
  11. Yoon Jun Son, Kenta Kawashima, Bryan R. Wygant, Chon Hei Lam, James N. Burrow, Hugo Celio, Andrei Dolocan, John G. Ekerdt, C. Buddie Mullins. Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities. ACS Nano 2021, 15 (2) , 3468-3480. https://doi.org/10.1021/acsnano.0c10788
  12. Masaki Saruyama, Ryota Sato, Toshiharu Teranishi. Transformations of Ionic Nanocrystals via Full and Partial Ion Exchange Reactions. Accounts of Chemical Research 2021, 54 (4) , 765-775. https://doi.org/10.1021/acs.accounts.0c00701
  13. Phillip Christopher, (Senior Editor)Song Jin, (Senior Editor)Kevin Sivula, (Senior Editor)Prashant V. Kamat (Editor-in-Chief). Why Seeing Is Not Always Believing: Common Pitfalls in Photocatalysis and Electrocatalysis. ACS Energy Letters 2021, 6 (2) , 707-709. https://doi.org/10.1021/acsenergylett.1c00064
  14. Rebecca Pittkowski, Spyridon Divanis, Mariana Klementová, Roman Nebel, Shahin Nikman, Harry Hoster, Sanjeev Mukerjee, Jan Rossmeisl, Petr Krtil. Engendering Unprecedented Activation of Oxygen Evolution via Rational Pinning of Ni Oxidation State in Prototypical Perovskite: Close Juxtaposition of Synthetic Approach and Theoretical Conception. ACS Catalysis 2021, 11 (2) , 985-997. https://doi.org/10.1021/acscatal.0c04733
  15. Michaela Burke Stevens, Melissa E. Kreider, Anjli M. Patel, Zhenbin Wang, Yunzhi Liu, Brenna M. Gibbons, Michael J. Statt, Anton V. Ievlev, Robert Sinclair, Apurva Mehta, Ryan C. Davis, Jens K. Nørskov, Alessandro Gallo, Laurie A. King, Thomas F. Jaramillo. Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials 2020, 3 (12) , 12433-12446. https://doi.org/10.1021/acsaem.0c02423
  16. Sengeni Anantharaj, Hisashi Sugime, Suguru Noda. Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (12) , 12596-12606. https://doi.org/10.1021/acsaem.0c02505
  17. Cüneyt Karakaya, Navid Solati, Umut Savacı, Emre Keleş, Servet Turan, Serdar Çelebi, Sarp Kaya. Mesoporous Thin-Film NiS2 as an Idealized Pre-Electrocatalyst for a Hydrogen Evolution Reaction. ACS Catalysis 2020, 10 (24) , 15114-15122. https://doi.org/10.1021/acscatal.0c03094
  18. Ana M. Barrios Jiménez, Ulrich Burkhardt, Raul Cardoso-Gil, Katharina Höfer, Simone G. Altendorf, Robert Schlögl, Yuri Grin, Iryna Antonyshyn. Hf2B2Ir5: A Self-Optimizing Catalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (11) , 11042-11052. https://doi.org/10.1021/acsaem.0c02022
  19. Raúl A. Márquez-Montes, Kenta Kawashima, Kobe M. Vo, David Chávez-Flores, Virginia H. Collins-Martínez, C. Buddie Mullins, Víctor H. Ramos-Sánchez. Simultaneous Sulfite Electrolysis and Hydrogen Production Using Ni Foam-Based Three-Dimensional Electrodes. Environmental Science & Technology 2020, 54 (19) , 12511-12520. https://doi.org/10.1021/acs.est.0c04190
  20. Na Suo, Cheng Chen, Xinqi Han, Xingquan He, Zhiyu Dou, Zihan Lin, Lili Cui, Jinbao Xiang. The Construction of Hydrangea-like Vanadium-Doped Iron Nickel Phosphide as an Enhanced Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials 2020, 3 (9) , 9449-9458. https://doi.org/10.1021/acsaem.0c01911
  21. Kenta Kawashima, Chi L. Cao, Hao Li, Raúl A. Márquez-Montes, Bryan R. Wygant, Yoon Jun Son, Joseph V. Guerrera, Graeme Henkelman, C. Buddie Mullins. Evaluation of a V8C7 Anode for Oxygen Evolution in Alkaline Media: Unusual Morphological Behavior. ACS Sustainable Chemistry & Engineering 2020, 8 (37) , 14101-14108. https://doi.org/10.1021/acssuschemeng.0c04759
  22. Lingling Zhai, Tsz Woon Benedict Lo, Zheng-Long Xu, Jonathan Potter, Jiaying Mo, Xuyun Guo, Chiu Chung Tang, Shik Chi Edman Tsang, Shu Ping Lau. In Situ Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium. ACS Energy Letters 2020, 5 (8) , 2483-2491. https://doi.org/10.1021/acsenergylett.0c01385
  23. Zexing Wu, Hengbo Wu, Tengfei Niu, Shuai Wang, Gengtao Fu, Wei Jin, Tianyi Ma. Sulfurated Metal–Organic Framework-Derived Nanocomposites for Efficient Bifunctional Oxygen Electrocatalysis and Rechargeable Zn–Air Battery. ACS Sustainable Chemistry & Engineering 2020, 8 (24) , 9226-9234. https://doi.org/10.1021/acssuschemeng.0c03570
  24. Yu-Jia Tang, Liming You, Kun Zhou. Enhanced Oxygen Evolution Reaction Activity of a [email protected]–Fe2P Composite Boosted by Interfaces Between a N-Doped Carbon Matrix and Fe2P Microspheres. ACS Applied Materials & Interfaces 2020, 12 (23) , 25884-25894. https://doi.org/10.1021/acsami.0c04902
  25. Noor-Ul-Ain Babar, Khurram Saleem Joya. Cobalt Colloid-derived Efficient and Durable Nanoscale Electrocatalytic Films for High-Activity Water Oxidation. ACS Omega 2020, 5 (19) , 10651-10662. https://doi.org/10.1021/acsomega.9b03576
  26. Bryan R. Wygant, Anna H. Poterek, James N. Burrow, C. Buddie Mullins. Effect of Selenium Content on Nickel Sulfoselenide-Derived Nickel (Oxy)hydroxide Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (18) , 20366-20375. https://doi.org/10.1021/acsami.0c00425
  27. Yulu Zhang, Na Li, Zhiyong Zhang, Shuang Li, Meiyang Cui, Lu Ma, Hua Zhou, Dong Su, Sen Zhang. Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. Journal of the American Chemical Society 2020, 142 (18) , 8490-8497. https://doi.org/10.1021/jacs.0c02584
  28. Kenta Kawashima, Kihyun Shin, Bryan R. Wygant, Jun-Hyuk Kim, Chi L. Cao, Jie Lin, Yoon Jun Son, Yang Liu, Graeme Henkelman, C. Buddie Mullins. Cobalt Metal–Cobalt Carbide Composite Microspheres for Water Reduction Electrocatalysis. ACS Applied Energy Materials 2020, 3 (4) , 3909-3918. https://doi.org/10.1021/acsaem.0c00321
  29. Melissa E. Kreider, Michaela Burke Stevens, Yunzhi Liu, Anjli M. Patel, Michael J. Statt, Brenna M. Gibbons, Alessandro Gallo, Micha Ben-Naim, Apurva Mehta, Ryan C. Davis, Anton V. Ievlev, Jens K. Nørskov, Robert Sinclair, Laurie A. King, Thomas F. Jaramillo. Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials 2020, 32 (7) , 2946-2960. https://doi.org/10.1021/acs.chemmater.9b05212
  30. Zongkui Kou, Yong Yu, Ximeng Liu, Xiaorui Gao, Lirong Zheng, Haiyuan Zou, Yajun Pang, Zhongyang Wang, Zhenghui Pan, Jiaqing He, Stephen J. Pennycook, John Wang. Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of γ-CoOOH in a Heterostructured Co-Mo2C Precatalyst Enable Water Oxidation. ACS Catalysis 2020, 10 (7) , 4411-4419. https://doi.org/10.1021/acscatal.0c00340
  31. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  32. Patrick Wilde, Stefan Dieckhöfer, Thomas Quast, Weikai Xiang, Anjali Bhatt, Yen-Ting Chen, Sabine Seisel, Stefan Barwe, Corina Andronescu, Tong Li, Wolfgang Schuhmann, Justus Masa. Insights into the Formation, Chemical Stability, and Activity of Transient [email protected] Core–Shell Heterostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (3) , 2304-2309. https://doi.org/10.1021/acsaem.9b02481
  33. Xiong Liu, Kun Ni, Bo Wen, Ruiting Guo, Chaojiang Niu, Jiashen Meng, Qi Li, Peijie Wu, Yanwu Zhu, Xiaojun Wu, Liqiang Mai. Deep Reconstruction of Nickel-Based Precatalysts for Water Oxidation Catalysis. ACS Energy Letters 2019, 4 (11) , 2585-2592. https://doi.org/10.1021/acsenergylett.9b01922
  34. Huayu Peng, Weiwei Meng, He Zheng, Yanjie Wei, Huaping Sheng, Huihui Liu, Lei Li, Guangyu Wen, Shuangfeng Jia, Luying Li, Jianbo Wang. Probing the Crystal and Electronic Structures of Molybdenum Oxide in Redox Process: Implications for Energy Applications. ACS Applied Energy Materials 2019, 2 (10) , 7709-7716. https://doi.org/10.1021/acsaem.9b01747
  35. Zhiping Zeng, Gengtao Fu, Hong Bin Yang, Yibo Yan, Jie Chen, Zhongzheng Yu, Jiajian Gao, Li Yong Gan, Bin Liu, Peng Chen. Bifunctional N-CoSe2/3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. ACS Materials Letters 2019, 1 (4) , 432-439. https://doi.org/10.1021/acsmaterialslett.9b00337
  36. Yong Zuo, Yongpeng Liu, Junshan Li, Ruifeng Du, Xu Han, Ting Zhang, Jordi Arbiol, Núria J. Divins, Jordi Llorca, Néstor Guijarro, Kevin Sivula, Andreu Cabot. In Situ Electrochemical Oxidation of Cu2S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. Chemistry of Materials 2019, 31 (18) , 7732-7743. https://doi.org/10.1021/acs.chemmater.9b02790
  37. You-Chiuan Chu, Chia-Jui Chang, Yanping Zhu, Sheng-Chih Lin, Ching-Wei Tung, Tai-Lung Chen, Hao Ming Chen. Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (16) , 14247-14255. https://doi.org/10.1021/acssuschemeng.9b03459
  38. Subhasis Shit, Wooree Jang, Saikat Bolar, Naresh Chandra Murmu, Hyeyoung Koo, Tapas Kuila. Effect of Ion Diffusion in Cobalt Molybdenum Bimetallic Sulfide toward Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (24) , 21634-21644. https://doi.org/10.1021/acsami.9b06635
  39. Yanping Zhu, Hsiao-Chien Chen, Chia-Shuo Hsu, Ting-Sheng Lin, Chia-Jui Chang, Sung-Chun Chang, Li-Duan Tsai, Hao Ming Chen. Operando Unraveling of the Structural and Chemical Stability of P-Substituted CoSe2 Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Letters 2019, 4 (4) , 987-994. https://doi.org/10.1021/acsenergylett.9b00382
  40. Phillip Christopher. Surface-Mediated Processes for Energy Production and Conversion: Critical Considerations in Model System Design for DFT Calculations. ACS Energy Letters 2018, 3 (12) , 3015-3016. https://doi.org/10.1021/acsenergylett.8b02213
  41. Dongxu Yang, Zhe Su, Yuanfu Chen, Katam Srinivas, Xiaojuan Zhang, Wanli Zhang, Haiping Lin. Self-reconstruction of a MOF-derived chromium-doped nickel disulfide in electrocatalytic water oxidation. Chemical Engineering Journal 2022, 430 , 133046. https://doi.org/10.1016/j.cej.2021.133046
  42. Pitchiah Esakki Karthik, Hashikaa Rajan, Vasanth Rajendiran Jothi, Byoung-In Sang, Sung Chul Yi. Electronic wastes: A near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. Journal of Hazardous Materials 2022, 421 , 126687. https://doi.org/10.1016/j.jhazmat.2021.126687
  43. Deviprasath Chinnadurai, Rajmohan Rajendiran, Prabakar Kandasamy. Bimetallic copper nickel sulfide electrocatalyst by one step chemical bath deposition for efficient and stable overall water splitting applications. Journal of Colloid and Interface Science 2022, 606 , 101-112. https://doi.org/10.1016/j.jcis.2021.07.145
  44. Di Liu, Mingpeng Chen, Keyu An, Dong Liu, Yuyun Chen, Pengfei Zhou, Jielei Li, Jinxian Feng, Ye Ke, Detao Liu, Pengcheng Zhao, Chi Tat Kwok, Shi Chen, Shuangpeng Wang, Weng Fai Ip, Hui Pan. In situ surface reconstruction on LaCoO3−δ leads to enhanced hydrogen evolution reaction. Journal of Alloys and Compounds 2022, 891 , 161754. https://doi.org/10.1016/j.jallcom.2021.161754
  45. Subhasis Shit, Saikat Bolar, Naresh Chandra Murmu, Tapas Kuila. Minimal lanthanum-doping triggered enhancement in bifunctional water splitting activity of molybdenum oxide/sulfide heterostructure through structural evolution. Chemical Engineering Journal 2022, 428 , 131131. https://doi.org/10.1016/j.cej.2021.131131
  46. Soumyabrata Roy, Debabrata Bagchi, Lakshay Dheer, Saurav Ch. Sarma, Vincent Rajaji, Chandrabhas Narayana, Umesh V. Waghmare, Sebastian C. Peter. Mechanistic insights into the promotional effect of Ni substitution in non-noble metal carbides for highly enhanced water splitting. Applied Catalysis B: Environmental 2021, 298 , 120560. https://doi.org/10.1016/j.apcatb.2021.120560
  47. Sengeni Anantharaj, Hisashi Sugime, Suguru Noda. Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?. Journal of Electroanalytical Chemistry 2021, 903 , 115842. https://doi.org/10.1016/j.jelechem.2021.115842
  48. Pitchai Thangasamy, Sanghee Nam, Saewoong Oh, Hyacinthe Randriamahazaka, Il‐Kwon Oh. Boosting Oxygen Evolution Reaction on Metallocene‐based Transition Metal Sulfides Integrated with N‐doped Carbon Nanostructures. ChemSusChem 2021, 14 (22) , 5004-5020. https://doi.org/10.1002/cssc.202101469
  49. Xiang Peng, Xun Jin, Naoze Liu, Peng Wang, Zhitian Liu, Biao Gao, Liangsheng Hu, Paul K. Chu. A high-performance electrocatalyst composed of nickel clusters encapsulated with a carbon network on TiN nanaowire arrays for the oxygen evolution reaction. Applied Surface Science 2021, 567 , 150779. https://doi.org/10.1016/j.apsusc.2021.150779
  50. Xiong Liu, Ruiting Guo, Wenzhong Huang, Jiexin Zhu, Bo Wen, Liqiang Mai. Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small 2021, 17 (45) , 2100629. https://doi.org/10.1002/smll.202100629
  51. Ahmed Zaki Alhakemy, Ahmed Mourtada Elseman, Moataz G. Fayed, Abu Bakr Ahmed Amine Nassr, Abd El-Hady Kashyout, Zhenhai Wen. Hybrid electrocatalyst of CoFe2O4 decorating carbon spheres for alkaline oxygen evolution reaction. Ceramics International 2021, 3 https://doi.org/10.1016/j.ceramint.2021.11.088
  52. Qinglin Han, Yuhong Luo, Jingde Li, Xiaohang Du, Shujuan Sun, Yanji Wang, Guihua Liu, Zhongwei Chen. Efficient NiFe-based Oxygen Evolution Electrocatalysts and Origin of their Distinct Activity. Applied Catalysis B: Environmental 2021, 10 , 120937. https://doi.org/10.1016/j.apcatb.2021.120937
  53. Weiji Dai, Yin'an Zhu, Yike Ye, Ye Pan, Tao Lu, Saifang Huang. Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation. Journal of Colloid and Interface Science 2021, 37 https://doi.org/10.1016/j.jcis.2021.11.026
  54. Sibin Duan, Yuepeng Lv, Peng Yin, Yuchen Zhu, Rongming Wang. Constructing the Au–CoNi 2 S 4 core–shell heterostructure to promote the catalytic performance for oxygen evolution. Journal of Physics D: Applied Physics 2021, 54 (42) , 425501. https://doi.org/10.1088/1361-6463/ac0de7
  55. Liaona She, Guoqiang Zhao, Tianyi Ma, Jian Chen, Wenping Sun, Hongge Pan. On the Durability of Iridium‐Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment. Advanced Functional Materials 2021, , 2108465. https://doi.org/10.1002/adfm.202108465
  56. Brian M. Leonard. Transition Metal Carbides Electrocatalysts for Water Splitting. 2021,,, 1-27. https://doi.org/10.1002/9781119951438.eibc2765
  57. Maoyu Wang, Zhenxing Feng. Interfacial processes in electrochemical energy systems. Chemical Communications 2021, 57 (81) , 10453-10468. https://doi.org/10.1039/D1CC01703A
  58. Hongxing Liang, Min Xu, Edouard Asselin. Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources 2021, 510 , 230387. https://doi.org/10.1016/j.jpowsour.2021.230387
  59. Jingfu He, Chenghui Wu, Yanming Li, Changli Li. Design of pre-catalysts for heterogeneous CO 2 electrochemical reduction. Journal of Materials Chemistry A 2021, 9 (35) , 19508-19533. https://doi.org/10.1039/D1TA03624F
  60. Sangmin Jeong, Hien Duy Mai, Tri Khoa Nguyen, Jong-Sang Youn, Ki-Hun Nam, Cheol-Min Park, Ki-Joon Jeon. Atomic interactions of two-dimensional PtS2 quantum dots/TiC heterostructures for hydrogen evolution reaction. Applied Catalysis B: Environmental 2021, 293 , 120227. https://doi.org/10.1016/j.apcatb.2021.120227
  61. Ruipeng Luo, Zhengyi Qian, Lixin Xing, Chunyu Du, Geping Yin, Shenlong Zhao, Lei Du. Re‐Looking into the Active Moieties of Metal X‐ides (X‐ = Phosph‐, Sulf‐, Nitr‐, and Carb‐) Toward Oxygen Evolution Reaction. Advanced Functional Materials 2021, 31 (37) , 2102918. https://doi.org/10.1002/adfm.202102918
  62. Sengeni Anantharaj, Suguru Noda, Vasanth Rajendiran Jothi, SungChul Yi, Matthias Driess, Prashanth W. Menezes. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie 2021, 133 (35) , 19129-19154. https://doi.org/10.1002/ange.202015738
  63. Sengeni Anantharaj, Suguru Noda, Vasanth Rajendiran Jothi, SungChul Yi, Matthias Driess, Prashanth W. Menezes. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie International Edition 2021, 60 (35) , 18981-19006. https://doi.org/10.1002/anie.202015738
  64. Likun Gao, Xun Cui, Christopher D. Sewell, Jian Li, Zhiqun Lin. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews 2021, 50 (15) , 8428-8469. https://doi.org/10.1039/D0CS00962H
  65. Subhasis Shit, Saikat Bolar, Naresh Chandra Murmu, Tapas Kuila. An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts. Journal of Energy Chemistry 2021, 59 , 160-190. https://doi.org/10.1016/j.jechem.2020.10.022
  66. Xiong Liu, Jiashen Meng, Jiexin Zhu, Meng Huang, Bo Wen, Ruiting Guo, Liqiang Mai. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials 2021, 33 (32) , 2007344. https://doi.org/10.1002/adma.202007344
  67. Yin-hong Gao, Xu Nan, Yao Yang, Bing Sun, Wen-li Xu, Wandji Djouonkep Lesly Dasilva, Xuan-ke Li, Yan-jun Li, Qin Zhang. Non-layered transition metal carbides for energy storage and conversion. New Carbon Materials 2021, 36 (4) , 751-778. https://doi.org/10.1016/S1872-5805(21)60065-3
  68. Shihan Yan, Hao Li, Jiahao Zhu, Wei Xiong, Renbo Lei, Xinwei Wang. Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc–air batteries. Nanotechnology 2021, 32 (27) , 275402. https://doi.org/10.1088/1361-6528/abf26f
  69. Yao Lu, Huijuan Yu, Cong Chen, Ronglei Fan, Mingrong Shen. [email protected] core–shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation. Journal of Energy Chemistry 2021, 58 , 431-440. https://doi.org/10.1016/j.jechem.2020.10.001
  70. J. Niklas Hausmann, Rodrigo Beltrán‐Suito, Stefan Mebs, Viktor Hlukhyy, Thomas F. Fässler, Holger Dau, Matthias Driess, Prashanth W. Menezes. Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5‐Hydroxymethylfurfural. Advanced Materials 2021, 33 (27) , 2008823. https://doi.org/10.1002/adma.202008823
  71. Zongkui Kou, Xin Li, Lei Zhang, Wenjie Zang, Xiaorui Gao, John Wang. Dynamic Surface Chemistry of Catalysts in Oxygen Evolution Reaction. Small Science 2021, 1 (7) , 2100011. https://doi.org/10.1002/smsc.202100011
  72. Shi Feng Zai, Xiang Yu Gao, Chun Cheng Yang, Qing Jiang. Ce‐Modified Ni(OH) 2 Nanoflowers Supported on NiSe 2 Octahedra Nanoparticles as High‐Efficient Oxygen Evolution Electrocatalyst. Advanced Energy Materials 2021, 11 (28) , 2101266. https://doi.org/10.1002/aenm.202101266
  73. Feng-Yang Chen, Zhen-Yu Wu, Zachary Adler, Haotian Wang. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5 (7) , 1704-1731. https://doi.org/10.1016/j.joule.2021.05.005
  74. Carsten Walter, Prashanth W. Menezes, Matthias Driess. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chemical Science 2021, 12 (25) , 8603-8631. https://doi.org/10.1039/D1SC01901E
  75. Dongguo Li, Andrew R. Motz, Chulsung Bae, Cy Fujimoto, Gaoqiang Yang, Feng-Yuan Zhang, Katherine E. Ayers, Yu Seung Kim. Durability of anion exchange membrane water electrolyzers. Energy & Environmental Science 2021, 14 (6) , 3393-3419. https://doi.org/10.1039/D0EE04086J
  76. Shrabani Ghosh, Madhupriya Samanta, Biswajit Das, Supratim Maity, Promita Howli, Sourav Sarkar, K.K. Chattopadhyay. Hexagonal nickel selenide nanoflakes decorated carbon fabric: An efficient binder-free water loving electrode for electrochemical water splitting. Solid State Sciences 2021, 116 , 106613. https://doi.org/10.1016/j.solidstatesciences.2021.106613
  77. Tao Chen, Wenjing Wei, Yuan Zhang, Mingyang Ji, Songjun Li. Nature-inspired polymer catalyst for formulating on/off-selective catalytic ability, by virtue of recognition/misrecognition-alterable scaffolds. Journal of Inorganic and Organometallic Polymers and Materials 2021, 31 (6) , 2521-2531. https://doi.org/10.1007/s10904-020-01843-9
  78. Xueting Feng, Qingze Jiao, Zheng Dai, Yanliu Dang, Steven L. Suib, Jiatao Zhang, Yun Zhao, Hansheng Li, Caihong Feng, Anran Li. Revealing the effect of interfacial electron transfer in heterostructured Co 9 S 8 @NiFe LDH for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2021, 9 (20) , 12244-12254. https://doi.org/10.1039/D1TA02318G
  79. Lin Zhang, Chengjie Lu, Fei Ye, Zeyi Wu, Yanan Wang, Le Jiang, Liang Zhang, Chen Cheng, Zhengming Sun, Linfeng Hu. Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Applied Catalysis B: Environmental 2021, 284 , 119758. https://doi.org/10.1016/j.apcatb.2020.119758
  80. Jiangjin Liu, Zhenye Kang, Dongguo Li, Magnolia Pak, Shaun M. Alia, Cy Fujimoto, Guido Bender, Yu Seung Kim, Adam Z. Weber. Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance. Journal of The Electrochemical Society 2021, 168 (5) , 054522. https://doi.org/10.1149/1945-7111/ac0019
  81. Heramba V. S. R. M. Koppisetti, Sagar Ganguli, Sourav Ghosh, Venkataramanan Mahalingam. Rejuvenating the Geometric Electrocatalytic OER Performance of Crystalline Co 3 O 4 by Microstructure Engineering with Sulfate. Chemistry – An Asian Journal 2021, 16 (8) , 988-998. https://doi.org/10.1002/asia.202100175
  82. Kenta Kawashima, Raúl A. Márquez-Montes, Hao Li, Kihyun Shin, Chi L. Cao, Kobe M. Vo, Yoon Jun Son, Bryan R. Wygant, Adithya Chunangad, Duck Hyun Youn, Graeme Henkelman, Víctor H. Ramos-Sánchez, C. Buddie Mullins. Electrochemical behavior of a Ni 3 N OER precatalyst in Fe-purified alkaline media: the impact of self-oxidation and Fe incorporation. Materials Advances 2021, 2 (7) , 2299-2309. https://doi.org/10.1039/D1MA00130B
  83. Yiyin Huang, Aya Gomaa Abdelkader Mohamed, Jiafang Xie, Yaobing Wang. Surface evolution of electrocatalysts in energy conversion reactions. Nano Energy 2021, 82 , 105745. https://doi.org/10.1016/j.nanoen.2021.105745
  84. Alexey Serov, Kirill Kovnir, Michael Shatruk, Yury V. Kolen’ko. Critical Review of Platinum Group Metal-Free Materials for Water Electrolysis: Transition from the Laboratory to the Market : Earth-abundant borides and phosphides as catalysts for sustainable hydrogen production. Johnson Matthey Technology Review 2021, 65 (2) , 207-226. https://doi.org/10.1595/205651321X16067419458185
  85. Raul A. Marquez-Montes, Kenta Kawashima, Yoon Jun Son, Jason A. Weeks, H. Hohyun Sun, Hugo Celio, Víctor H. Ramos-Sánchez, C. Buddie Mullins. Mass transport-enhanced electrodeposition of Ni–S–P–O films on nickel foam for electrochemical water splitting. Journal of Materials Chemistry A 2021, 9 (12) , 7736-7749. https://doi.org/10.1039/D0TA12097A
  86. Weiji Dai, Xiaowan Bai, Yin-an Zhu, Yue Zhang, Tao Lu, Ye Pan, Jinlan Wang. Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction. Journal of Materials Chemistry A 2021, 9 (10) , 6432-6441. https://doi.org/10.1039/D0TA10925H
  87. Qijun Che, Xingyu Zhou, Quancen Liu, Ya Tan, Qing Li. Synthesis of an in situ core–shell interlink ultrathin-nanosheet [email protected] x NiO/[email protected] y CoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation. Journal of Materials Chemistry A 2021, 9 (9) , 5833-5847. https://doi.org/10.1039/D0TA10723A
  88. Huan Yang, Xiaotong Han, Abdoulkader Ibro Douka, Lei Huang, Lanqian Gong, Chenfeng Xia, Ho Seok Park, Bao Yu Xia. Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials 2021, 31 (12) , 2007602. https://doi.org/10.1002/adfm.202007602
  89. N. Clament Sagaya Selvam, Lijie Du, Bao Yu Xia, Pil J. Yoo, Bo You. Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Advanced Functional Materials 2021, 31 (12) , 2008190. https://doi.org/10.1002/adfm.202008190
  90. Yanqiang Li, Chao Wang, Ming Cui, Jiabin Xiong, Liwei Mi, Siru Chen. Heterostructured [email protected]@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Applied Surface Science 2021, 543 , 148804. https://doi.org/10.1016/j.apsusc.2020.148804
  91. Sengeni Anantharaj, Hisashi Sugime, Suguru Noda. Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal 2021, 408 , 127275. https://doi.org/10.1016/j.cej.2020.127275
  92. Dengfeng Cao, Oyawale Adetunji Moses, Beibei Sheng, Shuangming Chen, Haibin Pan, Lihui Wu, Hongwei Shou, Wenjie Xu, Dongdong Li, Lirong Zheng, Shengqi Chu, Chuansheng Hu, Daobin Liu, Shiqiang Wei, Xusheng Zheng, Zeming Qi, Xiaojun Wu, Jing Zhang, Li Song. Anomalous self-optimization of sulfate ions for boosted oxygen evolution reaction. Science Bulletin 2021, 66 (6) , 553-561. https://doi.org/10.1016/j.scib.2020.09.037
  93. J. Niklas Hausmann, Roman A. Khalaniya, Chittaranjan Das, Ina Remy-Speckmann, Stefan Berendts, Andrei V. Shevelkov, Matthias Driess, Prashanth W. Menezes. Intermetallic Fe 6 Ge 5 formation and decay of a core–shell structure during the oxygen evolution reaction. Chemical Communications 2021, 57 (17) , 2184-2187. https://doi.org/10.1039/D0CC08035G
  94. Prashanth W. Menezes, Shenglai Yao, Rodrigo Beltrán‐Suito, J. Niklas Hausmann, Pramod V. Menezes, Matthias Driess. Facile Access to an Active γ‐NiOOH Electrocatalyst for Durable Water Oxidation Derived From an Intermetallic Nickel Germanide Precursor. Angewandte Chemie 2021, 133 (9) , 4690-4697. https://doi.org/10.1002/ange.202014331
  95. Prashanth W. Menezes, Shenglai Yao, Rodrigo Beltrán‐Suito, J. Niklas Hausmann, Pramod V. Menezes, Matthias Driess. Facile Access to an Active γ‐NiOOH Electrocatalyst for Durable Water Oxidation Derived From an Intermetallic Nickel Germanide Precursor. Angewandte Chemie International Edition 2021, 60 (9) , 4640-4647. https://doi.org/10.1002/anie.202014331
  96. Saikat Bolar, Subhasis Shit, Prakas Samanta, Naresh Chandra Murmu, Tapas Kuila. The structure–activity correlation of bifunctional MnO 2 polymorphoric and MoS 2 -based heterostructures: a highly efficient, robust electrochemical water oxidation and reduction reaction catalyst in alkaline pH. Sustainable Energy & Fuels 2021, 5 (4) , 1148-1157. https://doi.org/10.1039/D0SE01714K
  97. Bin Zhao, Jianwen Liu, Chenyu Xu, Renfei Feng, Pengfei Sui, Lei Wang, Jiujun Zhang, Jing‐Li Luo, Xian‐Zhu Fu. Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Co‐Production. Advanced Functional Materials 2021, 31 (8) , 2008812. https://doi.org/10.1002/adfm.202008812
  98. Dongxu Yang, Yuanfu Chen, Zhe Su, Xiaojuan Zhang, Wanli Zhang, Katam Srinivas. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coordination Chemistry Reviews 2021, 428 , 213619. https://doi.org/10.1016/j.ccr.2020.213619
  99. Bin Zhao, Jianwen Liu, Xuewan Wang, Chenyu Xu, Pengfei Sui, Renfei Feng, Lei Wang, Jiujun Zhang, Jing-Li Luo, Xian-Zhu Fu. CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 2021, 80 , 105530. https://doi.org/10.1016/j.nanoen.2020.105530
  100. Haneul Jin, Bibi Ruqia, Yeji Park, Hee Jin Kim, Hyung‐Suk Oh, Sang‐Il Choi, Kwangyeol Lee. Nanocatalyst Design for Long‐Term Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials 2021, 11 (4) , 2003188. https://doi.org/10.1002/aenm.202003188
Load all citations