Direct Electrolytic Splitting of Seawater: Opportunities and Challenges

  • Sören Dresp
    Sören Dresp
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
    More by Sören Dresp
  • Fabio Dionigi
    Fabio Dionigi
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
  • Malte Klingenhof
    Malte Klingenhof
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
  • , and 
  • Peter Strasser*
    Peter Strasser
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
    *E-mail: [email protected]
Cite this: ACS Energy Lett. 2019, 4, 4, 933–942
Publication Date (Web):March 19, 2019
https://doi.org/10.1021/acsenergylett.9b00220
Copyright © 2019 American Chemical Society
Article Views
6861
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

Hot, coastal, hyper-arid regions with intense solar irradiation and strong on- and off-shore wind patterns are ideal locations for the production of renewable electricity using wind turbines or photovoltaics. Given ample access to seawater and scarce freshwater resources, such regions make the direct and selective electrolytic splitting of seawater into molecular hydrogen and oxygen a potentially attractive technology. The key catalytic challenge consists of the competition between anodic chlorine chemistry and the oxygen evolution reaction (OER). This Perspective addresses some aspects related to direct seawater electrolyzers equipped with selective OER and hydrogen evolution reaction (HER) electrocatalysts. Starting from a historical background to the most recent achievements, it will provide insights into the current state and future perspectives of the topic. This Perspective also addresses prospects of the combination of direct seawater electrolysis with hydrogen fuel cell technology (reversible seawater electrolysis) and discusses its suitability as combined energy conversion–freshwater production technology.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.9b00220.

  • Calculation of the energy consumption for a reversible electrolyzer (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 151 publications.

  1. Kun Jiang, Wenjun Liu, Wei Lai, Menglian Wang, Qian Li, Zhaolong Wang, Junjie Yuan, Yilin Deng, Jian Bao, Hongbing Ji. NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorganic Chemistry 2021, 60 (22) , 17371-17378. https://doi.org/10.1021/acs.inorgchem.1c02903
  2. Franziska S. Hegner, Felipe A. Garcés-Pineda, Jesús González-Cobos, Barbara Rodríguez-García, Mabel Torréns, Emilio Palomares, Núria López, José-Ramón Galán-Mascarós. Understanding the Catalytic Selectivity of Cobalt Hexacyanoferrate toward Oxygen Evolution in Seawater Electrolysis. ACS Catalysis 2021, 11 (21) , 13140-13148. https://doi.org/10.1021/acscatal.1c03502
  3. Hanchu Wang, Prodromos Daoutidis, Qi Zhang. Harnessing the Wind Power of the Ocean with Green Offshore Ammonia. ACS Sustainable Chemistry & Engineering 2021, 9 (43) , 14605-14617. https://doi.org/10.1021/acssuschemeng.1c06030
  4. Amit Kumar, Fengmin Du, John H. Lienhard V. Caustic Soda Production, Energy Efficiency, and Electrolyzers. ACS Energy Letters 2021, 6 (10) , 3563-3566. https://doi.org/10.1021/acsenergylett.1c01827
  5. Asako Taniguchi, Yuta Kubota, Nobuhiro Matsushita, Kento Ishii, Thi Kim Ngan Nguyen, Tetsuo Uchikoshi, Yoshikazu Suzuki. Sequenced Successive Ionic Layer Adsorption and Reaction for Rational Design of Ni(OH)2/FeOOH Heterostructures with Tailored Catalytic Properties. ACS Applied Energy Materials 2021, 4 (8) , 8252-8261. https://doi.org/10.1021/acsaem.1c01505
  6. Shan-Chao Ke, Rui Chen, Gang-Hua Chen, Xue-Liang Ma. Mini Review on Electrocatalyst Design for Seawater Splitting: Recent Progress and Perspectives. Energy & Fuels 2021, 35 (16) , 12948-12956. https://doi.org/10.1021/acs.energyfuels.1c02056
  7. Lu Li, Gengwei Zhang, Bin Wang, Daolong Zhu, Dan Liu, Yuanyuan Liu, Shengchun Yang. Fe2O3/NiO Interface for the Electrochemical Oxygen Evolution in Seawater and Domestic Sewage. ACS Applied Materials & Interfaces 2021, 13 (31) , 37152-37161. https://doi.org/10.1021/acsami.1c09274
  8. Ahmed Badreldin, Ahmed Nabeeh, Ebtihal Youssef, Noor Mubarak, Hania ElSayed, Rana Mohsen, Fatma Ahmed, Yiming Wubulikasimu, Khaled Elsaid, Ahmed Abdel-Wahab. Adapting Early Transition Metal and Nonmetallic Dopants on CoFe Oxyhydroxides for Enhanced Alkaline and Neutral pH Saline Water Oxidation. ACS Applied Energy Materials 2021, 4 (7) , 6942-6956. https://doi.org/10.1021/acsaem.1c01036
  9. Xiaotong Han, Nannan Li, Ying Bo Kang, Qingyun Dou, Peixun Xiong, Qing Liu, Jin Yong Lee, Liming Dai, Ho Seok Park. Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. ACS Energy Letters 2021, 6 (7) , 2460-2468. https://doi.org/10.1021/acsenergylett.1c00936
  10. Sören Dresp, Fabio Dionigi, Malte Klingenhof, Thomas Merzdorf, Henrike Schmies, Jakub Drnec, Agnieszka Poulain, Peter Strasser. Molecular Understanding of the Impact of Saline Contaminants and Alkaline pH on NiFe Layered Double Hydroxide Oxygen Evolution Catalysts. ACS Catalysis 2021, 11 (12) , 6800-6809. https://doi.org/10.1021/acscatal.1c00773
  11. Yaming Ma, Dongyu Liu, Hu Wu, Mingtao Li, Shujiang Ding, Anthony Shoji Hall, Chunhui Xiao. Promoting Bifunctional Water Splitting by Modification of the Electronic Structure at the Interface of NiFe Layered Double Hydroxide and Ag. ACS Applied Materials & Interfaces 2021, 13 (22) , 26055-26063. https://doi.org/10.1021/acsami.1c05123
  12. Hikaru Abe, Ai Murakami, Shun Tsunekawa, Takuya Okada, Toru Wakabayashi, Masaaki Yoshida, Masaharu Nakayama. Selective Catalyst for Oxygen Evolution in Neutral Brine Electrolysis: An Oxygen-Deficient Manganese Oxide Film. ACS Catalysis 2021, 11 (11) , 6390-6397. https://doi.org/10.1021/acscatal.0c05496
  13. Qingqing Tu, Wenwen Liu, Meng Jiang, Wenjuan Wang, Qing Kang, Pengcheng Wang, Weijia Zhou, Feimeng Zhou. Preferential Adsorption of Hydroxide Ions onto Partially Crystalline NiFe-Layered Double Hydroxides Leads to Efficient and Selective OER in Alkaline Seawater. ACS Applied Energy Materials 2021, 4 (5) , 4630-4637. https://doi.org/10.1021/acsaem.1c00262
  14. Yueguang Chen, Xintian Liu, Renjie Wu, Jiabin Cui, Gaofei Hu, Leyu Wang. Dual Active Center-Assembled Cu31S16–Co9-xNixS8 Heterodimers: Coherent Interface Engineering Induces Multihole Accumulation for Light-Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (17) , 20094-20104. https://doi.org/10.1021/acsami.1c02353
  15. Amar A. Bhardwaj, Johannes G. Vos, Marissa E. S. Beatty, Amanda F. Baxter, Marc T. M. Koper, Ngai Yin Yip, Daniel V. Esposito. Ultrathin Silicon Oxide Overlayers Enable Selective Oxygen Evolution from Acidic and Unbuffered pH-Neutral Seawater. ACS Catalysis 2021, 11 (3) , 1316-1330. https://doi.org/10.1021/acscatal.0c04343
  16. Gang Li, Fusheng Li, Yilong Zhao, Wenlong Li, Ziqi Zhao, Yingzheng Li, Hao Yang, Ke Fan, Peili Zhang, Licheng Sun. Selective Electrochemical Alkaline Seawater Oxidation Catalyzed by Cobalt Carbonate Hydroxide Nanorod Arrays with Sequential Proton-Electron Transfer Properties. ACS Sustainable Chemistry & Engineering 2021, 9 (2) , 905-913. https://doi.org/10.1021/acssuschemeng.0c07953
  17. Rahman Daiyan, Iain MacGill, Rose Amal. Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters 2020, 5 (12) , 3843-3847. https://doi.org/10.1021/acsenergylett.0c02249
  18. Minju Chung, Kyoungsuk Jin, Joy Shuang Zeng, Karthish Manthiram. Mechanism of Chlorine-Mediated Electrochemical Ethylene Oxidation in Saline Water. ACS Catalysis 2020, 10 (23) , 14015-14023. https://doi.org/10.1021/acscatal.0c02810
  19. Dan He, Rui-Ting Gao, Shujie Liu, Mao Sun, Xianhu Liu, Kan Hu, Yiguo Su, Lei Wang. Yttrium-Induced Regulation of Electron Density in NiFe Layered Double Hydroxides Yields Stable Solar Water Splitting. ACS Catalysis 2020, 10 (18) , 10570-10576. https://doi.org/10.1021/acscatal.0c03272
  20. Suraj Gupta, Mark Forster, Asha Yadav, Alexander J. Cowan, Nainesh Patel, Maulik Patel. Highly Efficient and Selective Metal Oxy-Boride Electrocatalysts for Oxygen Evolution from Alkali and Saline Solutions. ACS Applied Energy Materials 2020, 3 (8) , 7619-7628. https://doi.org/10.1021/acsaem.0c01040
  21. Luo Yu, Libo Wu, Shaowei Song, Brian McElhenny, Fanghao Zhang, Shuo Chen, Zhifeng Ren. Hydrogen Generation from Seawater Electrolysis over a Sandwich-like NiCoN|NixP|NiCoN Microsheet Array Catalyst. ACS Energy Letters 2020, 5 (8) , 2681-2689. https://doi.org/10.1021/acsenergylett.0c01244
  22. Wen-Jie Jiang, Tang Tang, Yun Zhang, Jin-Song Hu. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Accounts of Chemical Research 2020, 53 (6) , 1111-1123. https://doi.org/10.1021/acs.accounts.0c00127
  23. Takuya Okada, Hikaru Abe, Ai Murakami, Tomohito Shimizu, Kenta Fujii, Toru Wakabayashi, Masaharu Nakayama. A Bilayer Structure Composed of Mg|Co-MnO2 Deposited on a Co(OH)2 Film to Realize Selective Oxygen Evolution from Chloride-Containing Water. Langmuir 2020, 36 (19) , 5227-5235. https://doi.org/10.1021/acs.langmuir.0c00547
  24. Pralay Gayen, Sulay Saha, Vijay Ramani. Selective Seawater Splitting Using Pyrochlore Electrocatalyst. ACS Applied Energy Materials 2020, 3 (4) , 3978-3983. https://doi.org/10.1021/acsaem.0c00383
  25. S. Esmael Balaghi, C. A. Triana, Greta R. Patzke. Molybdenum-Doped Manganese Oxide as a Highly Efficient and Economical Water Oxidation Catalyst. ACS Catalysis 2020, 10 (3) , 2074-2087. https://doi.org/10.1021/acscatal.9b02718
  26. Kai S. Exner. Comparison of the Conventional Volcano Analysis with a Unifying Approach: Material Screening Based on a Combination of Experiment and Theory. The Journal of Physical Chemistry C 2020, 124 (1) , 822-828. https://doi.org/10.1021/acs.jpcc.9b10860
  27. Hee Jo Song, Hyunseok Yoon, Bobae Ju, Dong-Yeop Lee, Dong-Wan Kim. Electrocatalytic Selective Oxygen Evolution of Carbon-Coated Na2Co1–xFexP2O7 Nanoparticles for Alkaline Seawater Electrolysis. ACS Catalysis 2020, 10 (1) , 702-709. https://doi.org/10.1021/acscatal.9b04231
  28. Chao Meng, Yuan-Feng Gao, Xue-Min Chen, Yu-Xia Li, Meng-Chang Lin, Yue Zhou. Activating Inert ZnO by Surface Cobalt Doping for Efficient Water Oxidation in Neutral Media. ACS Sustainable Chemistry & Engineering 2019, 7 (21) , 18055-18060. https://doi.org/10.1021/acssuschemeng.9b04996
  29. Jianyun Liu, Xuan Liu, Hao Shi, Jiahuan Luo, Liang Wang, Jiashun Liang, Shenzhou Li, Li-Ming Yang, Tanyuan Wang, Yunhui Huang, Qing Li. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Applied Catalysis B: Environmental 2022, 302 , 120862. https://doi.org/10.1016/j.apcatb.2021.120862
  30. Yi-Wen Yang, Bing-Ye Song. A Novel Phosphide Derived From Metal-Organic Frameworks as Cost-Effective Electrocatalyst for Oxygen Evolution Reaction. Journal of Electrochemical Energy Conversion and Storage 2022, 19 (1) https://doi.org/10.1115/1.4051170
  31. Yixin Chen, Lin Shen, Congcong Wang, Siyang Feng, Nan Zhang, Kai Zhang, Bai Yang. Utilizing tannic acid and polypyrrle to induce reconstruction to optimize the activity of MOF-derived electrocatalyst for water oxidation in seawater. Chemical Engineering Journal 2022, 430 , 132632. https://doi.org/10.1016/j.cej.2021.132632
  32. Ji-Hyung Han, Eunjin Jwa, Hongjun Lee, Eun Joong Kim, Joo-Youn Nam, Kyo Sik Hwang, Namjo Jeong, Jiyeon Choi, Hanki Kim, Youn-Cheul Jeung, Taek Dong Chung. Direct seawater electrolysis via synergistic acidification by inorganic precipitation and proton flux from bipolar membrane. Chemical Engineering Journal 2022, 429 , 132383. https://doi.org/10.1016/j.cej.2021.132383
  33. Hengxing Peng, Kailing Zhou, Yuhong Jin, Qianqian Zhang, Jingbing Liu, Hao Wang. Hierarchical nanostructure with ultrafine MoO3 particles-decorated Co(OH)2 nanosheet array on Ag nanowires for promoted hydrogen evolution reaction. Chemical Engineering Journal 2022, 429 , 132477. https://doi.org/10.1016/j.cej.2021.132477
  34. Youri Gendel, Gidon Amikam, Paz Nativ. Seawater electrolysis. 2022,,, 305-326. https://doi.org/10.1016/B978-0-12-819424-9.00003-3
  35. Qianfeng Liu, Wu Qin, Zhao Yan, Jianxin Gao, Erdong Wang. Porous Ni(OH)2 permselective membrane to identify the mechanism of hydrogen evolution reaction in buffered solution. Electrochimica Acta 2022, 401 , 139444. https://doi.org/10.1016/j.electacta.2021.139444
  36. Aitor Saenz-Aguirre, Jon Saenz, Alain Ulazia, Gabriel Ibarra-Berastegui. Optimal strategies of deployment of far offshore co-located wind-wave energy farms. Energy Conversion and Management 2022, 251 , 114914. https://doi.org/10.1016/j.enconman.2021.114914
  37. Talieh Rajabloo, Ward De Ceuninck, Luc Van Wortswinkel, Mashallah Rezakazemi, Tejraj Aminabhavi. Environmental management of industrial decarbonization with focus on chemical sectors: A review. Journal of Environmental Management 2022, 302 , 114055. https://doi.org/10.1016/j.jenvman.2021.114055
  38. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  39. Sun Young Jung, Sukhyun Kang, Kang Min Kim, Sungwook Mhin, Jong Cheol Kim, So Jung Kim, Enkhbayar Enkhtuvshin, Seunggun Choi, HyukSu Han. Sulfur-incorporated nickel-iron layered double hydroxides for effective oxygen evolution reaction in seawater. Applied Surface Science 2021, 568 , 150965. https://doi.org/10.1016/j.apsusc.2021.150965
  40. Dengfeng Cao, Beibei Sheng, Zhenghang Qi, Wenjie Xu, Shuangming Chen, Oyawale Adetunji Moses, Ran Long, Yujie Xiong, Xiaojun Wu, Li Song. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Applied Catalysis B: Environmental 2021, 298 , 120559. https://doi.org/10.1016/j.apcatb.2021.120559
  41. Guofa Dong, Fengyan Xie, Fangxia Kou, Tingting Chen, Fengyun Wang, Yingwu Zhou, Kechen Wu, Shaowu Du, Ming Fang, Johnny C. Ho. NiFe-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater. Materials Today Energy 2021, 22 , 100883. https://doi.org/10.1016/j.mtener.2021.100883
  42. Saikat Bolar, Subhasis Shit, Naresh Chandra Murmu, Tapas Kuila. Progress in theoretical and experimental investigation on seawater electrolysis: opportunities and challenges. Sustainable Energy & Fuels 2021, 5 (23) , 5915-5945. https://doi.org/10.1039/D1SE01347E
  43. Santu Ruidas, Bishnupad Mohanty, Piyali Bhanja, E. S. Erakulan, Ranjit Thapa, Prasenjit Das, Avik Chowdhury, Sanjay K. Mandal, Bikash Kumar Jena, Asim Bhaumik. Metal‐Free Triazine‐Based 2D Covalent Organic Framework for Efficient H 2 Evolution by Electrochemical Water Splitting. ChemSusChem 2021, 14 (22) , 5057-5064. https://doi.org/10.1002/cssc.202101663
  44. Ruggero Rossi, Derek M. Hall, Le Shi, Nicholas R. Cross, Christopher A. Gorski, Michael A. Hickner, Bruce E. Logan. Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzer. Energy & Environmental Science 2021, 14 (11) , 6041-6049. https://doi.org/10.1039/D1EE02265B
  45. Jilong Li, Yanhui Wang, Hongwei Gao, Shiwei Song, Bowen Lu, Xueqing Tian, Shuyu Zhou, Yungang Yuan, Jianbing Zang. Nickel Boride/Boron Carbide Particles Embedded in Boron‐Doped Phenolic Resin‐Derived Carbon Coating on Nickel Foam for Oxygen Evolution Catalysis in Water and Seawater Splitting. ChemSusChem 2021, 28 https://doi.org/10.1002/cssc.202101800
  46. Yuanyuan Wu, Junqiang Yin, Wei Jiang, Hongji Li, Chunbo Liu, Guangbo Che. Constructing urchin-like Ni 3 S 2 @Ni 3 B on Ni plate as a highly efficient bifunctional electrocatalyst for water splitting reaction. Nanoscale 2021, 13 (42) , 17953-17960. https://doi.org/10.1039/D1NR04965H
  47. Xueda Ding, Haitao Huang, Qiang Wan, Xu Guan, Yuanxing Fang, Sen Lin, Dongyang Chen, Zailai Xie. Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. Journal of Energy Chemistry 2021, 62 , 415-422. https://doi.org/10.1016/j.jechem.2021.04.001
  48. Jinyong Sun, Peng Song, Hongbo Zhou, Leiming Lang, Xiaoping Shen, Yunajun Liu, Xiaofang Cheng, Xiaoqi Fu, Guoxing Zhu. A surface configuration strategy to hierarchical Fe-Co-S/Cu2O/Cu electrodes for oxygen evolution in water/seawater splitting. Applied Surface Science 2021, 567 , 150757. https://doi.org/10.1016/j.apsusc.2021.150757
  49. Jiahao Zhang, Qiucheng Xu, Jingyu Wang, Yuhang Li, Hao Jiang, Chunzhong Li. Dual-defective Co3O4 nanoarrays enrich target intermediates and promise high-efficient overall water splitting. Chemical Engineering Journal 2021, 424 , 130328. https://doi.org/10.1016/j.cej.2021.130328
  50. Lin Zhu, Yuhao Huang, Baoli Wang, Yan Zhang, Ruyi Zou, Lijun Yan, Wei Sun. N-doped porous carbon-supported CoxPy/NixPy catalyst with enhanced catalytic activity for hydrogen evolution reaction in alkaline solution and neutral seawater. Journal of Solid State Electrochemistry 2021, 45 https://doi.org/10.1007/s10008-021-05077-8
  51. Chiho Kim, Seunghun Lee, Seong Hyun Kim, Jaehan Park, Shinho Kim, Se-Hun Kwon, Jong-Seong Bae, Yoo Sei Park, Yangdo Kim. Cobalt–Iron–Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline Seawater Electrolyzer. Nanomaterials 2021, 11 (11) , 2989. https://doi.org/10.3390/nano11112989
  52. Elnaz Asghari, Muhammad Imran Abdullah, Faranak Foroughi, Jacob J. Lamb, Bruno G. Pollet. Advances, Opportunities and Challenges of Hydrogen and Oxygen Production from Seawater Electrolysis: An Electrocatalysis Perspective. Current Opinion in Electrochemistry 2021, 300 , 100879. https://doi.org/10.1016/j.coelec.2021.100879
  53. Rui-Ting Gao, Xiaotian Guo, Shujie Liu, Xueyuan Zhang, Xianhu Liu, Yiguo Su, Lei Wang. Ultrastable and High-performance Seawater-based Photoelectrolysis System for Solar Hydrogen Generation. Applied Catalysis B: Environmental 2021, 33 , 120883. https://doi.org/10.1016/j.apcatb.2021.120883
  54. Wence Xu, Guilan Fan, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Zhaoyang Li, Hui Jiang, Shuilin Wu, Fangyi Cheng. Electronic Structure Modulation of Nanoporous Cobalt Phosphide by Carbon Doping for Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials 2021, 31 (48) , 2107333. https://doi.org/10.1002/adfm.202107333
  55. Marisol Maril, Jean-Luc Delplancke, Nataly Cisternas, Pablo Tobosque, Yasmín Maril, Claudia Carrasco. Critical aspects in the development of anodes for use in seawater electrolysis. International Journal of Hydrogen Energy 2021, 44 https://doi.org/10.1016/j.ijhydene.2021.11.002
  56. Chao Huang, Ping Qin, Yang Luo, Qingdong Ruan, Liangliang Liu, Yuzheng Wu, Qingwei Li, Yue Xu, Rugeng Liu, Paul K. Chu. Recent Progress and Perspective of Co-based Catalysts for Water Splitting: Design and Nanoarchitectonics. Materials Today Energy 2021, 30 , 100911. https://doi.org/10.1016/j.mtener.2021.100911
  57. Tengfei Ma, Wenwen Xu, Boran Li, Xu Chen, Jiajun Zhao, Shusheng Wan, Kun Jiang, Sixie Zhang, Zhongfeng Wang, Ziqi Tian, Zhiyi Lu, Liang Chen. The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickel‐Based Electrodes. Angewandte Chemie 2021, 133 (42) , 22922-22926. https://doi.org/10.1002/ange.202110355
  58. Tengfei Ma, Wenwen Xu, Boran Li, Xu Chen, Jiajun Zhao, Shusheng Wan, Kun Jiang, Sixie Zhang, Zhongfeng Wang, Ziqi Tian, Zhiyi Lu, Liang Chen. The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickel‐Based Electrodes. Angewandte Chemie International Edition 2021, 60 (42) , 22740-22744. https://doi.org/10.1002/anie.202110355
  59. Phan Khanh Linh Tran, Duy Thanh Tran, Deepanshu Malhotra, Sampath Prabhakaran, Do Hwan Kim, Nam Hoon Kim, Joong Hee Lee. Highly Effective Freshwater and Seawater Electrolysis Enabled by Atomic Rh‐Modulated Co‐CoO Lateral Heterostructures. Small 2021, 12 , 2103826. https://doi.org/10.1002/smll.202103826
  60. Ping Yang, Congcong Jin, Menglei Ren, Honglong Xing, Jianjun Shi. Facile synthesis of bimetallic-based CoMoO 4 /MoO 2 /CoP oxidized/phosphide nanorod arrays electroplated with FeOOH for efficient overall seawater splitting. CrystEngComm 2021, 23 (38) , 6778-6791. https://doi.org/10.1039/D1CE00748C
  61. Libo Wu, Luo Yu, Brian McElhenny, Xinxin Xing, Dan Luo, Fanghao Zhang, Jiming Bao, Shuo Chen, Zhifeng Ren. Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis. Applied Catalysis B: Environmental 2021, 294 , 120256. https://doi.org/10.1016/j.apcatb.2021.120256
  62. Rafael L. Germscheidt, Daniel E. B. Moreira, Rafael G. Yoshimura, Nathália P. Gasbarro, Evandro Datti, Pãmyla L. dos Santos, Juliano A. Bonacin. Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Advanced Energy and Sustainability Research 2021, 2 (10) , 2100093. https://doi.org/10.1002/aesr.202100093
  63. Perla Hajjar, Marie-Agnès Lacour, Nathalie Masquelez, Julien Cambedouzou, Sophie Tingry, David Cornu, Yaovi Holade. Insights on the Electrocatalytic Seawater Splitting at Heterogeneous Nickel-Cobalt Based Electrocatalysts Engineered from Oxidative Aniline Polymerization and Calcination. Molecules 2021, 26 (19) , 5926. https://doi.org/10.3390/molecules26195926
  64. Hongyuan Yang, Matthias Driess, Prashanth W. Menezes. Self‐Supported Electrocatalysts for Practical Water Electrolysis. Advanced Energy Materials 2021, 11 (39) , 2102074. https://doi.org/10.1002/aenm.202102074
  65. Tanveer Ul Haq, Mujaheed Pasha, Yongfeng Tong, Said A Mansour, Yousef Haik. Au nanocluster coupling with Gd-Co2B nanoflakes embedded in reduced TiO2 nanosheets: Seawater electrolysis at low cell voltage with high selectivity and corrosion resistance. Applied Catalysis B: Environmental 2021, 231 , 120836. https://doi.org/10.1016/j.apcatb.2021.120836
  66. Weiran Zheng, Lawrence Yoon Suk Lee, Kwok-Yin Wong. Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. Nanoscale 2021, 13 (36) , 15177-15187. https://doi.org/10.1039/D1NR03294A
  67. M. A. Khan, Tareq Al-Attas, Soumyabrata Roy, Muhammad M. Rahman, Noreddine Ghaffour, Venkataraman Thangadurai, Stephen Larter, Jinguang Hu, Pulickel M. Ajayan, Md Golam Kibria. Seawater electrolysis for hydrogen production: a solution looking for a problem?. Energy & Environmental Science 2021, 14 (9) , 4831-4839. https://doi.org/10.1039/D1EE00870F
  68. Baoshan Zhang, Wenwen Xu, Shuo Liu, Xu Chen, Tengfei Ma, Guohua Wang, Zhiyi Lu, Jie Sun. Enhanced interface interaction in [email protected] core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis. Journal of Power Sources 2021, 506 , 230235. https://doi.org/10.1016/j.jpowsour.2021.230235
  69. Youcai Li, Xiaoyu Wu, Jiepeng Wang, Haixing Wei, Shiyuan Zhang, Shengli Zhu, Zhaoyang Li, Shuilin Wu, Hui Jiang, Yanqin Liang. Sandwich structured [email protected] foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochimica Acta 2021, 390 , 138833. https://doi.org/10.1016/j.electacta.2021.138833
  70. Xiao Hu Wang, Yu Ling, Bin Wu, Bang Lin Li, Xiao Lin Li, Jing Lei Lei, Nian Bing Li, Hong Qun Luo. Doping modification, defects construction, and surface engineering: Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting. Nano Energy 2021, 87 , 106160. https://doi.org/10.1016/j.nanoen.2021.106160
  71. Süleyman Uysal, Mehmet Fatih Kaya, Nesrin Demir, Bulut Hüner, Recep Uğur Özcan, Ömer Nadir Erdem, Mustafa Yılmaz. Investigation of hydrogen production potential from different natural water sources in Turkey. International Journal of Hydrogen Energy 2021, 46 (61) , 31097-31107. https://doi.org/10.1016/j.ijhydene.2021.07.017
  72. Hongjiao Chen, Yihui Zou, Jian Li, Kewei Zhang, Yanzhi Xia, Bin Hui, Dongjiang Yang. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Applied Catalysis B: Environmental 2021, 293 , 120215. https://doi.org/10.1016/j.apcatb.2021.120215
  73. John D Rodney, S. Deepapriya, M. Cyril Robinson, S. Jerome Das, Suresh Perumal, Periyasamy Sivakumar, Hyun Jung, Byung Chul Kim, C. Justin Raj. Cu1-xRExO (RE = La, Dy) decorated dendritic CuS nanoarrays for highly efficient splitting of seawater into hydrogen and oxygen fuels. Applied Materials Today 2021, 24 , 101079. https://doi.org/10.1016/j.apmt.2021.101079
  74. Shuairu Zhu, Jiabo Le, Jianming Li, Deyu Liu, Yongbo Kuang. Tungsten doped manganese silicate films as stable and efficient oxygen evolution catalysts in near-neutral media. Journal of Materials Chemistry A 2021, 9 (33) , 17893-17904. https://doi.org/10.1039/D1TA01524A
  75. Jinfa Chang, Guanzhi Wang, Yang Yang. Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science 2021, 364 , 2100044. https://doi.org/10.1002/smsc.202100044
  76. Zi‐You Yu, Yu Duan, Xing‐Yu Feng, Xingxing Yu, Min‐Rui Gao, Shu‐Hong Yu. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials 2021, 33 (31) , 2007100. https://doi.org/10.1002/adma.202007100
  77. Pau Farràs, Peter Strasser, Alexander J. Cowan. Water electrolysis: Direct from the sea or not to be?. Joule 2021, 5 (8) , 1921-1923. https://doi.org/10.1016/j.joule.2021.07.014
  78. Jinfa Chang, Guanzhi Wang, Zhenzhong Yang, Boyang Li, Qi Wang, Ruslan Kuliiev, Nina Orlovskaya, Meng Gu, Yingge Du, Guofeng Wang, Yang Yang. Dual‐Doping and Synergism toward High‐Performance Seawater Electrolysis. Advanced Materials 2021, 33 (33) , 2101425. https://doi.org/10.1002/adma.202101425
  79. Chengzhong Wang, Mingze Zhu, Zhengyi Cao, Ping Zhu, Yunqing Cao, Xiaoyong Xu, Chunxiang Xu, Zongyou Yin. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental 2021, 291 , 120071. https://doi.org/10.1016/j.apcatb.2021.120071
  80. Carles Ros, Sebastian Murcia‐López, Xenia Garcia, Marcos Rosado, Jordi Arbiol, Jordi Llorca, Joan R. Morante. Facing Seawater Splitting Challenges by Regeneration with Ni − Mo − Fe Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemSusChem 2021, 14 (14) , 2872-2881. https://doi.org/10.1002/cssc.202100194
  81. J. Niklas Hausmann, Robert Schlögl, Prashanth W. Menezes, Matthias Driess. Is direct seawater splitting economically meaningful?. Energy & Environmental Science 2021, 14 (7) , 3679-3685. https://doi.org/10.1039/D0EE03659E
  82. Justus Heese‐Gärtlein, Anna Rabe, Malte Behrens. Challenges in the Application of Manganese Oxide Powders as OER Electrocatalysts: Synthesis, Characterization, Activity and Stability of Nine Different Mn x O y Compounds. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (13) , 1363-1372. https://doi.org/10.1002/zaac.202000180
  83. Xue Jiang, Zemeng Dong, Jing Wang, Ning Zhang, Guang-Rui Xu, Wen Zhang, Jianping Lai, Zhenjiang Li, Lei Wang. Self-assembly of functionalized Echinops-like Rh porous nanostructure electrocatalysts for highly efficient seawater splitting. Journal of Materials Chemistry C 2021, 9 (26) , 8314-8322. https://doi.org/10.1039/D1TC01722E
  84. Zhongxin Song, Kaixi (Cathy) Wang, Qian Sun, Lei Zhang, Junjie Li, Dingjiu Li, Pok‐Wai Sze, Yue Liang, Xueliang Sun, Xian‐Zhu Fu, Jing‐Li Luo. High‐Performance Ammonium Cobalt Phosphate Nanosheet Electrocatalyst for Alkaline Saline Water Oxidation. Advanced Science 2021, 8 (14) , 2100498. https://doi.org/10.1002/advs.202100498
  85. Zongkui Kou, Xin Li, Lei Zhang, Wenjie Zang, Xiaorui Gao, John Wang. Dynamic Surface Chemistry of Catalysts in Oxygen Evolution Reaction. Small Science 2021, 1 (7) , 2100011. https://doi.org/10.1002/smsc.202100011
  86. M. Ning, L. Wu, F. Zhang, D. Wang, S. Song, T. Tong, J. Bao, S. Chen, L. Yu, Z. Ren. One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Materials Today Physics 2021, 19 , 100419. https://doi.org/10.1016/j.mtphys.2021.100419
  87. Boran Wang, Mengjie Lu, Duo Chen, Qi Zhang, Wenwen Wang, Yutang Kang, Zhenxing Fang, Guangsheng Pang, Shouhua Feng. Ni x Fe y [email protected] microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. Journal of Materials Chemistry A 2021, 9 (23) , 13562-13569. https://doi.org/10.1039/D1TA01292D
  88. Fanghao Zhang, Luo Yu, Libo Wu, Dan Luo, Zhifeng Ren. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends in Chemistry 2021, 3 (6) , 485-498. https://doi.org/10.1016/j.trechm.2021.03.003
  89. Z. Li, H. Feng, M. Song, C. He, W. Zhuang, L. Tian. Advances in CoP electrocatalysts for water splitting. Materials Today Energy 2021, 20 , 100698. https://doi.org/10.1016/j.mtener.2021.100698
  90. Mengxuan Zhao, Mingyang Yang, Weijie Huang, Wenchao Liao, Haidong Bian, Dazhu Chen, Lei Wang, Jiaoning Tang, Chen Liu. Synergism on Electronic Structures and Active Edges of Metallic Vanadium Disulfide Nanosheets via Co Doping for Efficient Hydrogen Evolution Reaction in Seawater. ChemCatChem 2021, 13 (9) , 2138-2144. https://doi.org/10.1002/cctc.202100007
  91. Cheng Wang, Hongyuan Shang, Liujun Jin, Hui Xu, Yukou Du. Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale 2021, 13 (17) , 7897-7912. https://doi.org/10.1039/D1NR00784J
  92. Yujun Song. Perspectives for Thin Films and Coatings. 2021,,, 647-679. https://doi.org/10.1002/9783527344987.ch20
  93. Qizhong Xiong, Xian Zhang, Qipeng Cheng, Guoqiang Liu, Gang Xu, Junli Li, Xinxin Ye, Hongjian Gao. Highly selective electrocatalytic Cl− oxidation reaction by oxygen-modified cobalt nanoparticles immobilized carbon nanofibers for coupling with brine water remediation and H2 production. Nano Research 2021, 14 (5) , 1443-1449. https://doi.org/10.1007/s12274-020-3200-3
  94. Lorenzo Bigiani, Davide Barreca, Alberto Gasparotto, Teresa Andreu, Johan Verbeeck, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Juan Ramón Morante, Chiara Maccato. Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Applied Catalysis B: Environmental 2021, 284 , 119684. https://doi.org/10.1016/j.apcatb.2020.119684
  95. Mingming Yin, He Miao, Ruigan Hu, Zixu Sun, Hong Li. Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources 2021, 494 , 229779. https://doi.org/10.1016/j.jpowsour.2021.229779
  96. Libo Wu, Luo Yu, Qiancheng Zhu, Brian McElhenny, Fanghao Zhang, Chunzheng Wu, Xinxin Xing, Jiming Bao, Shuo Chen, Zhifeng Ren. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 2021, 83 , 105838. https://doi.org/10.1016/j.nanoen.2021.105838
  97. Fons Dingenen, Sammy W. Verbruggen. Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renewable and Sustainable Energy Reviews 2021, 142 , 110866. https://doi.org/10.1016/j.rser.2021.110866
  98. Jihong Li, Yipu Liu, Hui Chen, Zhankai Zhang, Xiaoxin Zou. Design of a Multilayered Oxygen‐Evolution Electrode with High Catalytic Activity and Corrosion Resistance for Saline Water Splitting. Advanced Functional Materials 2021, 27 , 2101820. https://doi.org/10.1002/adfm.202101820
  99. Shilong Jiao, Xianwei Fu, Shuangyin Wang, Yong Zhao. Perfecting electrocatalysts via imperfections: towards the large-scale deployment of water electrolysis technology. Energy & Environmental Science 2021, 14 (4) , 1722-1770. https://doi.org/10.1039/D0EE03635H
  100. Yoo Sei Park, Jooyoung Lee, Myeong Je Jang, Juchan Yang, Jaehoon Jeong, Jaeho Park, Yangdo Kim, Min Ho Seo, Zhongwei Chen, Sung Mook Choi. High-performance anion exchange membrane alkaline seawater electrolysis. Journal of Materials Chemistry A 2021, 9 (15) , 9586-9592. https://doi.org/10.1039/D0TA12336F
Load all citations