Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation

  • Nathaly Ortiz Peña
    Nathaly Ortiz Peña
    Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS − Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
  • Dris Ihiawakrim
    Dris Ihiawakrim
    Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS − Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
  • Madeleine Han
    Madeleine Han
    Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
    Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
  • Benedikt Lassalle-Kaiser
    Benedikt Lassalle-Kaiser
    Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
  • Sophie Carenco
    Sophie Carenco
    Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
  • Clément Sanchez
    Clément Sanchez
    Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
  • Christel Laberty-Robert
    Christel Laberty-Robert
    Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
  • David Portehault*
    David Portehault
    Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
    *E-mail: [email protected]
  • , and 
  • Ovidiu Ersen*
    Ovidiu Ersen
    Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS − Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
    *E-mail: [email protected]
    More by Ovidiu Ersen
Cite this: ACS Nano 2019, 13, 10, 11372–11381
Publication Date (Web):October 4, 2019
https://doi.org/10.1021/acsnano.9b04745
Copyright © 2019 American Chemical Society
Article Views
3469
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (8 MB)
Supporting Info (2)»

Abstract

Unveiling the mechanism of electrocatalytic processes is fundamental for the search of more efficient and stable electrode materials for clean energy conversion devices. Although several in situ techniques are now available to track structural changes during electrocatalysis, especially of water oxidation, a direct observation, in real space, of morphological changes of nanostructured electrocatalysts is missing. Herein, we implement an in situ electrochemical Transmission Electron Microscopy (in situ EC-TEM) methodology for studying electrocatalysts of the oxygen evolution reaction (OER) during operation, by using model cobalt oxide Co3O4 nanoparticles. The observation conditions were optimized to mimic standard electrochemistry experiments in a regular electrochemical cell, allowing cyclic voltammetry and chronopotentiometry to be performed in similar conditions in situ and ex situ. This in situ EC-TEM method enables us to observe the chemical, morphological, and structural evolutions occurring in the initial nanoparticle-based electrode exposed to different aqueous electrolytes and under OER conditions. The results show that surface amorphization occurs, yielding a nanometric cobalt (oxyhydr)oxide-like phase during OER. This process is irreversible and occurs to an extent that has not been described before. Furthermore, we show that the pH and counterions of the electrolytes impact this restructuration, shedding light on the materials properties in neutral phosphate electrolytes. In addition to the structural changes followed in situ during the electrochemical measurements, this study demonstrates that it is possible to rely on in situ electrochemical TEM to reveal processes in electrocatalysts while preserving a good correlation with ex situ regular electrochemistry.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b04745.

  • Figures S1 and S2: impact of the (S)TEM beam on the in situ electrochemical measurements. Figure S3: effect of beam current on the in situ observations in STEM. Figure S4: EELS, electron diffraction and size distribution after irradiation in the electrolyte. Figures S5, S6, and S7: additional ex situ and in situ cyclic voltammograms used to calibrate the internal reference, stability of the electrochemical response during in situ cyclic voltammetry and in situ chronopotentiometry, respectively. Figure S8: comparison between post mortem samples from the in situ setup and from a classical rotating GC disc. Figures S9, S10, and S11: additional electrochemical measurements in KPi and KCl electrolytes. Figures S12, S13, S14, and S15: additional HRTEM, EDX and electron diffraction data of the post mortem samples in KPi and KCl electrolytes (PDF)

  • Movie S1: STEM-bright field movie recorded in situ during chronopotentiometry experiment at 10 mA cm–2GC in aqueous 0.1 M KOH electrolyte first 176 s accelerated at 300 fps (AVI)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 56 publications.

  1. Yawen Hao, Gaohui Du, Yi Fan, Lina Jia, Di Han, Wenqi Zhao, Qingmei Su, Shukai Ding, Bingshe Xu. Mo/P Dual-Doped Co/Oxygen-Deficient Co3O4 Core–Shell Nanorods Supported on Ni Foam for Electrochemical Overall Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (46) , 55263-55271. https://doi.org/10.1021/acsami.1c18813
  2. Guangming Zhao, Yunduo Yao, Wei Lu, Guanyu Liu, Xuyun Guo, Antonio Tricoli, Ye Zhu. Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy. Nano Letters 2021, 21 (16) , 7012-7020. https://doi.org/10.1021/acs.nanolett.1c02378
  3. Zahra Abdi, S. Esmael Balaghi, Alla S. Sologubenko, Marc-Georg Willinger, Matthias Vandichel, Jian-Ren Shen, Suleyman I. Allakhverdiev, Greta R. Patzke, Mohammad Mahdi Najafpour. Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9494-9505. https://doi.org/10.1021/acssuschemeng.1c03539
  4. Yannick T. Guntern, Valery Okatenko, James Pankhurst, Seyedeh Behnaz Varandili, Pranit Iyengar, Cedric Koolen, Dragos Stoian, Jan Vavra, Raffaella Buonsanti. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis 2021, 11 (3) , 1248-1295. https://doi.org/10.1021/acscatal.0c04403
  5. Qi An, Molly McDonald, Alessandro Fortunelli, William A. Goddard III. Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis. ACS Nano 2021, 15 (1) , 1675-1684. https://doi.org/10.1021/acsnano.0c09346
  6. Joshua L. Lansford, Dionisios G. Vlachos. Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning. ACS Nano 2020, 14 (12) , 17295-17307. https://doi.org/10.1021/acsnano.0c07408
  7. Si-Min Lu, Yue-Yi Peng, Yi-Lun Ying, Yi-Tao Long. Electrochemical Sensing at a Confined Space. Analytical Chemistry 2020, 92 (8) , 5621-5644. https://doi.org/10.1021/acs.analchem.0c00931
  8. Thanh Tran-Phu, Rahman Daiyan, Joshua Leverett, Zelio Fusco, Anton Tadich, Iolanda Di Bernardo, Alexander Kiy, Thien N. Truong, Qingran Zhang, Hongjun Chen, Patrick Kluth, Rose Amal, Antonio Tricoli. Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chemical Engineering Journal 2022, 429 , 132180. https://doi.org/10.1016/j.cej.2021.132180
  9. Philipp Grosse, Aram Yoon, Clara Rettenmaier, Antonia Herzog, See Wee Chee, Beatriz Roldan Cuenya. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26743-5
  10. Yuhang Wang, Junlang Liu, Gengfeng Zheng. Designing Copper‐Based Catalysts for Efficient Carbon Dioxide Electroreduction. Advanced Materials 2021, 33 (46) , 2005798. https://doi.org/10.1002/adma.202005798
  11. Shu Fen Tan, Kate Reidy, Serin Lee, Julian Klein, Nicholas M. Schneider, Hae Yeon Lee, Frances M. Ross. Multilayer Graphene—A Promising Electrode Material in Liquid Cell Electrochemistry. Advanced Functional Materials 2021, 31 (46) , 2104628. https://doi.org/10.1002/adfm.202104628
  12. Ruiqin Gao, Meng Deng, Qing Yan, Zhenxing Fang, Lichun Li, Haoyu Shen, Zhengfei Chen. Structural Variations of Metal Oxide‐Based Electrocatalysts for Oxygen Evolution Reaction. Small Methods 2021, 218 , 2100834. https://doi.org/10.1002/smtd.202100834
  13. Xudong Zhao, Xianglong Kong, Zhiliang Liu, Zhi Li, Zewei Xie, Zhuoyan Wu, Fei He, Xinghua Chang, Piaoping Yang, Jie Zheng, Xingguo Li. The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today 2021, 40 , 101245. https://doi.org/10.1016/j.nantod.2021.101245
  14. Morgan Binggeli, Tzu-Hsien Shen, Vasiliki Tileli. Simulating Current Distribution of Oxygen Evolution Reaction in Microcells Using Finite Element Method. Journal of The Electrochemical Society 2021, 168 (10) , 106508. https://doi.org/10.1149/1945-7111/ac2ebf
  15. Wajdi Alnoush, Robert Black, Drew Higgins. Judicious selection, validation, and use of reference electrodes for in situ and operando electrocatalysis studies. Chem Catalysis 2021, 1 (5) , 997-1013. https://doi.org/10.1016/j.checat.2021.07.001
  16. Yu-Hong Wang, Wen-Jun Jiang, Wei Yao, Zai-Lun Liu, Zhe Liu, Yong Yang, Li-Zhen Gao. Advances in electrochemical reduction of carbon dioxide to formate over bismuth-based catalysts. Rare Metals 2021, 40 (9) , 2327-2353. https://doi.org/10.1007/s12598-021-01728-x
  17. Juzhe Liu, Lin Guo. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4 (9) , 2850-2873. https://doi.org/10.1016/j.matt.2021.05.025
  18. Kexin Zhang, Ruqiang Zou. Advanced Transition Metal‐Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small 2021, 17 (37) , 2100129. https://doi.org/10.1002/smll.202100129
  19. Youkui Zhang, Yunxiang Lin, Tao Duan, Li Song. Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today 2021, 48 , 115-134. https://doi.org/10.1016/j.mattod.2021.02.004
  20. Likun Gao, Xun Cui, Christopher D. Sewell, Jian Li, Zhiqun Lin. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews 2021, 50 (15) , 8428-8469. https://doi.org/10.1039/D0CS00962H
  21. Lili Wang, Helin Zhang, Wurigamula He, Qianli Ma, Wensheng Yu, Shuang Gao, Da Xu, Duanduan Yin, Xiangting Dong. Hierarchical NiFe layered double hydroxides: a bifunctional electrocatalyst for overall water splitting. 2021,,, 274-278. https://doi.org/10.1109/3M-NANO49087.2021.9599799
  22. Xiong Liu, Jiashen Meng, Jiexin Zhu, Meng Huang, Bo Wen, Ruiting Guo, Liqiang Mai. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials 2021, 33 (32) , 2007344. https://doi.org/10.1002/adma.202007344
  23. Laurent Piccolo. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catalysis Today 2021, 373 , 80-97. https://doi.org/10.1016/j.cattod.2020.03.052
  24. Xiong Liu, Fanjie Xia, Ruiting Guo, Meng Huang, Jiashen Meng, Jinsong Wu, Liqiang Mai. Ligand and Anion Co‐Leaching Induced Complete Reconstruction of Polyoxomolybdate‐Organic Complex Oxygen‐Evolving Pre‐Catalysts. Advanced Functional Materials 2021, 31 (31) , 2101792. https://doi.org/10.1002/adfm.202101792
  25. Sahar Pishgar, Saumya Gulati, Jacob M. Strain, Ying Liang, Matthew C. Mulvehill, Joshua M. Spurgeon. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications. Small Methods 2021, 5 (7) , 2100322. https://doi.org/10.1002/smtd.202100322
  26. Thangjam Ibomcha Singh, Gaddam Rajeshkhanna, Uday Narayan Pan, Tolendra Kshetri, Han Lin, Nam Hoon Kim, Joong Hee Lee. Alkaline Water Splitting Enhancement by MOF‐Derived Fe–Co–Oxide/[email protected]‐mNS Heterostructure: Boosting OER and HER through Defect Engineering and In Situ Oxidation. Small 2021, 17 (29) , 2101312. https://doi.org/10.1002/smll.202101312
  27. Yu‐Chuan Lee, Lian‐Ming Lyu, Ming‐Yen Lu. In‐Situ Observation of the Formation of NiSi/Ni 2 Si Heterojunction in SiGe Nanowire with Al 2 O 3 Diffusion Barrier Layer. Advanced Materials Interfaces 2021, 8 (14) , 2100422. https://doi.org/10.1002/admi.202100422
  28. Lars I. van der Wal, Savannah J. Turner, Jovana Zečević. Developments and advances in in situ transmission electron microscopy for catalysis research. Catalysis Science & Technology 2021, 11 (11) , 3634-3658. https://doi.org/10.1039/D1CY00258A
  29. Rongming Cai, Min Ju, Jinxi Chen, Jiazheng Ren, Jun Yu, Xia Long, Shihe Yang. Recent advances in surface/interface engineering of noble-metal free catalysts for energy conversion reactions. Materials Chemistry Frontiers 2021, 5 (9) , 3576-3592. https://doi.org/10.1039/D1QM00161B
  30. Shu Fen Tan, Kate Reidy, Julian Klein, Ainsley Pinkowitz, Baoming Wang, Frances M. Ross. Real-time imaging of nanoscale electrochemical Ni etching under thermal conditions. Chemical Science 2021, 12 (14) , 5259-5268. https://doi.org/10.1039/D0SC06057G
  31. See Wee Chee, Thomas Lunkenbein, Robert Schlögl, Beatriz Roldan Cuenya. In situ and operando electron microscopy in heterogeneous catalysis—insights into multi-scale chemical dynamics. Journal of Physics: Condensed Matter 2021, 33 (15) , 153001. https://doi.org/10.1088/1361-648X/abddfd
  32. Yayun Pu, Veronica Celorrio, Jöerg M. Stockmann, Oded Sobol, Zongzhao Sun, Wu Wang, Matthew J. Lawrence, Jörg Radnik, Andrea E. Russell, Vasile-Dan Hodoroaba, Limin Huang, Paramaconi Rodriguez. Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction. Journal of Catalysis 2021, 396 , 304-314. https://doi.org/10.1016/j.jcat.2021.02.025
  33. Anthony Harriman. Electrochemical catalysts to MEET the CHALLENGE for sustainable fuel production from renewable energy. Current Opinion in Green and Sustainable Chemistry 2021, 36 , 100492. https://doi.org/10.1016/j.cogsc.2021.100492
  34. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
  35. Jean-Marc Noël, Jean-François Lemineur. Optical microscopy to study single nanoparticles electrochemistry: From reaction to motion. Current Opinion in Electrochemistry 2021, 25 , 100647. https://doi.org/10.1016/j.coelec.2020.100647
  36. Jiajun Wang, Zhao Zhang, Jia Ding, Cheng Zhong, Yida Deng, Xiaopeng Han, Wenbin Hu. Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. Science China Materials 2021, 64 (1) , 1-26. https://doi.org/10.1007/s40843-020-1452-9
  37. Huan Wang, Yanming Liu, Zhonghua Sun, Jianhai Ren, Xiaoran Zou, Chun-Yang Zhang. Synthesis of ultrathin porous C3N4-modified Co3O4 nanosheets for enhanced oxygen evolution reaction. Electrochimica Acta 2021, 367 , 137537. https://doi.org/10.1016/j.electacta.2020.137537
  38. Jianping Zheng, Jianpo Chen, Liping Xiao, Xiaoning Cheng, Hao Cui. In Situ Integrated Co 3 W−WN Hybrid Nanostructure as an Efficient Bifunctional Electrocatalyst by Accelerating Water Dissociation and Enhancing Oxygen Evolution. ChemElectroChem 2020, 7 (24) , 4971-4978. https://doi.org/10.1002/celc.202001454
  39. Jian Wang, Yang Gao, Hui Kong, Juwon Kim, Subin Choi, Francesco Ciucci, Yong Hao, Shihe Yang, Zongping Shao, Jongwoo Lim. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chemical Society Reviews 2020, 49 (24) , 9154-9196. https://doi.org/10.1039/D0CS00575D
  40. Rosa M. Arán-Ais, Rubén Rizo, Philipp Grosse, Gerardo Algara-Siller, Kassiogé Dembélé, Milivoj Plodinec, Thomas Lunkenbein, See Wee Chee, Beatriz Roldan Cuenya. Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17220-6
  41. Maxime Boniface, Milivoj Plodinec, Robert Schlögl, Thomas Lunkenbein. Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope?. Topics in Catalysis 2020, 63 (15-18) , 1623-1643. https://doi.org/10.1007/s11244-020-01398-6
  42. Bin Wang, Wen-Xiu Lu, Zhao-Qian Huang, Dong-Sheng Pan, Ling-Li Zhou, Zheng-Han Guo, Jun-Ling Song. A zeolite-type CoFe selenite via in-situ transformation of layered double hydroxide boosting the water oxidation performance in alkaline electrolyte. Chemical Engineering Journal 2020, 399 , 125799. https://doi.org/10.1016/j.cej.2020.125799
  43. Peng Jia, Tingting Yang, Qiunan Liu, Jitong Yan, Tongde Shen, Liqiang Zhang, Yuening Liu, Xinxin Zhao, Zhiying Gao, Jing Wang, Yongfu Tang, Jianyu Huang. In-situ imaging Co3O4 catalyzed oxygen reduction and evolution reactions in a solid state Na-O2 battery. Nano Energy 2020, 77 , 105289. https://doi.org/10.1016/j.nanoen.2020.105289
  44. Sagar Prabhudev, Daniel Guay. Probing electrochemical surface/interfacial reactions with liquid cell transmission electron microscopy: a challenge or an opportunity?. Current Opinion in Electrochemistry 2020, 23 , 114-122. https://doi.org/10.1016/j.coelec.2020.05.001
  45. Cheng Wang, Limin Qi. Heterostructured Inter‐Doped Ruthenium–Cobalt Oxide Hollow Nanosheet Arrays for Highly Efficient Overall Water Splitting. Angewandte Chemie 2020, 132 (39) , 17372-17377. https://doi.org/10.1002/ange.202005436
  46. Cheng Wang, Limin Qi. Heterostructured Inter‐Doped Ruthenium–Cobalt Oxide Hollow Nanosheet Arrays for Highly Efficient Overall Water Splitting. Angewandte Chemie International Edition 2020, 59 (39) , 17219-17224. https://doi.org/10.1002/anie.202005436
  47. Jiangquan Lv, Xiangfeng Guan, Muxin Yu, Xiaoyan Li, Yunlong Yu, Dagui Chen. Boosting water oxidation activity by tuning the proton transfer process of cobalt phosphonates in neutral solution. Physical Chemistry Chemical Physics 2020, 22 (25) , 14255-14260. https://doi.org/10.1039/D0CP02194F
  48. Chenglin Zhong, Zhen Han, Tongtong Wang, Qinchao Wang, Zihan Shen, Qingwen Zhou, Jiaao Wang, Shuo Zhang, Xin Jin, Shengwen Li, Peng Wang, Daqiang Gao, Yongning Zhou, Huigang Zhang. Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting. Journal of Materials Chemistry A 2020, 8 (21) , 10831-10838. https://doi.org/10.1039/D0TA00876A
  49. Jianpo Chen, Bowen Ren, Hao Cui, Chengxin Wang. Constructing Pure Phase Tungsten‐Based Bimetallic Carbide Nanosheet as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2020, 16 (23) , 1907556. https://doi.org/10.1002/smll.201907556
  50. Yawen Dai, Jie Yu, Chun Cheng, Peng Tan, Meng Ni. Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development. Journal of Materials Chemistry A 2020, 8 (15) , 6984-7002. https://doi.org/10.1039/D0TA01670E
  51. Tsvetan Tarnev, Steffen Cychy, Corina Andronescu, Martin Muhler, Wolfgang Schuhmann, Yen‐Ting Chen. Eine universelle, auf Nanokapillaren basierende Methode zur Katalysatorimmobilisierung für die Flüssigzell‐Transmissionselektronenmikroskopie. Angewandte Chemie 2020, 132 (14) , 5634-5638. https://doi.org/10.1002/ange.201916419
  52. Tsvetan Tarnev, Steffen Cychy, Corina Andronescu, Martin Muhler, Wolfgang Schuhmann, Yen‐Ting Chen. A Universal Nano‐capillary Based Method of Catalyst Immobilization for Liquid‐Cell Transmission Electron Microscopy. Angewandte Chemie International Edition 2020, 59 (14) , 5586-5590. https://doi.org/10.1002/anie.201916419
  53. Gen Chen, Hao Wan, Wei Ma, Ning Zhang, Yijun Cao, Xiaohe Liu, Jun Wang, Renzhi Ma. Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications. Advanced Energy Materials 2020, 10 (11) , 1902535. https://doi.org/10.1002/aenm.201902535
  54. Sooyeon Hwang, Xiaobo Chen, Guangwen Zhou, Dong Su. In Situ Transmission Electron Microscopy on Energy‐Related Catalysis. Advanced Energy Materials 2020, 10 (11) , 1902105. https://doi.org/10.1002/aenm.201902105
  55. Zixi Wang, Jianying Huang, Jiajun Mao, Qi Guo, Zhong Chen, Yuekun Lai. Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A 2020, 8 (6) , 2934-2961. https://doi.org/10.1039/C9TA12776C
  56. Xuanbing Wang, Ruidong Xu, Suyang Feng, Bohao Yu, Buming Chen. α(β)-PbO 2 doped with Co 3 O 4 and CNT porous composite materials with enhanced electrocatalytic activity for zinc electrowinning. RSC Advances 2020, 10 (3) , 1351-1360. https://doi.org/10.1039/C9RA08032E