RETURN TO ISSUEPREVResearch ArticleNEXT

Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient Solar-Driven Water Splitting

View Author Information
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, People’s Republic of China
Cite this: ACS Sustainable Chem. Eng. 2017, 5, 10, 8982–8987
Publication Date (Web):August 28, 2017
https://doi.org/10.1021/acssuschemeng.7b01774
Copyright © 2017 American Chemical Society
Article Views
2586
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Black TiO2 nanomaterials have attracted considerable attention since they usually exhibit excellent photocatalytic activities. Herein, we report the facile preparation of black TiO2 nanostructures with ultrathin hollow sphere morphology, high crystalline quality, small grain size (∼8 nm), and ultrahigh surface area (168.8 m2 g–1) through Al reduction. Electron paramagnetic resonance (EPR) spectra demonstrate the existence of oxygen vacancies in black TiO2 nanostructures, which could increase the donor density and effectively promote the separation and transportation of photogenerated electron–hole pairs. The black TiO2 nanostructures exhibit a high solar-driven hydrogen generation rate (56.7 mmol h–1 g–1) under the full spectrum of solar light, which is nearly 2.5 times than that of pristine TiO2 nanostructures and superior to those kinds of black TiO2 photocatalytic materials reported previously.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.7b01774.

  • Additional experimental data and results including XRD pattern (Figure S1). SEM, TEM, HRTEM images (Figures S2–4 and 9). Images of photocatalysts (Figure S5). XRD patterns (Figure S5). Light intensity and wavelength range (Figure S6). XPS spectra (Figure S6–8). Photocatalytic activities (Table S1) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 78 publications.

  1. Rong Liang, Yanwen Wang, Chao Qin, Xuehua Chen, Zhizhen Ye, Liping Zhu. P-Type Cobalt Phosphide Composites (CoP–Co2P) Decorated on Titanium Oxide for Enhanced Noble-Metal-Free Photocatalytic H2 Evolution Activity. Langmuir 2021, 37 (11) , 3321-3330. https://doi.org/10.1021/acs.langmuir.0c03362
  2. Qiurong Zhang, Tian Xia, Chengdong Zhang. Chronic Exposure to Titanium Dioxide Nanoparticles Induces Commensal-to-Pathogen Transition in Escherichia coli. Environmental Science & Technology 2020, 54 (20) , 13186-13196. https://doi.org/10.1021/acs.est.0c04968
  3. Ning Liu, Ming Zhu, Niu Niu, Jia Ren, Na Yang, Cong Yu. Aza-BODIPY Probe-Decorated Mesoporous Black TiO2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS Applied Materials & Interfaces 2020, 12 (37) , 41071-41078. https://doi.org/10.1021/acsami.0c10531
  4. Xiaodong Chen, Chao Meng, Yong Wang, Qianqian Zhao, Yuejiao Li, Xue-Min Chen, Dewang Yang, Yuxia Li, Yue Zhou. Laser-Synthesized Rutile TiO2 with Abundant Oxygen Vacancies for Enhanced Solar Water Evaporation. ACS Sustainable Chemistry & Engineering 2020, 8 (2) , 1095-1101. https://doi.org/10.1021/acssuschemeng.9b05952
  5. Faqi Zhan, Yang Liu, Keke Wang, Xuetao Yang, Min Liu, Xiaoqing Qiu, Jie Li, Wenzhang Li. Oxygen-Deficient Nanofiber WO3–x/WO3 Homojunction Photoanodes Synthesized via a Novel Metal Self-Reducing Method. ACS Applied Materials & Interfaces 2019, 11 (43) , 39951-39960. https://doi.org/10.1021/acsami.9b13326
  6. Huan Shang, Meiqi Li, Hao Li, Shun Huang, Chengliang Mao, Zhihui Ai, Lizhi Zhang. Oxygen Vacancies Promoted the Selective Photocatalytic Removal of NO with Blue TiO2 via Simultaneous Molecular Oxygen Activation and Photogenerated Hole Annihilation. Environmental Science & Technology 2019, 53 (11) , 6444-6453. https://doi.org/10.1021/acs.est.8b07322
  7. Duoduo Gao, Xinhe Wu, Ping Wang, Ying Xu, Huogen Yu, Jiaguo Yu. Simultaneous Realization of Direct Photoinduced Deposition and Improved H2-Evolution Performance of Sn-Nanoparticle-Modified TiO2 Photocatalyst. ACS Sustainable Chemistry & Engineering 2019, 7 (11) , 10084-10094. https://doi.org/10.1021/acssuschemeng.9b01516
  8. Lingyue Liu, Shantang Liu. Oxygen Vacancies as an Efficient Strategy for Promotion of Low Concentration SO2 Gas Sensing: The Case of Au-Modified SnO2. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 13427-13434. https://doi.org/10.1021/acssuschemeng.8b03205
  9. Jiayuan Hu, Shengsen Zhang, Yonghai Cao, Hongjuan Wang, Hao Yu, Feng Peng. Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10823-10832. https://doi.org/10.1021/acssuschemeng.8b02130
  10. Daijun Xie, Yingjie Wang, Han Yu, Xinran Yang, Shining Geng, Xiangfu Meng. Molten-salt defect engineering of TiO2(B) nanobelts for enhanced photocatalytic hydrogen evolution. JCIS Open 2021, 4 , 100031. https://doi.org/10.1016/j.jciso.2021.100031
  11. Amaury Indekeu, Esther Bailón-García, Auguste Fernandes, Rubén Baltazar, Ana Maria Ferraria, Ana Maria B. do Rego, M. Filipa Ribeiro. Synthesis of modified TiO2-based catalysts for the photocatalytic production of solar fuels from synthesis gas. Catalysis Today 2021, 379 , 272-284. https://doi.org/10.1016/j.cattod.2020.07.017
  12. Esmail Doustkhah, M. Hussein N. Assadi, Kenji Komaguchi, Nao Tsunoji, Mohamed Esmat, Naoki Fukata, Osamu Tomita, Ryu Abe, Bunsho Ohtani, Yusuke Ide. In situ Blue titania via band shape engineering for exceptional solar H2 production in rutile TiO2. Applied Catalysis B: Environmental 2021, 297 , 120380. https://doi.org/10.1016/j.apcatb.2021.120380
  13. Min Dai, Joshua Adedeji Bolarin, Gangtie Lei, Zhi Li, Teng He, Hujun Cao, Ping Chen. Potassium hydride reduced black TiO2−x for boosting the hydrogenation of magnesium at room temperature. Journal of Alloys and Compounds 2021, 414 , 162750. https://doi.org/10.1016/j.jallcom.2021.162750
  14. Zdeněk Bad'ura, Alberto Naldoni, Shanshan Qin, Aristides Bakandritsos, Štěpán Kment, Patrik Schmuki, Giorgio Zoppellaro. Light‐Induced Migration of Spin Defects in TiO 2 Nanosystems and their Contribution to the H 2 Evolution Catalysis from Water. ChemSusChem 2021, 14 (20) , 4408-4414. https://doi.org/10.1002/cssc.202101218
  15. Suman Sekhar Sahoo, Sriram Mansingh, Pradeepta Babu, Kulamani Parida. Black titania an emerging photocatalyst: review highlighting the synthesis techniques and photocatalytic activity for hydrogen generation. Nanoscale Advances 2021, 3 (19) , 5487-5524. https://doi.org/10.1039/D1NA00477H
  16. Milad Sabzehparvar, Fatemeh Kiani, Nooshin Salman Tabrizi. Mesoporous-assembled TiO2-NiO-Ag nanocomposites with p-n/Schottky heterojunctions for enhanced photocatalytic performance. Journal of Alloys and Compounds 2021, 876 , 160133. https://doi.org/10.1016/j.jallcom.2021.160133
  17. Vitaly Gurylev, Tsong Pyng Perng. Defect engineering of ZnO: Review on oxygen and zinc vacancies. Journal of the European Ceramic Society 2021, 41 (10) , 4977-4996. https://doi.org/10.1016/j.jeurceramsoc.2021.03.031
  18. Maged N. Shaddad, Prabhakarn Arunachalam, Mahmoud Hezam, Norah M. AL-Saeedan, Sixto Gimenez, Juan Bisquert, Abdullah M. Al-Mayouf. Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping. International Journal of Hydrogen Energy 2021, 46 (46) , 23702-23714. https://doi.org/10.1016/j.ijhydene.2021.04.184
  19. Binbin Jin, Xin Ye, Heng Zhong, Fangming Jin, Yun Hang Hu. Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst. Chinese Chemical Letters 2021, 10 https://doi.org/10.1016/j.cclet.2021.07.046
  20. Zhenming Qi, Kuang Wang, Jiayi Chen, Dawei Gao, Yu Ren, Chunxia Wang. Cotton fabric loaded with self-dispersive and reactive biphasic TiO 2 for durable self-cleaning activity and ultraviolet protection. New Journal of Chemistry 2021, 45 (25) , 11119-11129. https://doi.org/10.1039/D1NJ01600H
  21. Myeongjun Ji, Yong-Ho Choa, Young-In Lee. One-step synthesis of black TiO2-x microspheres by ultrasonic spray pyrolysis process and their visible-light-driven photocatalytic activities. Ultrasonics Sonochemistry 2021, 74 , 105557. https://doi.org/10.1016/j.ultsonch.2021.105557
  22. S. Jagadeesh Babu, V. Navakoteswara Rao, Dharmapura H.K. Murthy, Mahesh Shastri, Murthy M, Manjunath Shetty, K.S. Anantha Raju, Prasanna D. Shivaramu, C.S. Ananda Kumar, M.V. Shankar, Dinesh Rangappa. Significantly enhanced cocatalyst-free H2 evolution from defect-engineered Brown TiO2. Ceramics International 2021, 47 (10) , 14821-14828. https://doi.org/10.1016/j.ceramint.2020.10.026
  23. Nisha T. Padmanabhan, Nishanth Thomas, Jesna Louis, Dhanu Treasa Mathew, Priyanka Ganguly, Honey John, Suresh C. Pillai. Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere 2021, 271 , 129506. https://doi.org/10.1016/j.chemosphere.2020.129506
  24. Jagadeesh Babu Sriramoju, Murthy Muniyappa, Navya Rani Marilingaiah, Chetana Sabbanahalli, Manjunath Shetty, Ravi Mudike, Chitrabanu C.P, Prasanna D. Shivaramu, Nagaraju G, Kanchugarakoppal S. Rangappa, Ananda Kumar C.S, Dinesh Rangappa. Carbon-based TiO2-x heterostructure nanocomposites for enhanced photocatalytic degradation of dye molecules. Ceramics International 2021, 47 (7) , 10314-10321. https://doi.org/10.1016/j.ceramint.2020.12.014
  25. Perumal Devaraji, Ruchao Gao, Liuying Xiong, Xinjia Jia, Li Huang, Wei Chen, Shanhu Liu, Liqun Mao. Usage of natural leaf as a bio-template to inorganic leaf: Leaf structure black TiO2/CdS heterostructure for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2021, 46 (27) , 14369-14383. https://doi.org/10.1016/j.ijhydene.2021.01.198
  26. Jing Qian, Sen Zhao, Wenqiang Dang, Yuan Liao, Wen Zhang, Hui Wang, Lingling Lv, Lei Luo, Hai‐Ying Jiang, Junwang Tang. Photocatalytic Nitrogen Reduction by Ti 3 C 2 MXene Derived Oxygen Vacancy‐Rich C/TiO 2. Advanced Sustainable Systems 2021, 132 , 2000282. https://doi.org/10.1002/adsu.202000282
  27. Ying Gao, Cuibo Liu, Wei Zhou, Siyu Lu, Bin Zhang. Anion Vacancy Engineering in Electrocatalytic Water Splitting. ChemNanoMat 2021, 7 (2) , 102-109. https://doi.org/10.1002/cnma.202000550
  28. Yongxia Li, Binsheng Yang, Bin Liu. MOF assisted synthesis of TiO2/Au/Fe2O3 hybrids with enhanced photocatalytic hydrogen production and simultaneous removal of toxic phenolic compounds. Journal of Molecular Liquids 2021, 322 , 114815. https://doi.org/10.1016/j.molliq.2020.114815
  29. Caifeng Zhao, Yahui Yang, Lin Luo, Sai Shao, Yiji Zhou, Ying Shao, Faqi Zhan, Jian Yang, Yaoyu Zhou. γ-ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation. Science of The Total Environment 2020, 747 , 141533. https://doi.org/10.1016/j.scitotenv.2020.141533
  30. Charu Dwivedi, Tauheed Mohammad, Vinod Kumar, Viresh Dutta. Ti3+ and oxygen defects controlled colored TiO2 nanoparticles by continuous spray pyrolysis. Vacuum 2020, 182 , 109612. https://doi.org/10.1016/j.vacuum.2020.109612
  31. Roser Fernández-Climent, Sixto Giménez, Miguel García-Tecedor. The role of oxygen vacancies in water splitting photoanodes. Sustainable Energy & Fuels 2020, 4 (12) , 5916-5926. https://doi.org/10.1039/D0SE01305F
  32. Luminita Andronic, Alexandru Enesca. Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.565489
  33. Zhiming Miao, Guanlong Wang, Xiufang Zhang, Xiaoli Dong. Oxygen vacancies modified TiO2/Ti3C2 derived from MXenes for enhanced photocatalytic degradation of organic pollutants: The crucial role of oxygen vacancy to schottky junction. Applied Surface Science 2020, 528 , 146929. https://doi.org/10.1016/j.apsusc.2020.146929
  34. Liming Sun, Xiaoxiao He, Yusheng Yuan, Jinquan Chen, Wenwen Zhan, Xiao-Jun Wang, Yanli Zhao, Xiguang Han. Tuning interfacial sequence between nitrogen-doped carbon layer and Au nanoparticles on metal-organic framework-derived TiO2 to enhance photocatalytic hydrogen production. Chemical Engineering Journal 2020, 397 , 125468. https://doi.org/10.1016/j.cej.2020.125468
  35. Huihui Song, Junming Zhang, Zhongqiao Sun, Ting Sun, Yide Han, Hao Meng, Xia Zhang. A novel hybrid electrode of zeolitic imidazolate framework–derived carbon encapsulated in reduced‐TiO 2 nanotube arrays: Fabrication and photoelectrocatalytic activity. Applied Organometallic Chemistry 2020, 34 (9) https://doi.org/10.1002/aoc.5791
  36. Yuan Liao, Jing Qian, Gang Xie, Qing Han, Wenqiang Dang, Yuanshen Wang, Lingling Lv, Sen Zhao, Lei Luo, Wen Zhang, Hai-Ying Jiang, Junwang Tang. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental 2020, 273 , 119054. https://doi.org/10.1016/j.apcatb.2020.119054
  37. Yan Chen, Huanshun Yin, Fei Li, Jie Zhou, Lingsong Wang, Jun Wang, Shiyun Ai. Polydopamine-sensitized WS2/black-TiO2 heterojunction for histone acetyltransferase detection with enhanced visible-light-driven photoelectrochemical activity. Chemical Engineering Journal 2020, 393 , 124707. https://doi.org/10.1016/j.cej.2020.124707
  38. Xin Li, Guohui Dong, Fengjiao Guo, Pengfei Zhu, Yu Huang, Chuanyi Wang. Enhancement of photocatalytic NO removal activity of g-C 3 N 4 by modification with illite particles. Environmental Science: Nano 2020, 7 (7) , 1990-1998. https://doi.org/10.1039/D0EN00415D
  39. T.S. Rajaraman, Sachin P. Parikh, Vimal G. Gandhi. Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal 2020, 389 , 123918. https://doi.org/10.1016/j.cej.2019.123918
  40. Keerti M. Naik, Eiji Higuchi, Hiroshi Inoue. Pt nanoparticle-decorated two-dimensional oxygen-deficient TiO 2 nanosheets as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Nanoscale 2020, 12 (20) , 11055-11062. https://doi.org/10.1039/D0NR02092C
  41. Jiaxing Wu, Panzhe Qiao, Haoze Li, Yachao Xu, Wutao Yang, Fan Yang, Kuo Lin, Kai Pan, Wei Zhou. Engineering surface defects on two-dimensional ultrathin mesoporous anatase TiO 2 nanosheets for efficient charge separation and exceptional solar-driven photocatalytic hydrogen evolution. Journal of Materials Chemistry C 2020, 8 (10) , 3476-3482. https://doi.org/10.1039/C9TC07032J
  42. Yan Chen, Huanshun Yin, Chengji Sui, Weizhang Fu, Yue Yang, Shiyun Ai. Photoelectrochemical assay for DNA hydroxymethylation determination based on the inhibited photoactivity of black TiO2 nanosphere by ZnO. Microchimica Acta 2020, 187 (3) https://doi.org/10.1007/s00604-020-4131-0
  43. Ikhtiar Gul, Murtaza Sayed, Noor S. Shah, Javed Ali Khan, Kyriaki Polychronopoulou, Jibran Iqbal, Faiza Rehman. Solar light responsive bismuth doped titania with Ti3+ for efficient photocatalytic degradation of flumequine: Synergistic role of peroxymonosulfate. Chemical Engineering Journal 2020, 384 , 123255. https://doi.org/10.1016/j.cej.2019.123255
  44. Sungsoon Kim, Yoonjun Cho, Ryan Rhee, Jong Hyeok Park. Black TiO 2 : What are exact functions of disorder layer. Carbon Energy 2020, 2 (1) , 44-53. https://doi.org/10.1002/cey2.32
  45. Zirui Lou, Yichen Wang, Yingchen Yang, Yanwen Wang, Chao Qin, Rong Liang, Xuehua Chen, Zhizhen Ye, Liping Zhu. Carbon Sphere Template Derived Hollow Nanostructure for Photocatalysis and Gas Sensing. Nanomaterials 2020, 10 (2) , 378. https://doi.org/10.3390/nano10020378
  46. Zhiming Miao, Guanlong Wang, Lujie Li, Cong Wang, Xiufang Zhang. Fabrication of black TiO2/TiO2 homojunction for enhanced photocatalytic degradation. Journal of Materials Science 2019, 54 (23) , 14320-14329. https://doi.org/10.1007/s10853-019-03900-2
  47. Yuxin Li, Rong Fu, Min Gao, Xiangdong Wang. B–N co-doped black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2019, 44 (54) , 28629-28637. https://doi.org/10.1016/j.ijhydene.2019.09.121
  48. Thanh‐Dinh Nguyen, Jessica Li, Erlantz Lizundia, Markus Niederberger, Wadood Y. Hamad, Mark J. MacLachlan. Black Titania with Nanoscale Helicity. Advanced Functional Materials 2019, 29 (40) , 1904639. https://doi.org/10.1002/adfm.201904639
  49. Xiaoling Shen, Guohui Dong, Lan Wang, Liqun Ye, Jianwu Sun. Enhancing Photocatalytic Activity of NO Removal through an In Situ Control of Oxygen Vacancies in Growth of TiO 2. Advanced Materials Interfaces 2019, 6 (19) , 1901032. https://doi.org/10.1002/admi.201901032
  50. Xiaoni Xuan, Shuchen Tu, Hongjian Yu, Xin Du, Yajing Zhao, Junhui He, Haifeng Dong, Xueji Zhang, Hongwei Huang. Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Applied Catalysis B: Environmental 2019, 255 , 117768. https://doi.org/10.1016/j.apcatb.2019.117768
  51. Yu Tian, Li Li, Yuting Hao, Xumei Song, Fengyan Ma, Lixian Wang. [email protected] TiO2–ZrO2 composites with high efficiency photocatalytic properties prepared by template method combined with in-situ self-assembly technology. International Journal of Hydrogen Energy 2019, 44 (50) , 27363-27378. https://doi.org/10.1016/j.ijhydene.2019.08.201
  52. Bo Zhao, Xin Wang, Yizeng Zhang, Junning Gao, Zhiwu Chen, Zhenya Lu. Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2019, 382 , 111928. https://doi.org/10.1016/j.jphotochem.2019.111928
  53. Chuan-Qi Li, Sha-Sha Yi, De-liang Chen, Yan Liu, Ya-Jie Li, Si-Yu Lu, Xin-Zheng Yue, Zhong-Yi Liu. Oxygen vacancy engineered SrTiO 3 nanofibers for enhanced photocatalytic H 2 production. Journal of Materials Chemistry A 2019, 7 (30) , 17974-17980. https://doi.org/10.1039/C9TA03701B
  54. Yun-En Lee, Wei-Chieh Chung, Moo-Been Chang. Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2. Environmental Science and Pollution Research 2019, 26 (20) , 20908-20919. https://doi.org/10.1007/s11356-019-05436-z
  55. V.A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S. Sharma Kanakkillam, D.A. Avellaneda, J.A. Aguilar Martinez, T.K. Das Roy, N.A. Ramos-Delgado. Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid. Applied Surface Science 2019, 483 , 156-164. https://doi.org/10.1016/j.apsusc.2019.03.302
  56. CHUANSHENG CHEN, QUN FANG, SHIYI CAO, YONGXIANG YAN. PHOTOCATALYTIC PROPERTY AND PHOTOCATALYTIC MECHANISM OF TiO 2 /Fe 2 O 3 HYBRIDS FOR DEGRADATION OF ORGANIC DYES. Surface Review and Letters 2019, 26 (05) , 1850196. https://doi.org/10.1142/S0218625X18501962
  57. Yu Fang, Yuanyuan Li, Feng Zhou, Peiyang Gu, Jiadi Liu, Dongyun Chen, Najun Li, Qingfeng Xu, Jianmei Lu. An Efficient Photocatalyst Based on Black TiO 2 Nanoparticles and Porous Carbon with High Surface Area: Degradation of Antibiotics and Organic Pollutants in Water. ChemPlusChem 2019, 84 (5) , 474-480. https://doi.org/10.1002/cplu.201900103
  58. Zia Ur Rahman, Ning Wei, Min Feng, Daoai Wang. TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting. International Journal of Hydrogen Energy 2019, 44 (26) , 13221-13231. https://doi.org/10.1016/j.ijhydene.2019.03.176
  59. Mengkun Tian, Chenze Liu, Jingxuan Ge, David Geohegan, Gerd Duscher, Gyula Eres. Recent progress in characterization of the core–shell structure of black titania. Journal of Materials Research 2019, 34 (07) , 1138-1153. https://doi.org/10.1557/jmr.2019.46
  60. Brett Leedahl, Tristan de Boer, Xiaotao Yuan, Alexander Moewes. Oxygen Vacancy Induced Structural Distortions in Black Titania: A Unique Approach using Soft X-ray EXAFS at the O-K Edge. Chemistry - A European Journal 2019, 25 (13) , 3272-3278. https://doi.org/10.1002/chem.201805423
  61. Chang Liu, Pengcheng Wu, Jianning Wu, Juan Hou, Hongcun Bai, Zhiyong Liu. Effective protect of oxygen vacancies in carbon layer coated black TiO2−x/CNNS hetero-junction photocatalyst. Chemical Engineering Journal 2019, 359 , 58-68. https://doi.org/10.1016/j.cej.2018.11.117
  62. Xiaolan Kang, Sihang Liu, Zideng Dai, Yunping He, Xuezhi Song, Zhenquan Tan. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9 (2) , 191. https://doi.org/10.3390/catal9020191
  63. Gurudayal. Current Trends and Future Roadmap for Solar Fuels. 2019,,, 445-484. https://doi.org/10.1007/978-981-13-3302-6_14
  64. Yuxin Li, Rong Fu, Xiangdong Wang, Xiaoling Guo. Preparation of core–shell nanostructured black nano-TiO 2 by sol–gel method combined with Mg reduction. Journal of Materials Research 2018, 33 (24) , 4173-4181. https://doi.org/10.1557/jmr.2018.411
  65. Moisés A. de Araújo, Murilo F. Gromboni, Frank Marken, Stephen C. Parker, Laurence M. Peter, Josh Turner, Helen C. Aspinall, Kate Black, Lucia H. Mascaro. Contrasting transient photocurrent characteristics for thin films of vacuum-doped “grey” TiO2 and “grey” Nb2O5. Applied Catalysis B: Environmental 2018, 237 , 339-352. https://doi.org/10.1016/j.apcatb.2018.05.065
  66. Mikhail Pylnev, Wei-Hao Chang, Ming-Show Wong. Shell of black titania prepared by sputtering TiO2 target in H2 + Ar plasma. Applied Surface Science 2018, 462 , 285-290. https://doi.org/10.1016/j.apsusc.2018.08.103
  67. Paskalis Sahaya Murphin Kumar, Vinoth Kumar Ponnusamy, Koolath Ramakrishnan Deepthi, Gopalakrishnan Kumar, Arivalagan Pugazhendhi, Hideki Abe, Sivakumar Thiripuranthagan, Umapada Pal, Siva Kumar Krishnan. Controlled synthesis of Pt nanoparticle supported TiO 2 nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A 2018, 6 (46) , 23435-23444. https://doi.org/10.1039/C8TA07380E
  68. Wenjian Fang, Zhen Qin, Junying Liu, Zhidong Wei, Zhi Jiang, Wenfeng Shangguan. Photo-switchable pure water splitting under visible light over [email protected] by recycling scattered photons. Applied Catalysis B: Environmental 2018, 236 , 140-146. https://doi.org/10.1016/j.apcatb.2018.05.023
  69. Zhenxing Xu, Chaonan Li, Nianqing Fu, Wenfang Li, Guoge Zhang. Facile synthesis of Mn-doped TiO2 nanotubes with enhanced visible light photocatalytic activity. Journal of Applied Electrochemistry 2018, 48 (10) , 1197-1203. https://doi.org/10.1007/s10800-018-1198-y
  70. Feng Xue, Yanyan Ge, Changyong Zheng. Effects of deposition of different contents of Ag nanoparticles on thickness and structural, morphological, compositional, optical, and photocatalytic properties of 1D TiO2 nanoarrays. Research on Chemical Intermediates 2018, 44 (10) , 6239-6251. https://doi.org/10.1007/s11164-018-3487-9
  71. Huy Hao Nguyen, Gobinda Gyawali, Tae Ho Kim, Sami Bin Humam, Soo Wohn Lee. Blue TiO2 polymorph: An efficient material for dye-sensitized solar cells fabricated using a low-temperature sintering process. Progress in Natural Science: Materials International 2018, 28 (5) , 548-553. https://doi.org/10.1016/j.pnsc.2018.08.003
  72. Trin Jedsukontorn, Tomonaga Ueno, Nagahiro Saito, Mali Hunsom. Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. Journal of Alloys and Compounds 2018, 757 , 188-199. https://doi.org/10.1016/j.jallcom.2018.05.046
  73. Fang Xiao, Wei Zhou, Bojing Sun, Haoze Li, Panzhe Qiao, Liping Ren, Xiaojun Zhao, Honggang Fu. Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Science China Materials 2018, 61 (6) , 822-830. https://doi.org/10.1007/s40843-018-9222-4
  74. Guoyan Dong, Xin Wang, Zhiwu Chen, Zhenya Lu. Enhanced Photocatalytic Activity of Vacuum-activated TiO 2 Induced by Oxygen Vacancies. Photochemistry and Photobiology 2018, 94 (3) , 472-483. https://doi.org/10.1111/php.12874
  75. Yanzhao Zhang, Xiya Wang, Peimei Dong, Zhengfeng Huang, Xiaoxiao Nie, Xiwen Zhang. A green synthetic approach for self-doped TiO 2 with exposed highly reactive facets showing efficient CO 2 photoreduction under simulated solar light. Green Chemistry 2018, 20 (9) , 2084-2090. https://doi.org/10.1039/C7GC02963B
  76. Xin Zhang, Yajie Chen, Yuting Xiao, Wei Zhou, Guohui Tian, Honggang Fu. Enhanced charge transfer and separation of hierarchical hydrogenated TiO 2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H 2 production activity. Nanoscale 2018, 10 (8) , 4041-4050. https://doi.org/10.1039/C7NR09415A
  77. Nuwan Lakshitha De Silva, A. C. A. Jayasundera, A. Folger, O. Kasian, S. Zhang, Chang-Feng Yan, C. Scheu, J. Bandara. Superior solar-to-hydrogen energy conversion efficiency by visible light-driven hydrogen production via highly reduced Ti 2+ /Ti 3+ states in a blue titanium dioxide photocatalyst. Catalysis Science & Technology 2018, 8 (18) , 4657-4664. https://doi.org/10.1039/C8CY01212A
  78. Meiqing Chen, Pingxiao Wu, Qianqian Wei, Yajie Zhu, Shanshan Yang, Liting Ju, Nengwu Zhu, Zhang Lin. The role of oxygen vacancy over ZnCr-layered double oxide in enhancing solar light-driven photocatalytic degradation of bisphenol A. Environmental Chemistry 2018, 15 (4) , 226. https://doi.org/10.1071/EN18014