Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111)

View Author Information
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
§ Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
*Phone: 1-631-344-2246. Fax: 1-631-344-5815. E-mail: [email protected] (J.A.R.).
*Phone: 1-631-344-4343. Fax: 1-631-344-5815. E-mail: [email protected] (S.D.S).
Cite this: ACS Sustainable Chem. Eng. 2017, 5, 11, 10783–10791
Publication Date (Web):September 26, 2017
Copyright © 2017 American Chemical Society
Article Views
Read OnlinePDF (4 MB)


Au(111) does not bind CO and O2 well. The deposition of small nanoparticles of MgO, CeO2, and TiO2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO2(111), and Au/TiO2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO2/Au(111) < TiO2/Au(111). Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO32–(ads), and OH(ads) were identified under reaction conditions. CO32–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.

Cited By

This article is cited by 21 publications.

  1. Gyeongbae Park, Anupam Giri, Manish Kumar, Sungmin Moon, Monalisa Pal, Dong Wook Kim, Unyong Jeong. Pseudoequilibrium between Etching and Selective Grain Growth: Chemical Conversion of a Randomly Oriented Au Film into a (111)-Oriented Ultrathin Au Film. Nano Letters 2021, 21 (22) , 9772-9779.
  2. Yixuan Jiang, Saiyu Bu, Dechun Zhou, Xiaoguang Shi, Feng Pan, Qingmin Ji, Tianchao Niu. Two-Dimensional Iron Oxide on Au(111): Growth Mechanism and Interfacial Properties. The Journal of Physical Chemistry C 2021, 125 (44) , 24755-24763.
  3. Jeongjin Kim, Hanseul Choi, Daeho Kim, Jeong Young Park. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catalysis 2021, 11 (14) , 8645-8677.
  4. Verena Pramhaas, Matteo Roiaz, Noemi Bosio, Manuel Corva, Christoph Rameshan, Erik Vesselli, Henrik Grönbeck, Günther Rupprechter. Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO2 Model Catalysts. ACS Catalysis 2021, 11 (1) , 208-214.
  5. Yang Xia, Jiazheng Lao, Jingrui Ye, Dang-guo Cheng, Fengqiu Chen, Xiaoli Zhan. Role of Two-Electron Defects on the CeO2 Surface in CO Preferential Oxidation over CuO/CeO2 Catalysts. ACS Sustainable Chemistry & Engineering 2019, 7 (22) , 18421-18433.
  6. Luan Nguyen, Franklin Feng Tao, Yu Tang, Jian Dou, Xiao-Jun Bao. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Chemical Reviews 2019, 119 (12) , 6822-6905.
  7. Shujuan Jiang, Chuanbao Xiong, Shaoqing Song, Bei Cheng. Plasmonic Graphene-Like Au/C3N4 Nanosheets with Barrier-Free Interface for Photocatalytically Sustainable Evolution of Active Oxygen Species. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2018-2026.
  8. Shaodan Xu, Huanxuan Li, Jia Du, Junhong Tang, Liang Wang. Subnanometric Gold Clusters on CeO2 with Maximized Strong Metal–Support Interactions for Aerobic Oxidation of Carbon–Hydrogen Bonds. ACS Sustainable Chemistry & Engineering 2018, 6 (5) , 6418-6424.
  9. Yifei Yang, Linsen Zhou, Jun Chen, Ruizhi Qiu, Yunxi Yao. Low‐Temperature CO Oxidation over the Pt−TiN Interfacial Dual Sites. ChemCatChem 2021, 13 (21) , 4610-4617.
  10. Y. Kotolevich, O. Martynyuk, J.C. García Ramos, J.E. Cabrera Ortega, R. Vélez, V. Maturano Rojas, A. Aguilar Tapia, S. Martinez-Gonzalez, H.J. Tiznado Vazquez, M. Farías, R. Zanella, A. Pestryakov, N. Bogdanchikova, V. Cortés Corberán. Nanostructured silica-supported gold: Effect of nanoparticle size distribution and electronic state on its catalytic properties in oxidation reactions. Catalysis Today 2021, 366 , 77-86.
  11. F. Aguilera-Granja, R.H. Aguilera–del–Toro, E.E. Vogel, E. Cisternas. TiO2 nano-clusters adsorbed on surfaces: A density-functional-theoretic study. Journal of Physics and Chemistry of Solids 2021, 150 , 109716.
  12. Khaled Mohammad Saoud, Mohamed Samy El-Shall. Physical and Chemical Synthesis of Au/CeO2 Nanoparticle Catalysts for Room Temperature CO Oxidation: A Comparative Study. Catalysts 2020, 10 (11) , 1351.
  13. Joachim Schnadt, Jan Knudsen, Niclas Johansson. Present and new frontiers in materials research by ambient pressure x-ray photoelectron spectroscopy. Journal of Physics: Condensed Matter 2020, 32 (41) , 413003.
  14. Zhu-Yuan Zheng, Dong Wang, Yi Zhang, Fan Yang, Xue-Qing Gong. Structures and reactivities of the CeO2/Pt(111) reverse catalyst: A DFT+U study. Chinese Journal of Catalysis 2020, 41 (9) , 1360-1368.
  15. Badria M. Al-Shehri, Mohd Shkir, A. S. Khder, Ajeet Kaushik, Mohamed S. Hamdy. Noble Metal Nanoparticles Incorporated Siliceous TUD-1 Mesoporous Nano-Catalyst for Low-Temperature Oxidation of Carbon Monoxide. Nanomaterials 2020, 10 (6) , 1067.
  16. Kenneth R. Goodman, Jason Wang, Yilin Ma, Xiao Tong, Dario J. Stacchiola, Michael G. White. Morphology and reactivity of size-selected titanium oxide nanoclusters on Au(111). The Journal of Chemical Physics 2020, 152 (5) , 054714.
  17. Jindong Kang, Mausumi Mahapatra, Ning Rui, Ivan Orozco, Rui Shi, Sanjaya D. Senanayake, José A. Rodriguez. Growth and structural studies of In/Au(111) alloys and InO x /Au(111) inverse oxide/metal model catalysts. The Journal of Chemical Physics 2020, 152 (5) , 054702.
  18. Zewu Zhang, Haojun Shi, Qiong Wu, Xiaohai Bu, Yunfeng Yang, Jie Zhang, Yue Huang. MOF-derived CeO 2 /[email protected] 2 hollow nanotubes and their catalytic activity toward 4-nitrophenol reduction. New Journal of Chemistry 2019, 43 (11) , 4581-4589.
  19. Jing Zhang, J. Will Medlin. Catalyst design using an inverse strategy: From mechanistic studies on inverted model catalysts to applications of oxide-coated metal nanoparticles. Surface Science Reports 2018, 73 (4) , 117-152.
  20. Yan Zhou, Jun Yu, Dongsen Mao, Haifang Mao, Xiaoming Guo, Chao Sun, Houjin Huang. A highly moisture-resistant binary M3Co16Ox composite oxide catalysts wrapped by polymer nanofilm for effective low temperature CO oxidation. Applied Catalysis A: General 2018, 559 , 40-46.
  21. Abigail Moreno-Martell, Barbara Pawelec, Rufino Nava, Noelia Mota, Luis Escamilla-Perea, Rufino M. Navarro, Jose L.G. Fierro. CO Oxidation at 20 °C on Au Catalysts Supported on Mesoporous Silica: Effects of Support Structural Properties and Modifiers. Materials 2018, 11 (6) , 948.