RETURN TO ISSUEPREVResearch ArticleNEXT

Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen Generation Using Ni(OH)2 Decorated TiO2 Nanotubes under Solar Light Irradiation

  • Nagappagari Lakshmana Reddy
    Nagappagari Lakshmana Reddy
    Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Vemanapuram, Kadapa−516003, Andhra Pradesh, India
  • Kanakkampalayam Krishnan Cheralathan
    Kanakkampalayam Krishnan Cheralathan
    Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Thiruvalam Road, Vellore−632014, Tamil Nadu, India
  • Valluri Durga Kumari
    Valluri Durga Kumari
    Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (CSIR-IICT)62391, Uppal Road, Tarnaka, Hyderabad−500007, Telangana, India
  • Bernaurdshaw Neppolian
    Bernaurdshaw Neppolian
    SRM Research Institute, SRM University, SRM Nagar, Potheri, Kattankulathur−603203, Tamil Nadu, India
  • , and 
  • Shankar Muthukonda Venkatakrishnan*
    Shankar Muthukonda Venkatakrishnan
    Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Vemanapuram, Kadapa−516003, Andhra Pradesh, India
    *Tel.: +91-9966845899. Fax: +91-8562225419. E-mail address: [email protected] (S.M.V.).
Cite this: ACS Sustainable Chem. Eng. 2018, 6, 3, 3754–3764
Publication Date (Web):February 3, 2018
https://doi.org/10.1021/acssuschemeng.7b04118
Copyright © 2018 American Chemical Society
Article Views
1227
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (8 MB)

Abstract

Crude glycerol (10% w/w) is produced as a substantial byproduct during the industrial production of biodiesel via transesterification processes. Catalytic hydrogen (H2) generation by utilizing crude glycerol and solar light is considered as a promising avenue. The present work illustrates enhanced rates of H2 generation and cocatalyst behavior of Ni(OH)2 decorated on TiO2 nanotubes dispersed in aqueous crude glycerol solution (industrial byproduct) under solar light irradiation. The catalyst characterization reveals that the TiO2 nanotubes (TNT) are of anatase phase with length ranges from 100 to 300 nm and diameters from 4.9 to 9.8 nm. The Ni(OH)2 quantum dots deposited on TNT have an average particle size of 8.4 nm. The presence of Ni(OH)2 on TNT and oxidation states of Ti4+ and Ni2+ cations are confirmed by XPS analysis. The optimal loading of Ni (2.0 wt %) leads to a high rate of photocatalytic H2 generation of 4719 μmol h–1 gcat–1 and it is ∼12-fold higher than pristine TNT. The solar light energy conversion efficiency of the optimized catalyst and cost benefit analysis by using crude glycerol are also evaluated. The high electronegativity of Ni(OH)2 quantum dots present on the surface of TNT may facilitate effective shuttling of photoexcitons, thereby largely preventing electron–hole recombination in TiO2 during photocatalysis.

Cited By


This article is cited by 42 publications.

  1. M. R. Karimi Estahbanati, Mehrzad Feilizadeh, Farid Attar, Maria C. Iliuta. Current Developments and Future Trends in Photocatalytic Glycerol Valorization: Photocatalyst Development. Industrial & Engineering Chemistry Research 2020, 59 (52) , 22330-22352. https://doi.org/10.1021/acs.iecr.0c04765
  2. Dongdong Lv, Yechen Lei, Dongsheng Zhang, Xin Song, Yong-Wang Li, J. W. H. Niemantsverdriet, Weichang Hao, Yonghong Deng, Ren Su. Effect of Pd and Au on Hydrogen Abstraction and C–C Cleavage in Photoconversion of Glycerol: Beyond Charge Separation. The Journal of Physical Chemistry C 2020, 124 (37) , 20320-20327. https://doi.org/10.1021/acs.jpcc.0c07148
  3. Akshaya Raghavan, Suprabhat Sarkar, Lakshmana Reddy Nagappagari, Sreedhar Bojja, Shankar MuthukondaVenkatakrishnan, Sutapa Ghosh. Decoration of Graphene Quantum Dots on TiO2 Nanostructures: Photosensitizer and Cocatalyst Role for Enhanced Hydrogen Generation. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13060-13068. https://doi.org/10.1021/acs.iecr.0c01663
  4. Kai Dai, Jiali Lv, Jinfeng Zhang, Guangping Zhu, Lei Geng, Changhao Liang. Efficient Visible-Light-Driven Splitting of Water into Hydrogen over Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets/Layered CdS–Diethylenetriamine Nanobelts. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 12817-12826. https://doi.org/10.1021/acssuschemeng.8b02064
  5. Jin Bai, Jie Gao, Meng Zhang, Ke Zheng, Yan Cao, Yamei Mao, Shengwang Yu, Zhiyong He. Microwave plasma oxidation of near-equiatomic NiTi alloy for obtaining low-Ni TiO2 coating. Surface and Coatings Technology 2021, 428 , 127883. https://doi.org/10.1016/j.surfcoat.2021.127883
  6. Krishnamoorthy Sathiyan, Ronen Bar‐Ziv, Vered Marks, Dan Meyerstein, Tomer Zidki. The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial?. Chemistry – A European Journal 2021, 27 (64) , 15936-15943. https://doi.org/10.1002/chem.202103040
  7. Valeriia Maslova, Andrea Fasolini, Michele Offidani, Stefania Albonetti, Francesco Basile. Solar-driven valorization of glycerol towards production of chemicals and hydrogen. Catalysis Today 2021, 380 , 147-155. https://doi.org/10.1016/j.cattod.2021.03.008
  8. Abdullah M. Asiri, T. Nawaz, M.B. Tahir, N. Fatima, Sher Bahadar Khan, Khalid Ahmad Alamry, Soliman Y. Alfifi, Hadi M. Marwani, Maha M. Al-Otaibi, Sudip Chakraborty. Fabrication of WO3 based nanocomposites for the excellent photocatalytic energy production under visible light irradiation. International Journal of Hydrogen Energy 2021, 46 (79) , 39058-39066. https://doi.org/10.1016/j.ijhydene.2021.09.136
  9. Suprabhat Sarkar, Akshaya Raghavan, Archisman Giri, Sutapa Ghosh. Graphene Quantum Dots Decorated TiO 2 Nanostructures: Sustainable Approach for Photocatalytic Remediation of an Industrial Pollutant. ChemistrySelect 2021, 6 (40) , 10957-10964. https://doi.org/10.1002/slct.202102242
  10. Vempuluru Navakoteswara Rao, Vijayarengan Preethi, Urupalli Bhargav, Parnapalle Ravi, Ashish Kumar, Marappan Sathish, Venkata Krishnan, Vemula Venkatramu, Murikinati Mamatha Kumari, Kakarla Raghava Reddy, Nagaraj P. Shetti, Tejraj M. Aminabhavi, Muthukonda Venkatakrishnan Shankar. Gram-scale synthesis of ZnS/NiO core-shell hierarchical nanostructures and their enhanced H2 production in crude glycerol and sulphide wastewater. Environmental Research 2021, 199 , 111323. https://doi.org/10.1016/j.envres.2021.111323
  11. Vempuluru Navakoteswara Rao, Parnapalle Ravi, Marappan Sathish, Manavalan Vijayakumar, Mohan Sakar, Mani Karthik, Subramanian Balakumar, Kakarla Raghava Reddy, Nagaraj P. Shetti, Tejraj M. Aminabhavi, Muthukonda Venkatakrishnan Shankar. Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges. Journal of Hazardous Materials 2021, 415 , 125588. https://doi.org/10.1016/j.jhazmat.2021.125588
  12. N.Ramesh Reddy, U. Bharagav, M.V. Shankar, P. Mohan Reddy, Kakarla Raghava Reddy, Nagaraj P. Shetti, Fernando Alonso-Marroquin, M. Mamatha Kumari, Tejraj M. Aminabhavi, Sang Woo Joo. Photocatalytic hydrogen production by ternary heterojunction composites of silver nanoparticles doped FCNT-TiO2. Journal of Environmental Management 2021, 286 , 112130. https://doi.org/10.1016/j.jenvman.2021.112130
  13. Navakoteswara Rao Vempuluru, Cheralathan Kanakkampalayam Krishnan, Ravi Parnapalli, Jayaramakrishnan Velusamy, Sathish Marappan, Sudhagar Pitchaimuthu, Mamathakumari Murikinati, Shankar Muthukonda Venkatakrishnan. Solar hydrogen generation from organic substance using earth abundant CuS–NiO heterojunction semiconductor photocatalyst. Ceramics International 2021, 47 (7) , 10206-10215. https://doi.org/10.1016/j.ceramint.2020.12.062
  14. Huizhen Zhang, Yuming Dong, Dandan Li, Guangli Wang, Yan Leng, Pingbo Zhang, Hongyan Miao, Xiuming Wu, Pingping Jiang, Yongfa Zhu. Photochemical synthesis of Ni-Ni(OH)2 synergistic cocatalysts hybridized with CdS nanorods for efficient photocatalytic hydrogen evolution. FlatChem 2021, 26 , 100232. https://doi.org/10.1016/j.flatc.2021.100232
  15. M. R. Karimi Estahbanati, Mehrzad Feilizadeh, Farid Attar, Maria C. Iliuta. Current developments and future trends in photocatalytic glycerol valorization: process analysis. Reaction Chemistry & Engineering 2021, 6 (2) , 197-219. https://doi.org/10.1039/D0RE00382D
  16. Xiaobin Liu, Huaqiang Zhuang. Recent progresses in photocatalytic hydrogen production: design and construction of Ni‐based cocatalysts. International Journal of Energy Research 2021, 45 (2) , 1480-1495. https://doi.org/10.1002/er.5970
  17. Sarah Farrukh, Xianfeng Fan, Kiran Mustafa, Arshad Hussain, Muhammad Ayoub, Mohammad Younas. Biomass Decomposition and Nanotechnology. 2021,,, 49-59. https://doi.org/10.1007/978-3-030-60402-8_5
  18. Yadala Venkata Divyasri, Nagappagari Lakshmana Reddy, Kiyoung Lee, M. Sakar, Vempuluru Navakoteswara Rao, Vemula Venkatramu, Muthukonda Venkatakrishnan Shankar, Nallagondu Chinna Gangi Reddy. Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. Environmental Pollution 2021, 269 , 116170. https://doi.org/10.1016/j.envpol.2020.116170
  19. Jae-Young Lee, Hong-Ki Lee. Preparation and characterization of ZnO nanorods grown on Pd-activated polyacrylonitrile (PAN) fiber. Materials Science and Engineering: B 2021, 263 , 114821. https://doi.org/10.1016/j.mseb.2020.114821
  20. Ba-Son Nguyen, Pham Thi Phan, Van-Huy Nguyen. Recent advances in sacrificial reagents toward sustainable light-driven photocatalytic hydrogen evolution. 2021,,, 219-251. https://doi.org/10.1016/B978-0-12-823007-7.00004-3
  21. Chingis Daulbayev, Fail Sultanov, Baglan Bakbolat, Olzhas Daulbayev. 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A Review. International Journal of Hydrogen Energy 2020, 45 (58) , 33325-33342. https://doi.org/10.1016/j.ijhydene.2020.09.101
  22. Chao-Wei Huang, Wei-Cheng Sin, Van-Huy Nguyen, Yu-Chung Wu, Wei-Yu Chen, Andrew C. Chien. Solvothermal Synthesis of Mesoporous TiO2 Using Sodium Dodecyl Sulfate for Photocatalytic Degradation of Methylene Blue. Topics in Catalysis 2020, 63 (11-14) , 1121-1130. https://doi.org/10.1007/s11244-020-01322-y
  23. Chao-Wei Huang, Ba-Son Nguyen, Jeffrey C.-S. Wu, Van-Huy Nguyen. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. International Journal of Hydrogen Energy 2020, 45 (36) , 18144-18159. https://doi.org/10.1016/j.ijhydene.2019.08.121
  24. M. B. Tahir, M. Sagir, Shabbir Muhammad, Saifeldin M. Siddeeg, Tahir Iqbal, A. M. Asiri, Mohsin Ijaz. Hierarchical [email protected] BiVO4 nanostructures for improved green energy production. Applied Nanoscience 2020, 10 (4) , 1183-1190. https://doi.org/10.1007/s13204-019-01180-5
  25. Chengxiong Dang, Shijie Wu, Guangxing Yang, Yonghai Cao, Hongjuan Wang, Feng Peng, Hao Yu. Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3. Journal of Energy Chemistry 2020, 43 , 90-97. https://doi.org/10.1016/j.jechem.2019.08.002
  26. Sandeep Kumar Lakhera, Bernaurdshaw Neppolian. Role of molecular oxygen on the synthesis of Ni(OH)2/TiO2 photocatalysts and its effect on solar hydrogen production activity. International Journal of Hydrogen Energy 2020, 45 (13) , 7627-7640. https://doi.org/10.1016/j.ijhydene.2019.10.142
  27. Xiqing Liu, Zhiping Zhou, Donglai Han, Tao Wang, Changchang Ma, Pengwei Huo, Yongsheng Yan. Interface engineered 2D/2D Ni(OH)2/Bi4Ti3O12 nanocomposites with higher charge transfer towards improving photocatalytic activity. Journal of Alloys and Compounds 2020, 816 , 152530. https://doi.org/10.1016/j.jallcom.2019.152530
  28. Lakshmana Reddy Nagappagari, Soumadri Samanta, Nidhi Sharma, Venugopala Rao Battula, Kamalakannan Kailasam. Synergistic effect of a noble metal free Ni(OH) 2 co-catalyst and a ternary ZnIn 2 S 4 /g-C 3 N 4 heterojunction for enhanced visible light photocatalytic hydrogen evolution. Sustainable Energy & Fuels 2020, 4 (2) , 750-759. https://doi.org/10.1039/C9SE00704K
  29. V. Navakoteswara Rao, T.J. Malu, K.K. Cheralathan, M. Sakar, Chaudhery Mustansar Hussain, M. Mamatha Kumari, M.V. Shankar. Emerging trends in photocatalytic transformation of biomass-derived glycerol into hydrogen fuel and value-added chemicals. 2020,,, 227-246. https://doi.org/10.1016/B978-0-12-819049-4.00017-9
  30. Chao-Wei Huang, Ba-Son Nguyen, Dai-Viet N. Vo, Sonil Nanda, Van-Huy Nguyen. Photocatalytic reforming for a sustainable hydrogen production over titania-based photocatalysts. 2020,,, 191-213. https://doi.org/10.1016/B978-0-12-819553-6.00008-8
  31. Paula Ribao, M. Alexandra Esteves, Vitor R. Fernandes, Maria J. Rivero, Carmen M. Rangel, Inmaculada Ortiz. Challenges arising from the use of TiO2/rGO/Pt photocatalysts to produce hydrogen from crude glycerol compared to synthetic glycerol. International Journal of Hydrogen Energy 2019, 44 (53) , 28494-28506. https://doi.org/10.1016/j.ijhydene.2018.09.148
  32. V.Navakoteswara Rao, N.Lakshmana Reddy, M.Mamatha Kumari, K.K. Cheralathan, P. Ravi, M. Sathish, B. Neppolian, Kakarla Raghava Reddy, Nagaraj P. Shetti, P. Prathap, Tejraj M. Aminabhavi, M.V. Shankar. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review. Journal of Environmental Management 2019, 248 , 109246. https://doi.org/10.1016/j.jenvman.2019.07.017
  33. Venkatesan Jayaraman, Baskaran Palanivel, Chinnadurai Ayappan, Muthamizhchelvan Chellamuthu, Alagiri Mani. CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants. Separation and Purification Technology 2019, 224 , 405-420. https://doi.org/10.1016/j.seppur.2019.05.047
  34. Enqi Bu, Ying Chen, Chao Wang, Zhengdong Cheng, Xianglong Luo, Riyang Shu, Jingtao Zhang, Mingzheng Liao, Zhiqiang Jiang, Qingbin Song. Hydrogen production from bio-derived biphasic photoreforming over a raspberry-like amphiphilic Ag2O-TiO2/SiO2 catalyst. Chemical Engineering Journal 2019, 370 , 646-657. https://doi.org/10.1016/j.cej.2019.03.259
  35. V. Preethi, M. Mamatha Kumari, N. Ramesh Reddy, U. Bhargav, K. K. Cheralathan, C. H. Shilpa Chakra, M. V. Shankar. Recent Progress in Photocatalytic Water Splitting by Nanostructured TiO 2 -Carbon Photocatalysts - Influence of Interfaces, Morphological Structures and Experimental Parameters. 2019,,, 23-55. https://doi.org/10.1002/9781119509868.ch2
  36. Nagappagari Lakshmanareddy, Vempuluru Navakoteswara Rao, Kanakkampalayam Krishnan Cheralathan, Ellappalayam Palanisamy Subramaniam, Muthukonda Venkatakrishnan Shankar. Pt/TiO2 nanotube photocatalyst – Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. Journal of Colloid and Interface Science 2019, 538 , 83-98. https://doi.org/10.1016/j.jcis.2018.11.077
  37. Rongchen Shen, Jun Xie, Quanjun Xiang, Xiaobo Chen, Jizhou Jiang, Xin Li. Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis 2019, 40 (3) , 240-288. https://doi.org/10.1016/S1872-2067(19)63294-8
  38. R. Shwetharani, M. Sakar, C. A. N. Fernando, Vassilis Binas, R. Geetha Balakrishna. Recent advances and strategies to tailor the energy levels, active sites and electron mobility in titania and its doped/composite analogues for hydrogen evolution in sunlight. Catalysis Science & Technology 2019, 9 (1) , 12-46. https://doi.org/10.1039/C8CY01395K
  39. Duoduo Gao, Huogen Yu, Ying Xu. Direct photoinduced synthesis and high H2-evolution performance of Bi-modified TiO2 photocatalyst in a Bi(III)-EG complex system. Applied Surface Science 2018, 462 , 623-632. https://doi.org/10.1016/j.apsusc.2018.08.061
  40. Ping Wang, Xiaoqing Yi, Yanggang Lu, Huogen Yu, Jiaguo Yu. In-situ synthesis of amorphous H2TiO3-modified TiO2 and its improved photocatalytic H2-evolution performance. Journal of Colloid and Interface Science 2018, 532 , 272-279. https://doi.org/10.1016/j.jcis.2018.07.139
  41. Rajendran Prabu, Karthik Peramaiah, Nallasamy Palanisami, Paolo P. Pescarmona, Bernaurdshaw Neppolian, Swaminathan Shanmugan. Non-covalent polyhedral oligomeric silsesquioxane-polyoxometalates as inorganic–organic–inorganic hybrid materials for visible-light photocatalytic splitting of water. Inorganic Chemistry Frontiers 2018, 5 (10) , 2666-2677. https://doi.org/10.1039/C8QI00449H
  42. Nagappagari Lakshmana Reddy, Vempuluru Navakoteswara Rao, Murkinati Mamatha Kumari, Raghava Reddy Kakarla, Parnapalle Ravi, Marappan Sathish, Mani Karthik, Shankar Muthukonda Venkatakrishnan, Inamuddin. Nanostructured semiconducting materials for efficient hydrogen generation. Environmental Chemistry Letters 2018, 16 (3) , 765-796. https://doi.org/10.1007/s10311-018-0722-y