Mesoporous TiO2 Films Fabricated Using Atmospheric Pressure Dielectric Barrier Discharge Jet

View Author Information
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States, and School of Chemical Engineering, Chonbuk National University, Jeon-ju 561-756, South Korea
* Corresponding author. E-mail: [email protected]
†Colorado State University.
‡Chonbuk National University.
Cite this: ACS Appl. Mater. Interfaces 2010, 2, 12, 3397–3400
Publication Date (Web):November 11, 2010
https://doi.org/10.1021/am100731w
Copyright © 2010 American Chemical Society
Article Views
1035
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

TiO2 nanoparticles were synthesized by a facile method of dielectric barrier discharge jet (DBD jet) for the dye-sensitized solar cell (DSSC) and other potential applications. DBD jet is utilized as a method for deposition of TiO2 nanoparticles with a 9 μm/min growth rate which is more than ×25 faster than reported previously. Their performance was compared with cells fabricated using commercial TiO2 nanoparticles (P25). The crystallinity and chemical bonding states of samples were characterized by XRD and XPS. Photoanodes fabricated by the DBD jet method resulted in approximately 50% higher photoconversion efficiency than ones prepared from P25 nanoparticles.

Supporting Information

ARTICLE SECTIONS
Jump To

Figure S1 shows the optical emission spectrum of Ar/O2/TiCl4 gases mixture at 30 W RF power (PDF). This material is available free of charge via the Internet at http://pubs.acs.org/.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 32 publications.

  1. Kamal Baba, Simon Bulou, Miguel Quesada-Gonzalez, Sébastien Bonot, Delphine Collard, Nicolas D. Boscher, and Patrick Choquet . Significance of a Noble Metal Nanolayer on the UV and Visible Light Photocatalytic Activity of Anatase TiO2 Thin Films Grown from a Scalable PECVD/PVD Approach. ACS Applied Materials & Interfaces 2017, 9 (47) , 41200-41209. https://doi.org/10.1021/acsami.7b10904
  2. Kamal Baba, Simon Bulou, Patrick Choquet, and Nicolas D. Boscher . Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma. ACS Applied Materials & Interfaces 2017, 9 (15) , 13733-13741. https://doi.org/10.1021/acsami.7b01398
  3. Hsiao-Wei Liu, Sheng-ping Liang, Ting-Jui Wu, Haoming Chang, Peng-Kai Kao, Cheng-Che Hsu, Jian-Zhang Chen, Pi-Tai Chou, and I-Chun Cheng . Rapid Atmospheric Pressure Plasma Jet Processed Reduced Graphene Oxide Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (17) , 15105-15112. https://doi.org/10.1021/am503217f
  4. Kiran P. Shejale, R. Krishnapriya, Harshala Patil, Devika Laishram, Pratyush Rawal, Rakesh K. Sharma. Recent advances in ultra-low temperature (sub-zero to 100 °C) synthesis, mechanism and applications of titania (TiO 2 ) nanoparticles. Materials Advances 2021, 2 (23) , 7502-7529. https://doi.org/10.1039/D1MA00942G
  5. Soumya Banerjee, Ek Adhikari, Pitambar Sapkota, Amal Sebastian, Sylwia Ptasinska. Atmospheric Pressure Plasma Deposition of TiO2: A Review. Materials 2020, 13 (13) , 2931. https://doi.org/10.3390/ma13132931
  6. Yu Xu, Yu Zhang, Linjun Li, Ke Ding, Ying Guo, Jianjun Shi, Xiaojiang Huang, Jing Zhang. Synergistic Effect of Plasma Discharge and Substrate Temperature in Improving the Crystallization of $$\hbox {TiO}_2$$ TiO 2 Film by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition. Plasma Chemistry and Plasma Processing 2019, 39 (4) , 937-947. https://doi.org/10.1007/s11090-019-09961-0
  7. Seongchan Kang, Rodolphe Mauchauffé, Yong Sung You, Se Youn Moon. Insights into the Role of Plasma in Atmospheric Pressure Chemical Vapor Deposition of Titanium Dioxide Thin Films. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-35154-4
  8. Hiroki Nagasawa, Jing Xu, Masakoto Kanezashi, Toshinori Tsuru. Atmospheric-pressure plasma-enhanced chemical vapor deposition of UV-shielding TiO2 coatings on transparent plastics. Materials Letters 2018, 228 , 479-481. https://doi.org/10.1016/j.matlet.2018.06.053
  9. Qianqian Chen, Qirong Liu, Alp Ozkan, Basab Chattopadhyay, Gilles Wallaert, Kitty Baert, Herman Terryn, Marie-Paule Delplancke- Ogletree, Yves Geerts, François Reniers. Atmospheric pressure dielectric barrier discharge synthesis of morphology-controllable TiO2 films with enhanced photocatalytic activity. Thin Solid Films 2018, 664 , 90-99. https://doi.org/10.1016/j.tsf.2018.08.025
  10. Yaoguang Yu, Xu Yang, Yanling Zhao, Xiangbin Zhang, Liang An, Miaoyan Huang, Gang Chen, Ruiqin Zhang. Engineering the Band Gap States of the Rutile TiO 2 (110) Surface by Modulating the Active Heteroatom. Angewandte Chemie 2018, 130 (28) , 8686-8690. https://doi.org/10.1002/ange.201803928
  11. Yaoguang Yu, Xu Yang, Yanling Zhao, Xiangbin Zhang, Liang An, Miaoyan Huang, Gang Chen, Ruiqin Zhang. Engineering the Band Gap States of the Rutile TiO 2 (110) Surface by Modulating the Active Heteroatom. Angewandte Chemie International Edition 2018, 57 (28) , 8550-8554. https://doi.org/10.1002/anie.201803928
  12. Yong Wang, Qianghua Yuan, Guiqin Yin, Yu Zhang, Jiaojiao Li, Yadong Zhang, Yang Li. A new method for deposition nitrogen-doped TiO2 nanofibers with mixed phases of anatase and rutile. Surface and Interface Analysis 2017, 49 (10) , 967-972. https://doi.org/10.1002/sia.6253
  13. Qianqian Chen, Qirong Liu, Julie Hubert, Weide Huang, Kitty Baert, Gilles Wallaert, Herman Terryn, Marie-Paule Delplancke-Ogletree, François Reniers. Deposition of photocatalytic anatase titanium dioxide films by atmospheric dielectric barrier discharge. Surface and Coatings Technology 2017, 310 , 173-179. https://doi.org/10.1016/j.surfcoat.2016.12.077
  14. Yong Wang, Qianghua Yuan, Guiqin Yin, Yu Zhang, Yadong Zhang, Yang Li, Jiaojiao Li, Tao Wang, Shuyi Ma. Synthesis of Mixed-Phase TiO2 Nanopowders Using Atmospheric Pressure Plasma Jet Driven by Dual-Frequency Power Sources. Plasma Chemistry and Plasma Processing 2016, 36 (6) , 1471-1484. https://doi.org/10.1007/s11090-016-9746-x
  15. Ivan Gordeev, Milan Šimek, Václav Prukner, Anna Artemenko, Jaroslav Kousal, Daniil Nikitin, Andrei Choukourov, Hynek Biederman. Deposition of Poly(Ethylene Oxide)-Like Plasma Polymers on Inner Surfaces of Cavities by Means of Atmospheric-Pressure SDBD-Based Jet. Plasma Processes and Polymers 2016, 13 (8) , 823-833. https://doi.org/10.1002/ppap.201500214
  16. Jian-Zhang Chen, Ching Wang, Cheng-Che Hsu, I-Chun Cheng. Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet. Carbon 2016, 98 , 34-40. https://doi.org/10.1016/j.carbon.2015.10.078
  17. Stéphanie Collette, Julie Hubert, Abdelkrim Batan, Kitty Baert, Marc Raes, Isabelle Vandendael, Alain Daniel, Catherine Archambeau, Herman Terryn, François Reniers. Photocatalytic TiO2 thin films synthesized by the post-discharge of an RF atmospheric plasma torch. Surface and Coatings Technology 2016, 289 , 172-178. https://doi.org/10.1016/j.surfcoat.2016.01.049
  18. Wei-Yang Liao, Yao-Jhen Yang, Chun-Ming Hsu, Cheng-Che Hsu, I-Chun Cheng, Jian-Zhang Chen. Atmospheric-pressure-plasma-jet sintered dual-scale porous TiO 2 using an economically favorable NaCl solution. Journal of Power Sources 2015, 281 , 252-257. https://doi.org/10.1016/j.jpowsour.2015.01.160
  19. Tsung-Han Wu, I-Chun Cheng, Cheng-Che Hsu, Jian-Zhang Chen. UV photocurrent responses of ZnO and MgZnO/ZnO processed by atmospheric pressure plasma jets. Journal of Alloys and Compounds 2015, 628 , 68-74. https://doi.org/10.1016/j.jallcom.2014.11.219
  20. Jian-Zhang Chen, Cheng-Che Hsu, Ching Wang, Wei-Yang Liao, Chih-Hung Wu, Ting-Jui Wu, Hsiao-Wei Liu, Haoming Chang, Shao-Tzu Lien, Hsin-Chieh Li, Chun-Ming Hsu, Peng-Kai Kao, Yao-Jhen Yang, I-Chun Cheng. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices. Coatings 2015, 5 (1) , 26-38. https://doi.org/10.3390/coatings5010026
  21. Xue Jiang, Chenghui Li, Zhou Long, Xiandeng Hou. Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO 2 in atmospheric ambient temperature dielectric barrier discharge. Analytical Methods 2015, 7 (2) , 400-404. https://doi.org/10.1039/C4AY02194K
  22. Chia-Yun Chou, Haoming Chang, Hsiao-Wei Liu, Yao-Jhen Yang, Cheng-Che Hsu, I-Chun Cheng, Jian-Zhang Chen. Atmospheric-pressure-plasma-jet processed nanoporous TiO 2 photoanodes and Pt counter-electrodes for dye-sensitized solar cells. RSC Advances 2015, 5 (57) , 45662-45667. https://doi.org/10.1039/C5RA05014F
  23. Kazuo Shimizu, Shogo Kaneta, Marius Blajan, Kenta Ogi, Akinori Konno. Surface modification of dye-sensitized solid-state solar cells by atmospheric-pressure plasma jet. Japanese Journal of Applied Physics 2014, 53 (11S) , 11RF02. https://doi.org/10.7567/JJAP.53.11RF02
  24. Nicolas D. Boscher, Sébastien Olivier, Rémy Maurau, Simon Bulou, Thierry Sindzingre, Thierry Belmonte, Patrick Choquet. Photocatalytic anatase titanium dioxide thin films deposition by an atmospheric pressure blown arc discharge. Applied Surface Science 2014, 311 , 721-728. https://doi.org/10.1016/j.apsusc.2014.05.145
  25. K Shimizu, S Kaneta, M Blajan, K Ogi, A Konno. Surface modification of dye-sensitized solid-state solar cells by plasma jet. Journal of Physics: Conference Series 2014, 518 , 012024. https://doi.org/10.1088/1742-6596/518/1/012024
  26. Hsin-Han Huang, Haoming Chang, Hsiao-Wei Liu, Ching-Wen Hsu, I-Chung Chiu, Mao-Ying Teng, Hong-Jen Lai, I-Chun Cheng, Jian-Zhang Chen. Plasma-etched nanoporous TiO 2 using Ag nanoparticle masks: application for photoanodes of dye-sensitized solar cells. Materials Research Express 2014, 1 (2) , 025505. https://doi.org/10.1088/2053-1591/1/2/025505
  27. Zhi-Guang Sun, Xiao-Song Li, Xiaobing Zhu, Xiao-Qing Deng, Da-Lei Chang, Ai-Min Zhu. Facile and Fast Deposition of Amorphous TiO 2 Film under Atmospheric Pressure and at Room Temperature, and its High Photocatalytic Activity under UV-C Light. Chemical Vapor Deposition 2014, 20 (1-2-3) , 8-13. https://doi.org/10.1002/cvde.201307088
  28. Haoming Chang, Yao-Jhen Yang, Chun-Ming Hsu, Cheng-Che Hsu, I-Chun Cheng, Jian-Zhang Chen. Atmospheric-Pressure-Plasma-Jet Particulate TiO 2 Scattering Layer Deposition Processes for Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology 2014, 3 (10) , Q177-Q181. https://doi.org/10.1149/2.0021410jss
  29. Hui Xia, Ronghui Zhou, Chengbin Zheng, Peng Wu, Yunfei Tian, Xiandeng Hou. Solution-free, in situ preparation of nano/micro CuO/ZnO in dielectric barrier discharge for sensitive cataluminescence sensing of acetic acid. The Analyst 2013, 138 (13) , 3687. https://doi.org/10.1039/c3an00407d
  30. Lanbo Di, Xiaosong Li, Tianliang Zhao, Dalei Chang, Qianqian Liu, Aimin Zhu. Tuning Effect of N 2 on Atmospheric-Pressure Cold Plasma CVD of TiO 2 Photocatalytic Films. Plasma Science and Technology 2013, 15 (1) , 64-69. https://doi.org/10.1088/1009-0630/15/1/11
  31. Lan-Bo Di, Chuan Shi, Xiao-Song Li, Jing-Lin Liu, Ai-Min Zhu. Uniformity, Structure, and Photocatalytic Activity of TiO 2 Films Deposited by Atmospheric-Pressure Linear Cold Plasma. Chemical Vapor Deposition 2012, 18 (10-12) , 309-314. https://doi.org/10.1002/cvde.201207007
  32. Da-Lei Chang, Xiao-Song Li, Tian-Liang Zhao, Jin-Hua Yang, Ai-Min Zhu. Non-thermal Effect of Atmospheric-Pressure RF Cold Plasma on Photocatalytic Activity of As-deposited TiO2 Film. Chemical Vapor Deposition 2012, 18 (4-6) , 121-125. https://doi.org/10.1002/cvde.201106939