RETURN TO ISSUEPREVResearch ArticleNEXT

Vertically Oriented Iron Oxide Films Produced by Hydrothermal Process: Effect of Thermal Treatment on the Physical Chemical Properties

View Author Information
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil
*Address: 166 Rua Santa Adélia, 09210-170, Santo André, SP, Brazil. Phone: +55 11 4996 8353. E-mail: [email protected] and [email protected]
Cite this: ACS Appl. Mater. Interfaces 2012, 4, 10, 5515–5523
Publication Date (Web):September 19, 2012
https://doi.org/10.1021/am301425e
Copyright © 2012 American Chemical Society
Article Views
1377
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Our study describes the influence of the thermal treatment on the fundamental properties of the vertical oriented iron oxide nanorods synthesized under hydrothermal condition onto a conductor substrate. X-ray diffraction and X-ray absorption near edge structure spectra were used to investigate the phase evolution from iron oxyhydroxide (β-FeOOH) to pure hematite phase. The formation of nanorods distributed along of substrate was observed by top-view SEM images and the rod growth preferentially oriented at the highly conductive (001) basal plane of hematite, perpendicular to the substrate. Light absorption capacity increases with the temperature of treatment and the electronic transitions (direct and indirect electronic transition) were estimated from this result. From the electrochemical measurement, the hematite/electrolyte interface was evaluated. These findings demonstrated that the temperature plays an important role on the hematite (structural, morphological, and catalytic) properties and that many influences must work in great harmony in order to produce a promising hematite photoanode.

Supporting Information

ARTICLE SECTIONS
Jump To

More details about the X-ray diffraction data, optical band gap calculation, electrochemical curves at different pH and photoelectrochemical measured under dark and illuminated conditions. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 45 publications.

  1. Aryane Tofanello, Andre L. M. Freitas, Waldemir M. Carvalho, Jr., Turkka Salminen, Tapio Niemi, Flavio L. Souza. Hematite Surface Modification toward Efficient Sunlight-Driven Water Splitting Activity: The Role of Gold Nanoparticle Addition. The Journal of Physical Chemistry C 2020, 124 (11) , 6171-6179. https://doi.org/10.1021/acs.jpcc.9b11966
  2. Yongpeng Liu, Florian Le Formal, Florent Boudoire, Néstor Guijarro. Hematite Photoanodes for Solar Water Splitting: A Detailed Spectroelectrochemical Analysis on the pH-Dependent Performance. ACS Applied Energy Materials 2019, 2 (9) , 6825-6833. https://doi.org/10.1021/acsaem.9b01261
  3. Aldona Jelinska, Krzysztof Bienkowski, Michal Jadwiszczak, Marcin Pisarek, Marcin Strawski, Dominik Kurzydlowski, Renata Solarska, Jan Augustynski. Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing. ACS Catalysis 2018, 8 (11) , 10573-10580. https://doi.org/10.1021/acscatal.8b03497
  4. Pradip Basnet, George K. Larsen, Ravirajsinh P. Jadeja, Yen-Con Hung, and Yiping Zhao . α-Fe2O3 Nanocolumns and Nanorods Fabricated by Electron Beam Evaporation for Visible Light Photocatalytic and Antimicrobial Applications. ACS Applied Materials & Interfaces 2013, 5 (6) , 2085-2095. https://doi.org/10.1021/am303017c
  5. C. X. Kronawitter, I. Zegkinoglou, C. Rogero, J.-H. Guo, S. S. Mao, F. J. Himpsel, and L. Vayssieres . On the Interfacial Electronic Structure Origin of Efficiency Enhancement in Hematite Photoanodes. The Journal of Physical Chemistry C 2012, 116 (43) , 22780-22785. https://doi.org/10.1021/jp308918e
  6. Andre L. M. Freitas, Dereck N. F. Muche, Edson R. Leite, Flavio L. Souza. Interface engineering of nanoceramic hematite photoelectrode for solar energy conversion. Journal of the American Ceramic Society 2020, 103 (12) , 6833-6846. https://doi.org/10.1111/jace.17390
  7. Karen C. Bedin, Andre L. M. Freitas, Aryane Tofanello, Ingrid Rodríguez‐Gutiérrez, Flavio L. Souza. Revealing the synergy of Sn insertion in hematite for next‐generation solar water splitting nanoceramics. International Journal of Ceramic Engineering & Science 2020, 2 (5) , 204-227. https://doi.org/10.1002/ces2.10062
  8. Ruby Phul, M. A. Majeed Khan, Meryam Sardar, Jahangeer Ahmed, Tokeer Ahmad. Multifunctional Electrochemical Properties of Synthesized Non-Precious Iron Oxide Nanostructures. Crystals 2020, 10 (9) , 751. https://doi.org/10.3390/cryst10090751
  9. A. Tofanello, Z. Diao, E. Djatoubai, J. Z. Su, S. H. Shen, F. L. Souza, L. Vayssieres. Engineering hematite/plasmonic nanoparticle interfaces for efficient photoelectrochemical water splitting. Journal of Applied Physics 2020, 128 (6) , 063103. https://doi.org/10.1063/5.0015519
  10. G. S. Costa, M. J. S. Costa, H. G. Oliveira, L. C. B. Lima, G. E. Luz, L. S. Cavalcante, R. S. Santos. Effect of the applied potential condition on the photocatalytic properties of Fe2O3|WO3 heterojunction films. Journal of Inorganic and Organometallic Polymers and Materials 2020, 30 (8) , 2851-2862. https://doi.org/10.1007/s10904-019-01429-0
  11. Somayeh Mehrabani, Rahman Bikas, Zahra Zand, Younes Mousazade, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Water splitting by a pentanuclear iron complex. International Journal of Hydrogen Energy 2020, 45 (35) , 17434-17443. https://doi.org/10.1016/j.ijhydene.2020.04.249
  12. Gul Rahman, Zainab Najaf, Anwar ul Haq Ali Shah, Shabeer Ahmad Mian. Investigation of the structural, optical, and photoelectrochemical properties of α-Fe2O3 nanorods synthesized via a facile chemical bath deposition. Optik 2020, 200 , 163454. https://doi.org/10.1016/j.ijleo.2019.163454
  13. Nur Maisarah Abdul Rashid, Noor Azrina Talik, Wee Siong Chiu, Khiew Poi Sim, Hideki Nakajima, Guan-Ting Pan, Thomas C.-K. Yang, Saadah Abdul Rahman. Influence of different morphology of carbon nanostructures on the structural and optical properties of decorated single crystalline hematite nanocubes for photoelectrochemical applications. Applied Surface Science 2019, 498 , 143845. https://doi.org/10.1016/j.apsusc.2019.143845
  14. Yongcai Qiu, Zhenghui Pan, Haining Chen, Daiqi Ye, Lin Guo, Zhiyong Fan, Shihe Yang. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin 2019, 64 (18) , 1348-1380. https://doi.org/10.1016/j.scib.2019.07.017
  15. Saulo Amaral Carminati, André do Nascimento Barbosa, Andre Luiz Martins de Freitas, Fernando Lázaro Freire, Flávio Leandro Souza, Ana Flávia Nogueira. Unraveling the role of single layer graphene as overlayer on hematite photoanodes. Journal of Catalysis 2019, 372 , 109-118. https://doi.org/10.1016/j.jcat.2019.02.030
  16. Hossein Bemana, Sahar Rashid-Nadimi. Incorporation of NiO electrocatalyst with α-Fe2O3 photocatalyst for enhanced and stable photoelectrochemical water splitting. Surfaces and Interfaces 2019, 14 , 184-191. https://doi.org/10.1016/j.surfin.2018.12.011
  17. Gul Rahman, Oh-Shim Joo, Sang Youn Chae, Anwar-ul-Haq Ali Shah, Shabeer Ahmad Mian. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3–WO3 Composite Synthesized by Single-Step Hydrothermal Method. Journal of Electronic Materials 2018, 47 (4) , 2359-2365. https://doi.org/10.1007/s11664-017-6059-7
  18. Flavio L Souza, Edson R Leite. Latest Advances on the Columnar Nanostructure for Solar Water Splitting. 2018,,, 141-160. https://doi.org/10.1007/978-3-319-62800-4_4
  19. Guofeng Zhang, Qing Qin, Wenhao Luo, Yanxia Liu, Cen Jin, Jing Hao, Jing Zhang, Wenjun Zheng. A combination–decomposition method to synthesize two-dimensional metal sulfide–amine hybrid nanosheets: a highly efficient Fe-based water oxidation electrocatalyst. Chemical Communications 2018, 54 (36) , 4617-4620. https://doi.org/10.1039/C8CC00895G
  20. FLAVIO L. SOUZA. Sunlight-driven water splitting using hematite nanorod photoelectrodes. Anais da Academia Brasileira de Ciências 2018, 90 (1 suppl 1) , 745-762. https://doi.org/10.1590/0001-3765201820170581
  21. Andre L M Freitas, Flavio L Souza. Synergetic effect of Sn addition and oxygen-deficient atmosphere to fabricate active hematite photoelectrodes for light-induced water splitting. Nanotechnology 2017, 28 (45) , 454002. https://doi.org/10.1088/1361-6528/aa8b5d
  22. Chakadola Panda, Prashanth W. Menezes, Carsten Walter, Shenglai Yao, Matthias E. Miehlich, Vitaly Gutkin, Karsten Meyer, Matthias Driess. From a Molecular 2Fe-2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angewandte Chemie 2017, 129 (35) , 10642-10646. https://doi.org/10.1002/ange.201706196
  23. Chakadola Panda, Prashanth W. Menezes, Carsten Walter, Shenglai Yao, Matthias E. Miehlich, Vitaly Gutkin, Karsten Meyer, Matthias Driess. From a Molecular 2Fe-2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angewandte Chemie International Edition 2017, 56 (35) , 10506-10510. https://doi.org/10.1002/anie.201706196
  24. Longzhu Li, Changhai Liu, Yangyang Qiu, Naotoshi Mitsuzak, Zhidong Chen. The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. Journal of Alloys and Compounds 2017, 696 , 980-987. https://doi.org/10.1016/j.jallcom.2016.12.101
  25. Nathalie Minko Ito, Waldemir Moura Carvalho, Dereck Nills Ferreira Muche, Ricardo Hauch Ribeiro Castro, Gustavo Martini Dalpian, Flavio Leandro Souza. High temperature activation of hematite nanorods for sunlight driven water oxidation reaction. Physical Chemistry Chemical Physics 2017, 19 (36) , 25025-25032. https://doi.org/10.1039/C7CP04827K
  26. Fabio Ribeiro Negreiros, Luana Sucupira Pedroza, Flavio Leandro Souza, Gustavo Martini Dalpian. Surface Fe vacancy defects on haematite and their role in light-induced water splitting in artificial photosynthesis. Physical Chemistry Chemical Physics 2017, 19 (46) , 31410-31417. https://doi.org/10.1039/C7CP06558B
  27. Jiankang Wang, Chunxiang Li, Zhongping Yao, Min Yang, Yajing Wang, Qixing Xia, Zhaohua Jiang. Preparation of Fenton-like coating catalyst on Q235 carbon steel by plasma electrolytic oxidation in silicate electrolyte. Surface and Coatings Technology 2016, 307 , 1315-1321. https://doi.org/10.1016/j.surfcoat.2016.05.065
  28. Waldemir M. Carvalho, Flavio L. Souza. Hematite Surface Activation by Chemical Addition of Tin Oxide Layer. ChemPhysChem 2016, 17 (17) , 2710-2717. https://doi.org/10.1002/cphc.201600316
  29. Jiankang Wang, Zhongping Yao, Min Yang, Yajing Wang, Qixing Xia, Zhaohua Jiang. A Fe3O4/FeAl2O4 composite coating via plasma electrolytic oxidation on Q235 carbon steel for Fenton-like degradation of phenol. Environmental Science and Pollution Research 2016, 23 (15) , 14927-14936. https://doi.org/10.1007/s11356-016-6613-5
  30. M. Luisa Fdez‐Gubieda, Ana García‐Prieto, Javier Alonso, Carlo Meneghini. X‐Ray Absorption Fine Structure Spectroscopy in Fe Oxides and Oxyhydroxides. 2016,,, 397-422. https://doi.org/10.1002/9783527691395.ch17
  31. Min Wang, Hongyan Wang, Quanping Wu, Chuangli Zhang, Song Xue. Morphology regulation and surface modification of hematite nanorods by aging in phosphate solutions for efficient PEC water splitting. International Journal of Hydrogen Energy 2016, 41 (15) , 6211-6219. https://doi.org/10.1016/j.ijhydene.2016.01.168
  32. Waldemir M. Carvalho-Jr, Flavio L. Souza. Thermal enhancement of water affinity on the surface of undoped hematite photoelectrodes. Solar Energy Materials and Solar Cells 2016, 144 , 395-404. https://doi.org/10.1016/j.solmat.2015.09.028
  33. Junyi Liu, Lai Mun Wong, Gurudayal Gurudayal, Lydia Helena Wong, Sing Yang Chiam, Sam Fong Yau Li, Yi Ren. Immobilization of dye pollutants on iron hydroxide coated substrates: kinetics, efficiency and the adsorption mechanism. Journal of Materials Chemistry A 2016, 4 (34) , 13280-13288. https://doi.org/10.1039/C6TA03088B
  34. André L.M. Freitas, Waldemir M. Carvalho, Flavio L. Souza. Enhanced water oxidation efficiency of hematite thin films by oxygen-deficient atmosphere. Journal of Materials Research 2015, 30 (23) , 3595-3604. https://doi.org/10.1557/jmr.2015.353
  35. Andebet Gedamu Tamirat, Wei-Nien Su, Amare Aregahegn Dubale, Chun-Jern Pan, Hung-Ming Chen, Delele Worku Ayele, Jyh-Fu Lee, Bing-Joe Hwang. Efficient photoelectrochemical water splitting using three dimensional urchin-like hematite nanostructure modified with reduced graphene oxide. Journal of Power Sources 2015, 287 , 119-128. https://doi.org/10.1016/j.jpowsour.2015.04.042
  36. Ramesh Rajendran, Zahira Yaakob, Manoj Pudukudy, Muhammad Syukri Abd Rahaman, Kamaruzzaman Sopian. Photoelectrochemical water splitting performance of vertically aligned hematite nanoflakes deposited on FTO by a hydrothermal method. Journal of Alloys and Compounds 2014, 608 , 207-212. https://doi.org/10.1016/j.jallcom.2014.04.105
  37. Huayun Liu, Huanhuan Wang, Shouzhu Li. The role of annealing temperature in enhancing the photocatalytic activity of nitrogen-doped hexaniobate. Materials Science in Semiconductor Processing 2014, 25 , 294-300. https://doi.org/10.1016/j.mssp.2014.01.015
  38. Lorenzo Mino, Elisa Borfecchia, Chiara Groppo, Daniele Castelli, Gema Martinez-Criado, Richard Spiess, Carlo Lamberti. Iron oxidation state variations in zoned micro-crystals measured using micro-XANES. Catalysis Today 2014, 229 , 72-79. https://doi.org/10.1016/j.cattod.2013.11.002
  39. Waldemir Moura de Carvalho, Flavio Leandro Souza. Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods. Journal of Materials Research 2014, 29 (1) , 16-28. https://doi.org/10.1557/jmr.2013.302
  40. Allan Moreira Xavier, Fabio Furlan Ferreira, Flavio Leandro Souza. Morphological and structural evolution from akaganeite to hematite of nanorods monitored by ex situ synchrotron X-ray powder diffraction. RSC Adv. 2014, 4 (34) , 17753-17759. https://doi.org/10.1039/C3RA42753F
  41. Tina Harifi, Majid Montazer. In situ synthesis of iron oxide nanoparticles on polyester fabric utilizing color, magnetic, antibacterial and sono-Fenton catalytic properties. J. Mater. Chem. B 2014, 2 (3) , 272-282. https://doi.org/10.1039/C3TB21445A
  42. Stephen J. Archibald, Stephen L. Atkin, Wim Bras, Alberto Diego-Taboada, Grahame Mackenzie, J. Frederick W. Mosselmans, Sergey Nikitenko, Paul D. Quinn, Michael F. Thomas, Nigel A. Young. How does iron interact with sporopollenin exine capsules? An X-ray absorption study including microfocus XANES and XRF imaging. J. Mater. Chem. B 2014, 2 (8) , 945-959. https://doi.org/10.1039/C3TB21523G
  43. Ying Zhang, Yanrong Zhang, Jue Tan. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light. Journal of Alloys and Compounds 2013, 574 , 383-390. https://doi.org/10.1016/j.jallcom.2013.05.179
  44. Waldemir Moura Carvalho, Diogo Volpati, Vitor A. Nunes Carvalho, Ricardo F. Aroca, Carlos J. L. Constantino, Flavio L. Souza. Large-Area Plasmonic Substrate of Silver-Coated Iron Oxide Nanorod Arrays for Plasmon-Enhanced Spectroscopy. ChemPhysChem 2013, 14 (9) , 1871-1876. https://doi.org/10.1002/cphc.201300054
  45. Gul Rahman, Oh-Shim Joo. Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. Journal of Materials Chemistry A 2013, 1 (18) , 5554. https://doi.org/10.1039/c3ta10553a