RETURN TO ISSUEPREVResearch ArticleNEXT

Reactive-Template Fabrication of Porous SnO2 Nanotubes and Their Remarkable Gas-Sensing Performance

View Author Information
Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
*E-mail: [email protected] (J.Z.); [email protected] (B.C.). Tel: 86-531-89736292.
Cite this: ACS Appl. Mater. Interfaces 2013, 5, 16, 7893–7898
Publication Date (Web):July 23, 2013
https://doi.org/10.1021/am4019884
Copyright © 2013 American Chemical Society
Article Views
2291
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

A facile reactive-template strategy has been developed to fabricate porous SnO2 nanotubes using MnO2 nanorods as the sacrificial template. The formation of nanotubes is based on the redox reaction mechanism, which requires no post-treatment of the MnO2 templates. The morphological and structural characteristics of the samples have been systematically characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal-gravimetric (TG), and N2 adsorption–desorption techniques. A gas-sensor device was constructed using as-prepared SnO2 nanotubes and was tested for its ability to detect ethanol and some other compounds. Because of the porous structure and relative large specific surface area, the SnO2 nanotube sensor manifests remarkably improved sensing performance, including fast response recovery, high sensitivity, and excellent repeatability, suggesting the promising application of the SnO2 nanotube materials.

Cited By


This article is cited by 137 publications.

  1. Koichi Suematsu, Yuki Hiroyama, Wataru Harano, Wataru Mizukami, Ken Watanabe, Kengo Shimanoe. Double-Step Modulation of the Pulse-Driven Mode for a High-Performance SnO2 Micro Gas Sensor: Designing the Particle Surface via a Rapid Preheating Process. ACS Sensors 2020, 5 (11) , 3449-3456. https://doi.org/10.1021/acssensors.0c01365
  2. Shubham Yadav, Archa Nair, Kusuma Urs MB, Vinayak B. Kamble. Protonic Titanate Nanotube–Reduced Graphene Oxide Composites for Hydrogen Sensing. ACS Applied Nano Materials 2020, 3 (10) , 10082-10093. https://doi.org/10.1021/acsanm.0c02077
  3. Koichi Suematsu, Tokiharu Oyama, Wataru Mizukami, Yuki Hiroyama, Ken Watanabe, Kengo Shimanoe. Selective Detection of Toluene Using Pulse-Driven SnO2 Micro Gas Sensors. ACS Applied Electronic Materials 2020, 2 (9) , 2913-2920. https://doi.org/10.1021/acsaelm.0c00547
  4. Viola O. Okechukwu, Vuyo Mavumengwana, Ivo A. Hümmelgen, Messai A. Mamo. Concomitant in Situ FTIR and Impedance Measurements To Address the 2-Methylcyclopentanone Vapor-Sensing Mechanism in MnO2–Polymer Nanocomposites. ACS Omega 2019, 4 (5) , 8324-8333. https://doi.org/10.1021/acsomega.8b03589
  5. Tiantian Ma, Lingli Zheng, Yingqiang Zhao, Yongshan Xu, Jun Zhang, Xianghong Liu. Highly Porous Double-Shelled Hollow Hematite Nanoparticles for Gas Sensing. ACS Applied Nano Materials 2019, 2 (4) , 2347-2357. https://doi.org/10.1021/acsanm.9b00228
  6. Jiangwei Ma, Huiqing Fan, Xiaohu Ren, Chao Wang, Hailin Tian, Guangzhi Dong, Weijia Wang. A Simple Absorbent Cotton Biotemplate to Fabricate SnO2 Porous Microtubules and Their Gas-Sensing Properties for Chlorine. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 147-155. https://doi.org/10.1021/acssuschemeng.8b02235
  7. Wei Yang, Liang Feng, Saihuan He, Lingyue Liu, Shantang Liu. Density Gradient Strategy for Preparation of Broken In2O3 Microtubes with Remarkably Selective Detection of Triethylamine Vapor. ACS Applied Materials & Interfaces 2018, 10 (32) , 27131-27140. https://doi.org/10.1021/acsami.8b09375
  8. Yuelan Zhang, Liping Li, Saren Ao, Jianghao Wang, Guangshe Li. Interfacial Doping of Heteroatom in Porous SnO2 for Highly Sensitive Surface Properties. ACS Omega 2018, 3 (6) , 6988-6997. https://doi.org/10.1021/acsomega.8b00725
  9. Koichi Suematsu, Kosuke Watanabe, Akihiro Tou, Yongjiao Sun, and Kengo Shimanoe . Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles. Analytical Chemistry 2018, 90 (3) , 1959-1966. https://doi.org/10.1021/acs.analchem.7b04048
  10. Won Seok Chi, Chang Soo Lee, Hu Long, Myoung Hwan Oh, Alex Zettl, Carlo Carraro, Jong Hak Kim, and Roya Maboudian . Direct Organization of Morphology-Controllable Mesoporous SnO2 Using Amphiphilic Graft Copolymer for Gas-Sensing Applications. ACS Applied Materials & Interfaces 2017, 9 (42) , 37246-37253. https://doi.org/10.1021/acsami.7b07823
  11. Tetsuya Kida, Koichi Suematsu, Kazuyoshi Hara, Kiyoshi Kanie, and Atsushi Muramatsu . Ultrasensitive Detection of Volatile Organic Compounds by a Pore Tuning Approach Using Anisotropically Shaped SnO2 Nanocrystals. ACS Applied Materials & Interfaces 2016, 8 (51) , 35485-35495. https://doi.org/10.1021/acsami.6b13006
  12. Kui Niu, Liman Liang, Fei Peng, Fan Zhang, Yao Gu, and Hongyan Tian . Chelating-Template-Assisted in Situ Encapsulation of Zinc Ferrite Inside Silica Mesopores for Enhanced Gas-Sensing Characteristics. ACS Applied Materials & Interfaces 2016, 8 (37) , 24682-24691. https://doi.org/10.1021/acsami.6b06689
  13. Koichi Suematsu, Miyuki Sasaki, Nan Ma, Masayoshi Yuasa, and Kengo Shimanoe . Antimony-Doped Tin Dioxide Gas Sensors Exhibiting High Stability in the Sensitivity to Humidity Changes. ACS Sensors 2016, 1 (7) , 913-920. https://doi.org/10.1021/acssensors.6b00323
  14. Han Gil Na, Sun-Woo Choi, Suyoung Park, Seon Jae Hwang, Myeong Soo Cho, Youngwook Noh, Hee Jung Kim, Dongjin Lee, and Changhyun Jin . One-to-One Correspondence Growth Mechanism of Gourd-like SiOx Nanotubes. Crystal Growth & Design 2016, 16 (6) , 3081-3086. https://doi.org/10.1021/acs.cgd.5b01473
  15. Hu Long, Anna Harley-Trochimczyk, Tianyi He, Thang Pham, Zirong Tang, Tielin Shi, Alex Zettl, William Mickelson, Carlo Carraro, and Roya Maboudian . In Situ Localized Growth of Porous Tin Oxide Films on Low Power Microheater Platform for Low Temperature CO Detection. ACS Sensors 2016, 1 (4) , 339-343. https://doi.org/10.1021/acssensors.5b00302
  16. Yuelan Zhang, Liping Li, Jing Zheng, Qi Li, Ying Zuo, Errui Yang, and Guangshe Li . Two-Step Grain-Growth Kinetics of Sub-7 nm SnO2 Nanocrystal under Hydrothermal Condition. The Journal of Physical Chemistry C 2015, 119 (33) , 19505-19512. https://doi.org/10.1021/acs.jpcc.5b05282
  17. Lei Li, Shuijian He, Minmin Liu, Chunmei Zhang, and Wei Chen . Three-Dimensional Mesoporous Graphene Aerogel-Supported SnO2 Nanocrystals for High-Performance NO2 Gas Sensing at Low Temperature. Analytical Chemistry 2015, 87 (3) , 1638-1645. https://doi.org/10.1021/ac503234e
  18. Xiaoli Zheng, Yinyun Lv, Qin Kuang, Zonglong Zhu, Xia Long, and Shihe Yang . Close-Packed Colloidal SiO2 as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials 2014, 26 (19) , 5700-5709. https://doi.org/10.1021/cm5025475
  19. Rosmalini Ab Kadir, Zhenyu Li, Abu Z. Sadek, Rozina Abdul Rani, Ahmad Sabirin Zoolfakar, Matthew R. Field, Jian Zhen Ou, Adam F. Chrimes, and Kourosh Kalantar-zadeh . Electrospun Granular Hollow SnO2 Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures. The Journal of Physical Chemistry C 2014, 118 (6) , 3129-3139. https://doi.org/10.1021/jp411552z
  20. Wang-De Lin, Rui-Yu Hong, Ming-hong Chuang, Ren-Jang Wu, Murthy Chavali. Enhanced performance of humidity sensor based on Gr/hollow sphere ZrO2 nanocomposites. Sensors and Actuators A: Physical 2021, 330 , 112872. https://doi.org/10.1016/j.sna.2021.112872
  21. Viola O. Okechukwu, Vuyo Mavumengwana, Messai A. Mamo. A direct relationship between the sensitivity of the sensors and the intensity of IR CO 2 peak in in situ FTIR-LCR meter chemi-impedance SnO 2 –carbon nanoparticles polymer-based sensors in the detection of organic compounds vapor. AIP Advances 2021, 11 (10) , 105203. https://doi.org/10.1063/5.0063604
  22. Ting Han, Shuyi Ma, Xiaohui Xu, Pengfei Cao, Wangwang Liu, Xiaoli Xu, Shitu Pei. Electrospinning synthesis, crystal structure, and ethylene glycol sensing properties of orthorhombic SmBO3 (B Fe, Co) perovskites. Journal of Alloys and Compounds 2021, 876 , 160211. https://doi.org/10.1016/j.jallcom.2021.160211
  23. Der-Yuh Lin, Hung-Pin Hsu, Han-Sheng Hu, Yu-Cheng Yang, Chia-Feng Lin, Wei Zhou. Humidity Sensing and Photodetection Based on Tin Disulfide Nanosheets. Crystals 2021, 11 (9) , 1028. https://doi.org/10.3390/cryst11091028
  24. Bingxin Yang, Nosang V. Myung, Thien‐Toan Tran. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Advanced Electronic Materials 2021, 7 (9) , 2100271. https://doi.org/10.1002/aelm.202100271
  25. Hao Zhang, Jianghan Hu, Mingwei Li, Zhenhua Li, Ye Yuan, Xueli Yang, Lanlan Guo. Highly efficient toluene gas sensor based on spinel structured hollow urchin-like core-shell ZnFe2O4 spheres. Sensors and Actuators B: Chemical 2021, 275 , 130734. https://doi.org/10.1016/j.snb.2021.130734
  26. Shendan Zhang, Yunan Wang, Fengdong Qu, Tiju Thomas, Minghui Yang. In2O3 nanocubes modified with RuO2 for detection of TXM vapors containing benzyl group. Sensors and Actuators B: Chemical 2021, 338 , 129731. https://doi.org/10.1016/j.snb.2021.129731
  27. Pengfei Cheng, Chen Wang, Yinglin Wang, Luping Xu, Fan Dang, Li Lv, Xu Li. Enhanced acetone sensing properties based on in situ growth SnO 2 nanotube arrays. Nanotechnology 2021, 32 (24) , 245503. https://doi.org/10.1088/1361-6528/abed74
  28. Shitu Pei, Shuyi Ma, Xiaoli Xu, Omer Almamoun, Yaotong Ma, Xiaohui Xu. Exploring gas-sensing characteristics of (CH2OH)2 with controlling the morphology of BiVO4 by adjusting pH of solution. Journal of Alloys and Compounds 2021, 859 , 158400. https://doi.org/10.1016/j.jallcom.2020.158400
  29. Guanglu Lei, Chengming Lou, Xianghong Liu, Jiayue Xie, Zishuo Li, Wei Zheng, Jun Zhang. Thin films of tungsten oxide materials for advanced gas sensors. Sensors and Actuators B: Chemical 2021, 5 , 129996. https://doi.org/10.1016/j.snb.2021.129996
  30. Nihal, Sonal Rattan, Manpreet, Anjali, Harjot, Suresh Kumar, Mamta Sharma, S.K. Tripathi, J.K. Goswamy. Synthesis and characterization of Ag metal doped SnO2, WO3 and WO3–SnO2 for propan-2-ol sensing. Results in Materials 2021, 9 , 100127. https://doi.org/10.1016/j.rinma.2020.100127
  31. Ruixue Mo, Dongqiang Han, Chengwei Yang, Junyan Tang, Fei Wang, Caolong Li. MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sensors and Actuators B: Chemical 2021, 330 , 129326. https://doi.org/10.1016/j.snb.2020.129326
  32. Shitu Pei, Shuyi Ma, Xiaoli Xu, Xiaohui Xu, Omer Almamoun. Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. Journal of Alloys and Compounds 2021, 856 , 158274. https://doi.org/10.1016/j.jallcom.2020.158274
  33. Q.N. Abdullah, A.R. Ahmed, A.M. Ali, F.K. Yam, Z. Hassan, M. Bououdina. Novel SnO2-coated β-Ga2O3 nanostructures for room temperature hydrogen gas sensor. International Journal of Hydrogen Energy 2021, 46 (9) , 7000-7010. https://doi.org/10.1016/j.ijhydene.2020.11.109
  34. Cong Zheng, Cheng Zhang, Lifang He, Kui Zhang, Jian Zhang, Ling Jin, Abdullah M. Asiri, Khalid A. Alamry, Xiangfeng Chu. ZnFe2O4/ZnO nanosheets assembled microspheres for high performance trimethylamine gas sensing. Journal of Alloys and Compounds 2020, 849 , 156461. https://doi.org/10.1016/j.jallcom.2020.156461
  35. P. Pascariu, I.V. Tudose, D. Vernardou, E. Koudoumas, O.N. Ionescu, S. Bucur, M. Suchea. SnO2 and Ni doped SnO2 /polythiophene nanocomposites for gas sensing applications. Solid State Electronics Letters 2020, 2 , 85-91. https://doi.org/10.1016/j.ssel.2020.11.003
  36. Chao Zhang, Yuchun Huan, Dongjin Sun, Yuling Lu. Synthesis and NO2 sensing performances of CuO nanoparticles loaded In2O3 hollow spheres. Journal of Alloys and Compounds 2020, 842 , 155857. https://doi.org/10.1016/j.jallcom.2020.155857
  37. Mojie Sun, Zhenye Zhang, Shijie Wang, Shiyuan Zhang, Ruiting Wang, Xiaochen Song. Low-temperature H 2 S gas sensor based on spherical Ag 3 PO 4 -doped SnO 2. New Journal of Chemistry 2020, 44 (37) , 15966-15974. https://doi.org/10.1039/D0NJ03189E
  38. Tian-Tian Li, Long Xia, Hui Yu, Xiao-Xiao Huang. Fabrication of porous tin dioxide with enhanced gas-sensing performance toward NOx. Journal of Materials Science 2020, 55 (26) , 11949-11958. https://doi.org/10.1007/s10853-020-04892-0
  39. Chao Zhang, Dongjin Sun, Yuchun Huan, Kaidi Wu, Hanlin Liao. Highly sensitive ZnO nanoparticles-loaded In2O3 hollow microsphere for detecting ppb-level NO2 at low working temperature. Progress in Natural Science: Materials International 2020, 30 (4) , 469-476. https://doi.org/10.1016/j.pnsc.2020.06.006
  40. Jing Yang, Jiaqiang Liu, Baihan Li, Le Han, Yan Xu. A microcube-like hierarchical heterostructure of α-Fe 2 O 3 @α-MoO 3 for trimethylamine sensing. Dalton Transactions 2020, 49 (24) , 8114-8121. https://doi.org/10.1039/D0DT01521K
  41. T. Han, S.Y. Ma, X.L. Xu, X.H. Xu, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang. Rough SmFeO3 nanofibers as an optimization ethylene glycol gas sensor prepared by electrospinning. Materials Letters 2020, 268 , 127575. https://doi.org/10.1016/j.matlet.2020.127575
  42. Parnumart Choopool, Kalayanee Kooptarnond, Matthana Khangkhamano, Vishnu Rachpech. The Effect of Sn(II) Precursor on Morphology and Surface Area of as Synthesis SnO2 Nanotube. Materials Science Forum 2020, 998 , 227-232. https://doi.org/10.4028/www.scientific.net/MSF.998.227
  43. Lingli Zheng, Yingqiang Zhao, Yongshan Xu, Chen Yang, Jun Zhang, Xianghong Liu. Susceptible CoSnO 3 nanoboxes with p-type response for triethylamine detection at low temperature. CrystEngComm 2020, 22 (16) , 2795-2805. https://doi.org/10.1039/D0CE00170H
  44. Muthaimanoj Periyasamy, Arik Kar. Modulating the properties of SnO 2 nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. Journal of Materials Chemistry C 2020, 8 (14) , 4604-4635. https://doi.org/10.1039/C9TC06469A
  45. Xiangfeng Chu, Jiulin Wang, Qi Gao, Yan Wang, Shiming Liang, Linshan Bai, Yongping Dong, Mauro Epifani. High selectivity trimethylamine sensors based on graphene-NiGa2O4 nanocomposites prepared by hydrothermal method. Physica E: Low-dimensional Systems and Nanostructures 2020, 118 , 113788. https://doi.org/10.1016/j.physe.2019.113788
  46. T. Tan Vu, The Vinh La, Ngoc Khiem Tran, Dang Chinh Huynh. A comprehensive review on the sacrificial template-accelerated hydrolysis synthesis method for the fabrication of supported nanomaterials. Journal of the Iranian Chemical Society 2020, 17 (2) , 229-245. https://doi.org/10.1007/s13738-019-01764-6
  47. Chen Su, Lu Zhang, Yutong Han, Cong Ren, Min Zeng, Zhihua Zhou, Yanjie Su, Nantao Hu, Hao Wei, Zhi Yang. Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sensors and Actuators B: Chemical 2020, 304 , 127347. https://doi.org/10.1016/j.snb.2019.127347
  48. Masoumeh Mohammadi, Somayeh Fardindoost, Azam Iraji zad, Mohammad Almasi-Kashi. Room temperature selective sensing of aligned Ni nanowires using impedance spectroscopy. Materials Research Express 2020, 7 (2) , 025044. https://doi.org/10.1088/2053-1591/ab66ac
  49. Ch Seshendra Reddy, G. Murali, A. Sivasankar Reddy, Seongmin Park, Insik In. GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres. Journal of Alloys and Compounds 2020, 813 , 152251. https://doi.org/10.1016/j.jallcom.2019.152251
  50. Kuldeep Kholiya, Kailash Pandey. High pressure compression behaviour of bulk and nanocrystalline SnO 2. Journal of Taibah University for Science 2019, 13 (1) , 592-596. https://doi.org/10.1080/16583655.2019.1611369
  51. Dongzhi Zhang, Zhimin Yang, Peng Li, Xiaoyan Zhou. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sensors and Actuators B: Chemical 2019, 301 , 127081. https://doi.org/10.1016/j.snb.2019.127081
  52. Zhimin Yang, Dongzhi Zhang, Haonan Chen. MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sensors and Actuators B: Chemical 2019, 300 , 127037. https://doi.org/10.1016/j.snb.2019.127037
  53. Thembinkosi Donald Malevu, Benard Samwel Mwankemwa, Mustafa A. M. Ahmed, Tshwafo Elias Motaung, Kamohelo George Tshabalala, Richard Opio Ocaya. Effect of Ni Doping on ZnO Nanorods Synthesized Using a Low-Temperature Chemical Bath. Journal of Electronic Materials 2019, 48 (11) , 6954-6963. https://doi.org/10.1007/s11664-019-07490-2
  54. Marko Radović, Georges Dubourg, Zorana Dohčević-Mitrović, Bojan Stojadinović, Jelena Vukmirović, Nataša Samardžić, Miloš Bokorov. SnO 2 nanosheets with multifunctional properties for flexible gas-sensors and UVA light detectors. Journal of Physics D: Applied Physics 2019, 52 (38) , 385305. https://doi.org/10.1088/1361-6463/ab2d1b
  55. Lingli Zheng, Tiantian Ma, Yingqiang Zhao, Yongshan Xu, Li Sun, Jun Zhang, Xianghong Liu. Synergy between Au and In2O3 microspheres: A superior hybrid structure for the selective and sensitive detection of triethylamine. Sensors and Actuators B: Chemical 2019, 290 , 155-162. https://doi.org/10.1016/j.snb.2019.03.137
  56. Ran Xu, Le-Xi Zhang, Ming-Wei Li, Yan-Yan Yin, Jing Yin, Meng-Ya Zhu, Jing-Jing Chen, Yan Wang, Li-Jian Bie. Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sensors and Actuators B: Chemical 2019, 289 , 186-194. https://doi.org/10.1016/j.snb.2019.03.012
  57. Wenjing Wan, Yuehua Li, Jianhong Zhang, Xingping Ren, Yanping Zhao, Heyun Zhao. Template-free synthesis of nanoarrays SnO2 hollow microcubes with high gas-sensing performance to ether. Materials Letters 2019, 236 , 46-50. https://doi.org/10.1016/j.matlet.2018.10.021
  58. Jeongsu Kim, Haneul Yoo, Viet Anh Pham Ba, Narae Shin, Seunghun Hong. Dye-functionalized Sol-gel Matrix on Carbon Nanotubes for Refreshable and Flexible Gas Sensors. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-30481-y
  59. Seyede Azadeh Hejazi Juybari, Hossain Milani Moghaddam. Facile fabrication of porous hierarchical SnO2 via a self-degraded template and their remarkable photocatalytic performance. Applied Surface Science 2018, 457 , 179-186. https://doi.org/10.1016/j.apsusc.2018.06.259
  60. Hongyan Xu, Dianxing Ju, Zhengrun Chen, Rui Han, Ting Zhai, Huanqin Yu, Caiyun Liu, Xiangwen Wu, Jieqiang Wang, Bingqiang Cao. A novel hetero-structure sensor based on Au/Mg-doped TiO2/SnO2 nanosheets directly grown on Al2O3 ceramic tubes. Sensors and Actuators B: Chemical 2018, 273 , 328-335. https://doi.org/10.1016/j.snb.2018.06.055
  61. Lin Bizhou, Fangcao Jia, Bingjie Lv, Zhilei Qin, Peide Liu, Yilin Chen. Facile synthesis and remarkable hydrogen sensing performance of Pt-loaded SnO 2 hollow microspheres. Materials Research Bulletin 2018, 106 , 403-408. https://doi.org/10.1016/j.materresbull.2018.06.027
  62. Susan Samadi, Ghasem Asadi Cordshooli, Mohammad Yousefi, Khadijeh Kalateh, SeyedAmirabbas Zakaria. CeO 2 /TiO 2 core/shell nanoparticles as quantitative gas sensor at room temperature. Sensor Review 2018, 38 (4) , 458-466. https://doi.org/10.1108/SR-05-2017-0093
  63. Soheila Hemmatzadeh Saeedabad, Gurpreet Singh Selopal, Seyed Mohammad Rozati, Yaser Tavakoli, Giorgio Sberveglieri. From Transparent Conducting Material to Gas-Sensing Application of SnO2:Sb Thin Films. Journal of Electronic Materials 2018, 47 (9) , 5165-5173. https://doi.org/10.1007/s11664-018-6404-5
  64. Abbas Sadeghzadeh-Attar, Iman Akhavan-Safaei, Mohammad Reza Bafandeh. UV-visible absorption and photoluminescence characteristics of SnO 2 nano-tube/wire arrays fabricated by LPD method. International Journal of Applied Ceramic Technology 2018, 15 (5) , 1084-1094. https://doi.org/10.1111/ijac.12871
  65. Bizhou Lin, Shanshan Lin, Yan Liu, Jinjin Luo, Bifen Gao, Jingxin Zhang. Synthesis and remarkable gas sensing performance of biomorphic tubular porous SnO2 templated from sorghum straw. Microporous and Mesoporous Materials 2018, 266 , 283-288. https://doi.org/10.1016/j.micromeso.2018.03.016
  66. Huali Liu, Dongdong Wei, Yan Yan, Ang Li, Xiaohong Chuai, Geyu Lu, Yu Wang. Silver Nanowire Templating Synthesis of Mesoporous SnO 2 Nanotubes: An Effective Gas Sensor for Methanol with a Rapid Response and Recovery. ChemistrySelect 2018, 3 (27) , 7741-7748. https://doi.org/10.1002/slct.201801663
  67. Seshendra Reddy Ch., Liwen Zhang, Yejun Qiu, Yanan Chen, Sivasankar Reddy A., Sreedhara Reddy P., Sreekantha Reddy Dugasani. Investigation of hydrogen sensing properties of graphene/Al–SnO2 composite nanotubes derived from electrospinning. Journal of Industrial and Engineering Chemistry 2018, 63 , 411-419. https://doi.org/10.1016/j.jiec.2018.03.001
  68. Xianghong Liu, Tiantian Ma, Yongshan Xu, Li Sun, Lingli Zheng, Oliver G. Schmidt, Jun Zhang. Rolled-up SnO2 nanomembranes: A new platform for efficient gas sensors. Sensors and Actuators B: Chemical 2018, 264 , 92-99. https://doi.org/10.1016/j.snb.2018.02.187
  69. Feng Li, Shengping Ruan, Nan Zhang, Yanyang Yin, Sijia Guo, Yu Chen, Haifeng Zhang, Chuannan Li. Synthesis and characterization of Cr-doped WO3 nanofibers for conductometric sensors with high xylene sensitivity. Sensors and Actuators B: Chemical 2018, 265 , 355-364. https://doi.org/10.1016/j.snb.2018.03.054
  70. Ch Seshendra Reddy, Liwen Zhang, Peng Wen, Yanan Chen, A. Sivasankara Reddy, Yejun Qiu. WITHDRAWN: Graphene oxide doped SnO2 nanotubes derived from electrospinning for ethanol sensor. Microporous and Mesoporous Materials 2018, 28 https://doi.org/10.1016/j.micromeso.2018.06.055
  71. Ali Mirzaei, Jae-Hun Kim, Hyoun Woo Kim, Sang Sub Kim. How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature. Sensors and Actuators B: Chemical 2018, 258 , 270-294. https://doi.org/10.1016/j.snb.2017.11.066
  72. Wenjin Wan, Yuehua Li, Xingping Ren, Yinping Zhao, Fan Gao, Heyun Zhao. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol. Nanomaterials 2018, 8 (2) , 112. https://doi.org/10.3390/nano8020112
  73. Azeez O. Idris, Nonhlangabezo Mabuba, Omotayo A. Arotiba. Towards cancer diagnostics – an α-feto protein electrochemical immunosensor on a manganese( iv ) oxide/gold nanocomposite immobilisation layer. RSC Advances 2018, 8 (54) , 30683-30691. https://doi.org/10.1039/C8RA06135A
  74. Y. Yuan, Y. Wang, M. Wang, J. Liu, C. Pei, B. Liu, H. Zhao, S. Liu, H. Yang. Effect of Unsaturated Sn Atoms on Gas-Sensing Property in Hydrogenated SnO2 Nanocrystals and Sensing Mechanism. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-00891-5
  75. Qian Rong, Yumin Zhang, Chao Wang, Zhongqi Zhu, Jin Zhang, Qingju Liu. A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-12337-z
  76. Cecilia A. Zito, Tarcísio M. Perfecto, Diogo P. Volanti. Palladium-Loaded Hierarchical Flower-like Tin Dioxide Structure as Chemosensor Exhibiting High Ethanol Response in Humid Conditions. Advanced Materials Interfaces 2017, 4 (22) , 1700847. https://doi.org/10.1002/admi.201700847
  77. Xiaohui Ma, Qixuan Qin, Nan Zhang, Chuan Chen, Xin Liu, Yu Chen, Chuannan Li, Shengping Ruan. Synthesis of SnO2 nano-dodecahedrons with high-energy facets and their sensing properties to SO2 at low temperature. Journal of Alloys and Compounds 2017, 723 , 595-601. https://doi.org/10.1016/j.jallcom.2017.06.273
  78. Xiao Wang, Shouwei Zhang, Minghui Shao, Jinzhao Huang, Xiaolong Deng, Peiyu Hou, Xijin Xu. Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sensors and Actuators B: Chemical 2017, 251 , 27-33. https://doi.org/10.1016/j.snb.2017.04.114
  79. Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal. On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes. Applied Physics A 2017, 123 (8) https://doi.org/10.1007/s00339-017-1168-y
  80. Cecilia A. Zito, Tarcísio M. Perfecto, Diogo P. Volanti. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sensors and Actuators B: Chemical 2017, 244 , 466-474. https://doi.org/10.1016/j.snb.2017.01.015
  81. Fubo Gu, Hantao Wang, Dongmei Han, Zhihua Wang. Enhancing the sensing performance of SnO2 inverse opal thin films by In and Au doping. Sensors and Actuators B: Chemical 2017, 245 , 1023-1031. https://doi.org/10.1016/j.snb.2017.02.031
  82. A. Simo, K. Kaviyarasu, B. Mwakikunga, R. Madjoe, A. Gibaud, M. Maaza. Phase transition study in strongly correlated VO 2 based sensing systems. Journal of Electron Spectroscopy and Related Phenomena 2017, 216 , 23-32. https://doi.org/10.1016/j.elspec.2017.01.011
  83. Yinglin Liu, Jing Huang, Jiedi Yang, Shurong Wang. Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application. Solid-State Electronics 2017, 130 , 20-27. https://doi.org/10.1016/j.sse.2017.01.005
  84. Hui Chen, Guo-Dong Li, Meihong Fan, Qian Gao, Jiabo Hu, Saren Ao, Cundi Wei, Xiaoxin Zou. Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sensors and Actuators B: Chemical 2017, 240 , 689-696. https://doi.org/10.1016/j.snb.2016.09.037
  85. L. Alinauskas, E. Brooke, A. Regoutz, A. Katelnikovas, R. Raudonis, S. Yitzchaik, D.J. Payne, E. Garskaite. Nanostructuring of SnO2 via solution-based and hard template assisted method. Thin Solid Films 2017, 626 , 38-45. https://doi.org/10.1016/j.tsf.2017.02.015
  86. Jiedi Yang, Shurong Wang, Luping Zhang, Rui Dong, Zhenyu Zhu, Xueling Gao. Zn 2 SnO 4 -doped SnO 2 hollow spheres for phenylamine gas sensor application. Sensors and Actuators B: Chemical 2017, 239 , 857-864. https://doi.org/10.1016/j.snb.2016.08.074
  87. M. O. Orlandi, P. H. Suman, R. A. Silva, E. P. S. Arlindo. Carbothermal Reduction Synthesis: An Alternative Approach to Obtain Single-Crystalline Metal Oxide Nanostructures. 2017,,, 43-67. https://doi.org/10.1007/978-3-319-53898-3_2
  88. Deepak P. Dubal, Nilesh R. Chodankar, Pedro Gomez-Romero, Do-Heyoung Kim. Fundamentals of Binary Metal Oxide–Based Supercapacitors. 2017,,, 79-98. https://doi.org/10.1016/B978-0-12-810464-4.00004-8
  89. A. Simo, K. Kaviyarasu, B. Mwakikunga, M. Mokwena, M. Maaza. Room temperature volatile organic compound gas sensor based on vanadium oxide 1-dimension nanoparticles. Ceramics International 2017, 43 (1) , 1347-1353. https://doi.org/10.1016/j.ceramint.2016.10.091
  90. Cuiping Gu, Wenmei Guan, Xiaosi Liu, Lvlv Gao, Liyou Wang, Jae-Jin Shim, Jiarui Huang. Controlled synthesis of porous Ni-doped SnO2 microstructures and their enhanced gas sensing properties. Journal of Alloys and Compounds 2017, 692 , 855-864. https://doi.org/10.1016/j.jallcom.2016.09.103
  91. Jiedi Yang, Shurong Wang, Rui Dong, Luping Zhang, Zhenyu Zhu, Xueling Gao. One-pot synthesis of SnO2 hollow microspheres and their formaldehyde sensor application. Materials Letters 2016, 184 , 9-12. https://doi.org/10.1016/j.matlet.2016.08.007
  92. Guogang Xu, Xueying Zhang, Hongzhi Cui, Zhiwei Chen, Jianxu Ding, Xiaoyuan Zhan. Preparation of mesoporous SnO 2 by solvothermal method using Stahlianthus involucratus leaves and application to n-butanol sensor. Powder Technology 2016, 302 , 283-287. https://doi.org/10.1016/j.powtec.2016.08.070
  93. Ling Li Wang, Zi Jiong Li, Lei Luo, Cheng Zhou Zhao, Li Ping Kang, De Wei Liu. Methanol sensing properties of honeycomb-like SnO2 grown on silicon nanoporous pillar array. Journal of Alloys and Compounds 2016, 682 , 170-175. https://doi.org/10.1016/j.jallcom.2016.04.257
  94. Sudip Kumar Sinha, Saptarshi Ghosh. Catalyst-free growth of Al-doped SnO 2 zigzag-nanobelts for low ppm detection of organic vapours. Physica E: Low-dimensional Systems and Nanostructures 2016, 84 , 434-443. https://doi.org/10.1016/j.physe.2016.07.019
  95. Zhaojun Qin, Yingkai Liu, Weiwu Chen, Yuemei Wu, Shuanghui Li. The highly promotive sensing performance of a single cerium doped SnO2 nanobelt sensor to ethanol. Materials Science in Semiconductor Processing 2016, 52 , 75-81. https://doi.org/10.1016/j.mssp.2016.05.014
  96. Hong Quan Liu, Ting Yuan, HongZhi Cui, ZhiYing Chu, YiJie Gu. Synthesis and characterization of coaxial SnO2–SiO x core–shell nanorods. Applied Physics A 2016, 122 (7) https://doi.org/10.1007/s00339-016-0155-z
  97. Heng Deng, Hai-rong Li, Fang Wang, Chao-xin Yuan, Su Liu, Peng Wang, Long-zhen Xie, Yong-zhe Sun, Fang-zhi Chang. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. Journal of Materials Science: Materials in Electronics 2016, 27 (7) , 6766-6772. https://doi.org/10.1007/s10854-016-4626-y
  98. Tianlin Yang, Qiuyue Yang, Yan Xiao, Peng Sun, Zhenyu Wang, Yuan Gao, Jian Ma, Yanfeng Sun, Geyu Lu. A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance. Sensors and Actuators B: Chemical 2016, 228 , 529-538. https://doi.org/10.1016/j.snb.2016.01.065
  99. X. Kuang, T. Liu, T. Li, W. Zeng, X. Peng, H. Zhang. Hydrothermal synthesis of SnO 2 hierarchical nanostructures and their gas sensing properties. Materials Technology 2016, 31 (5) , 260-265. https://doi.org/10.1179/1753555715Y.0000000051
  100. Ping Lu, Xiulan Hu, Huihong Huang, Ning Hu, Jianbo Zhang, Xiaodong Shen. Controllable Low-Temperature Hydrothermal Synthesis and Gas-Sensing Investigation of Crystalline SnO2 Nanoparticles. Journal of Materials Engineering and Performance 2016, 25 (4) , 1342-1346. https://doi.org/10.1007/s11665-016-1991-x
Load all citations