RETURN TO ISSUEPREVResearch ArticleNEXT

Photoelectrochemical Characterization of Hydrogenated TiO2 Nanotubes as Photoanodes for Sensing Applications

View Author Information
Centre for Clean Environment and Energy, Environmental Futures Centre, Griffith School of Environment, Gold Coast Campus, Griffith University, Queensland 4222, Australia
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
§ Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia
*E-mail: [email protected]. Tel: 61-7-55528155. Fax: 61-7-55528067.
Cite this: ACS Appl. Mater. Interfaces 2013, 5, 21, 11129–11135
Publication Date (Web):October 1, 2013
https://doi.org/10.1021/am403325a
Copyright © 2013 American Chemical Society
Article Views
1866
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

In this work, hydrogenated TiO2 nanotubes (H-TNTs) electrodes were successfully fabricated via the anodization of a titanium sheet followed by a hydrogenation process. Oxygen vacancies were induced in the crystalline structure of TiO2 nanotubes (TNTs) as shallow donors that enhance the electronic conductivity of the TNTs. This improvement in the electronic conductivity and photoelectrocatalytic (PEC) performance was confirmed and evaluated by a photoelectrochemical characterization. Most importantly, the H-TNTs electrode was able to degrade potassium hydrogen phthalate (strong adsorbent) and glucose (weak adsorbent) indiscriminately. The corresponding photocurrents at the H-TNTs were 2-fold greater than that of the TNTs samples for the same concentrations of the organic compounds. This suggests that the H-TNTs electrode can be a promising sensor for the PEC determination of individual organic compounds or as an aggregative parameter of organic compounds (e.g., chemical oxygen demand).

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental setup for X-ray photoelectron spectrometer, XPS survey spectra of the TNTs and H-TNTs samples, and plot of Inet against glucose concentration for TNTs. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 95 publications.

  1. Yan Zhong, Pengguo Wang, Qi Zhang, Fengbin Huang, Yilin Ge, Qingrong Yao, Wen-Bin Luo, Jianqiu Deng. Unraveling the Sodium Storage Properties and Mechanism of Cation-Deficient Ti0.84□0.16O1.42F0.37(OH)0.21. ACS Applied Energy Materials 2021, 4 (9) , 9198-9205. https://doi.org/10.1021/acsaem.1c01443
  2. Xunfu Zhou, Yuxuan Fang, Xin Cai, Shengsen Zhang, Siyuan Yang, Hongqiang Wang, Xinhua Zhong, Yueping Fang. In Situ Photodeposited Construction of Pt–CdS/g-C3N4–MnOx Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (18) , 20579-20588. https://doi.org/10.1021/acsami.0c04241
  3. Maged N. Shaddad, Drialys Cardenas-Morcoso, Miguel García-Tecedor, Francisco Fabregat-Santiago, Juan Bisquert, Abdullah M. Al-Mayouf, Sixto Gimenez. TiO2 Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega 2019, 4 (14) , 16095-16102. https://doi.org/10.1021/acsomega.9b02297
  4. Ayon Das Mahapatra, Amaresh Das, Shuvaraj Ghosh, Durga Basak. Defect-Assisted Broad-Band Photosensitivity with High Responsivity in Au/Self-Seeded TiO2 NR/Au-Based Back-to-Back Schottky Junctions. ACS Omega 2019, 4 (1) , 1364-1374. https://doi.org/10.1021/acsomega.8b03084
  5. Jianle Xu, Xiaosi Qi, Yuan Sun, Zhongchi Wang, Yong Liu, Chengzhi Luo, Bingjie Li, Wei Zhong, Qiang Fu, Chunxu Pan. Tuning the Electromagnetic Synergistic Effects for Enhanced Microwave Absorption via Magnetic Nickel Core Encapsulated in Hydrogenated Anatase TiO2 Shell. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 12046-12054. https://doi.org/10.1021/acssuschemeng.8b02350
  6. Yongchao Huang, Huimin Xu, Haojie Yang, Ying Lin, Hong Liu, and Yexiang Tong . Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2751-2757. https://doi.org/10.1021/acssuschemeng.7b04435
  7. Yajun Pang, Guangqing Xu, Qiang Feng, Jiaqin Liu, Jun Lv, Yong Zhang, and Yucheng Wu . Synthesis of α-Bi2Mo3O12/TiO2 Nanotube Arrays for Photoelectrochemical COD Detection Application. Langmuir 2017, 33 (36) , 8933-8942. https://doi.org/10.1021/acs.langmuir.7b01826
  8. Divya Nechiyil, Manoharan Muruganathan, Hiroshi Mizuta, and Sundara Ramaprabhu . Theoretical Insights into the Experimental Observation of Stable p-Type Conductivity and Ferromagnetic Ordering in Vacuum-Hydrogenated TiO2. The Journal of Physical Chemistry C 2017, 121 (26) , 14359-14366. https://doi.org/10.1021/acs.jpcc.7b04397
  9. Kan Zhang and Jong Hyeok Park . Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. The Journal of Physical Chemistry Letters 2017, 8 (1) , 199-207. https://doi.org/10.1021/acs.jpclett.6b02289
  10. Manjula I. Nandasiri, Vaithiyalingam Shutthanandan, Sandeep Manandhar, Ashleigh M. Schwarz, Lucas Oxenford, John V. Kennedy, Suntharampillai Thevuthasan, and Michael A. Henderson . Instability of Hydrogenated TiO2. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4627-4632. https://doi.org/10.1021/acs.jpclett.5b02219
  11. Nana Wang, Jie Yue, Liang Chen, Yitai Qian, and Jian Yang . Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (19) , 10348-10355. https://doi.org/10.1021/acsami.5b01208
  12. Ting Su, Yulin Yang, Yong Na, Ruiqing Fan, Liang Li, Liguo Wei, Bin Yang, and Wenwu Cao . An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (6) , 3754-3763. https://doi.org/10.1021/am5085447
  13. Lei Liu and Xiaobo Chen . Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews 2014, 114 (19) , 9890-9918. https://doi.org/10.1021/cr400624r
  14. Juanjuan Sun, Xinyong Li, Qidong Zhao, Jun Ke, and Dongke Zhang . Novel V2O5/BiVO4/TiO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity for the Degradation of Toluene. The Journal of Physical Chemistry C 2014, 118 (19) , 10113-10121. https://doi.org/10.1021/jp5013076
  15. Jingxia Qiu, Sheng Li, Evan Gray, Hongwei Liu, Qin-Fen Gu, Chenghua Sun, Chao Lai, Huijun Zhao, and Shanqing Zhang . Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C 2014, 118 (17) , 8824-8830. https://doi.org/10.1021/jp501819p
  16. Meng Shao, Chengcheng Sun, Tianming Chen, Ningxiang Wu, Runan Zhang, Xu Han, Yu Shen, Peng Wu, Wei-Wei Xiong, Weina Zhang, Sheng Li, Fengwei Huo. Tailored amorphous titanium oxide and carbon composites for enhanced pseudocapacitive sodium storage. Journal of Energy Chemistry 2022, 65 , 127-132. https://doi.org/10.1016/j.jechem.2021.05.037
  17. Onoyivwe Monday Ama, Khotso Khoele, Penny Poomani Govender, Suprakas Sinha Ray. Application of Surface-Modified Electrode Materials in Wastewater Treatment. 2022,,, 107-119. https://doi.org/10.1007/978-3-030-85555-0_6
  18. Aliakbar Saadati, Naimeh Naseri. Morphology control in oxygen-rich nanotubular titania for enzyme-free glucose detection. Surfaces and Interfaces 2021, 155 , 101590. https://doi.org/10.1016/j.surfin.2021.101590
  19. Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2. Journal of Materials Science & Technology 2021, 238 https://doi.org/10.1016/j.jmst.2021.09.018
  20. Xiaowei Shi, Chao Dai, Xin Wang, Ping Yang, Lingxia Zheng, Zhefei Zhao, Huajun Zheng. Facile construction TiO2/ZnIn2S4/Zn0.4Ca0.6In2S4 ternary hetero-structure photo-anode with enhanced photo-electrochemical water-splitting performance. Surfaces and Interfaces 2021, 26 , 101323. https://doi.org/10.1016/j.surfin.2021.101323
  21. Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. Journal of Materials Science & Technology 2021, 78 , 202-222. https://doi.org/10.1016/j.jmst.2020.10.061
  22. Yingde Xu, Xiangmei Liu, Yufeng Zheng, Changyi Li, Kelvin Wai Kwok Yeung, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Shuilin Wu. Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioactive Materials 2021, 6 (6) , 1575-1587. https://doi.org/10.1016/j.bioactmat.2020.11.013
  23. Lihua He, Zhe Yang, Chunli Gong, Hai Liu, Fei Zhong, Fuqiang Hu, Yaoyao Zhang, Guangjin Wang, Bingqing Zhang. The dual-function of photoelectrochemical glucose oxidation for sensor application and solar-to-electricity production. Journal of Electroanalytical Chemistry 2021, 882 , 114912. https://doi.org/10.1016/j.jelechem.2020.114912
  24. S. Mahata, S. S. Mahato. First-Principle Molecular Dynamics Simulation of Terahertz Absorptive Hydrogenated TiO2 Nanoparticles. 2021,,, 103-140. https://doi.org/10.1007/978-981-33-4489-1_8
  25. P. Anil Kumar Reddy, P. Venkata Laxma Reddy, S. V. Prabhakar Vattikuti. Black TiO2: An Emerging Photocatalyst and Its Applications. 2021,,, 267-297. https://doi.org/10.1007/978-3-030-72076-6_11
  26. Roser Fernández-Climent, Sixto Giménez, Miguel García-Tecedor. The role of oxygen vacancies in water splitting photoanodes. Sustainable Energy & Fuels 2020, 4 (12) , 5916-5926. https://doi.org/10.1039/D0SE01305F
  27. Khaled M. Chahrour, F.K. Yam, A.M. Eid, Ahmed Abdel Nazeer. Enhanced photoelectrochemical properties of hierarchical black TiO2-x nanolaces for Cr (VI) photocatalytic reduction. International Journal of Hydrogen Energy 2020, 45 (43) , 22674-22690. https://doi.org/10.1016/j.ijhydene.2020.06.078
  28. Mengting Zheng, Chao Xing, Weiping Zhang, Zhiliang Cheng, Xianhu Liu, Shanqing Zhang. Hydrogenated hematite nanoplates for enhanced photocatalytic and photo-Fenton oxidation of organic compounds. Inorganic Chemistry Communications 2020, 119 , 108040. https://doi.org/10.1016/j.inoche.2020.108040
  29. Shuo Wu, Yan Zhao, Xunxun Deng, Xinlan Yang, Xiuyun Wang, Yanqiu Zhao. Oxygen defects engineered CdS/Bi2O2.33 direct Z-Scheme heterojunction for highly sensitive photoelectrochemical assay of Hg2+. Talanta 2020, 217 , 121090. https://doi.org/10.1016/j.talanta.2020.121090
  30. Lihua He, Qingsong Zhang, Chunli Gong, Hai Liu, Fuqiang Hu, Fei Zhong, Guangjin Wang, Honghui Su, Sheng Wen, Shengchang Xiang, Bingqing Zhang. The dual-function of hematite-based photoelectrochemical sensor for solar-to-electricity conversion and self-powered glucose detection. Sensors and Actuators B: Chemical 2020, 310 , 127842. https://doi.org/10.1016/j.snb.2020.127842
  31. Jesse S. Dondapati, Aicheng Chen. Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning. Physical Chemistry Chemical Physics 2020, 22 (16) , 8878-8888. https://doi.org/10.1039/D0CP01518K
  32. Enzhou Liu, Xiaozhuo Zhang, Peng Xue, Jun Fan, Xiaoyun Hu. Carbon membrane bridged ZnSe and TiO2 nanotube arrays: Fabrication and promising application in photoelectrochemical water splitting. International Journal of Hydrogen Energy 2020, 45 (16) , 9635-9647. https://doi.org/10.1016/j.ijhydene.2020.01.207
  33. Yajun Pang, Qiang Feng, Zongkui Kou, Guangqing Xu, Feng Gao, Bo Wang, Zhenghui Pan, Jun Lv, Yong Zhang, Yucheng Wu. A surface precleaning strategy intensifies the interface coupling of the Bi 2 O 3 /TiO 2 heterostructure for enhanced photoelectrochemical detection properties. Materials Chemistry Frontiers 2020, 4 (2) , 638-644. https://doi.org/10.1039/C9QM00701F
  34. Yazhou Wang, Meng Zu, Xiaosong Zhou, Hong Lin, Feng Peng, Shanqing Zhang. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chemical Engineering Journal 2020, 381 , 122605. https://doi.org/10.1016/j.cej.2019.122605
  35. Onoyivwe Monday Ama, Khotso Khoele, David Jacobus Delport, Suprakas Sinha Ray, Peter Ogbemudia Osifo. Synthesis and Fabrication of Photoactive Nanocomposites Electrodes for the Degradation of Wastewater Pollutants. 2020,,, 19-38. https://doi.org/10.1007/978-3-030-43346-8_2
  36. Karolina Syrek, Maciej Skolarczyk, Marta Zych, Monika Sołtys-Mróz, Grzegorz D. Sulka. A Photoelectrochemical Sensor Based on Anodic TiO2 for Glucose Determination. Sensors 2019, 19 (22) , 4981. https://doi.org/10.3390/s19224981
  37. Yongliang Yong, Qingxiao Zhou, Xiangying Su, Yanmin Kuang, C. Richard A. Catlow, Xiaohong Li. Hydrogenated Si12Au20 cluster as a molecular sensor with high performance for NH3 and NO detection: A first-principle study. Journal of Molecular Liquids 2019, 289 , 111153. https://doi.org/10.1016/j.molliq.2019.111153
  38. Jianle Xu, Li Sun, Xiaosi Qi, Zhongchi Wang, Qiang Fu, Chunxu Pan. A novel strategy to enhance the multiple interface effect using amorphous carbon packaged hydrogenated TiO 2 for stable and effective microwave absorption. Journal of Materials Chemistry C 2019, 7 (20) , 6152-6160. https://doi.org/10.1039/C9TC00483A
  39. Ning Wei, Ying Liu, Min Feng, Zhaoxia Li, Shougang Chen, Youbin Zheng, Daoai Wang. Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light. Applied Catalysis B: Environmental 2019, 244 , 519-528. https://doi.org/10.1016/j.apcatb.2018.11.078
  40. Youpeng Li, Chenghao Yang, Fenghua Zheng, Qichang Pan, Yanzhen Liu, Gang Wang, Tiezhong Liu, Junhua Hu, Meilin Liu. Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 2019, 59 , 582-590. https://doi.org/10.1016/j.nanoen.2019.03.002
  41. Xiaolan Kang, Sihang Liu, Zideng Dai, Yunping He, Xuezhi Song, Zhenquan Tan. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9 (2) , 191. https://doi.org/10.3390/catal9020191
  42. Bingqing Zhang, Qingsong Zhang, Lihua He, Yifu Xia, Fuhong Meng, Guoliang Liu, Quanzi Pan, Honghui Shu, Chunli Gong, Fan Cheng, Huagen Liang, Sheng Wen. Photoelectrochemical Oxidation of Glucose on Tungsten Trioxide Electrode for Non-Enzymatic Glucose Sensing and Fuel Cell Applications. Journal of The Electrochemical Society 2019, 166 (8) , B569-B575. https://doi.org/10.1149/2.0221908jes
  43. Shaohua Shen, Jie Chen, Meng Wang, Xia Sheng, Xiangyan Chen, Xinjian Feng, Samuel S. Mao. Titanium dioxide nanostructures for photoelectrochemical applications. Progress in Materials Science 2018, 98 , 299-385. https://doi.org/10.1016/j.pmatsci.2018.07.006
  44. Ruonan Wang, Meng Zu, Siyuan Yang, Shanqing Zhang, Wuyi Zhou, Ziyang Mai, Cunyu Ge, Yuehua Xu, Yueping Fang, Shengsen Zhang. Visible-light-driven photoelectrochemical determination of Cu2+ based on CdS sensitized hydrogenated TiO2 nanorod arrays. Sensors and Actuators B: Chemical 2018, 270 , 270-276. https://doi.org/10.1016/j.snb.2018.05.056
  45. Juan Wang, Qin Xu, Wei Wei Xia, Yun Shu, Dangqin Jin, Yang Zang, Xiaoya Hu. High sensitive visible light photoelectrochemical sensor based on in-situ prepared flexible Sn3O4 nanosheets and molecularly imprinted polymers. Sensors and Actuators B: Chemical 2018, 271 , 215-224. https://doi.org/10.1016/j.snb.2018.05.098
  46. Shi Su, Jinwen Ma, Wanlong Zuo, Jun Wang, Li Liu, Shuang Feng, Tie Liu, Wuyou Fu, Haibin Yang. Nanoforest-like CdS/TiO 2 heterostructure composites: Synthesis and photoelectrochemical application. Chinese Physics B 2018, 27 (8) , 088802. https://doi.org/10.1088/1674-1056/27/8/088802
  47. Hye Won Jeong, Kyu Jun Park, Dong Suk Han, Hyunwoong Park. High efficiency solar chemical conversion using electrochemically disordered titania nanotube arrays transplanted onto transparent conductive oxide electrodes. Applied Catalysis B: Environmental 2018, 226 , 194-201. https://doi.org/10.1016/j.apcatb.2017.12.043
  48. Hanyang Gao, Guoxin Hu, Juan Sui, Chao Mu, Wenfeng Shangguan, Min Kong, Wei Shentu. Scalable preparation of defect-rich free-standing TiO2 sheets with visible-light photocatalytic activity. Applied Catalysis B: Environmental 2018, 226 , 337-345. https://doi.org/10.1016/j.apcatb.2017.12.055
  49. Majid Mollavali, Cavus Falamaki, Sohrab Rohani. Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO 2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications. International Journal of Hydrogen Energy 2018, 43 (19) , 9259-9278. https://doi.org/10.1016/j.ijhydene.2018.03.102
  50. Jia Shen, Donghui Chen, Wei Zhao, Wen wen Zhang, Huipin Zhou. Study on the Preparation and Characterizations of an Improved Porous Ti/TiO 2 /CdS‐CNT/C 3 N 4 Photoelectrode and Photoelectric Catalytic Degradation of Methylene Blue. ChemistrySelect 2018, 3 (12) , 3363-3373. https://doi.org/10.1002/slct.201703066
  51. Wei Shi, Zhifa Shan, Bingan Lu. Dragon fruit-inspired quantum scale-designed photocathodes. Materials Letters 2018, 213 , 40-43. https://doi.org/10.1016/j.matlet.2017.10.038
  52. Samira Bagheri, Nurhidayatullaili Muhd Julkapli. Black Titania for Photodecomposition of Organic Compounds. 2018,,, 37-50. https://doi.org/10.1007/978-3-319-69557-0_3
  53. Hun Xue, Yilan Chen, Xinping Liu, Qingrong Qian, Yongjin Luo, Malin Cui, Yisong Chen, Da-Peng Yang, Qinghua Chen. Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO2 hybrids. Materials Science and Engineering: C 2018, 82 , 197-203. https://doi.org/10.1016/j.msec.2017.08.060
  54. Kimia Aghasadeghi, Melissa J. Larocque, David R. Latulippe. Towards the real-time monitoring of industrial wastewater treatment processes via photoelectrochemical oxygen demand measurements. Environmental Science: Water Research & Technology 2018, 4 (3) , 394-402. https://doi.org/10.1039/C7EW00471K
  55. Haitao Fu, Xiaohong Yang, Xizhong An, Weiren Fan, Xuchuan Jiang, Aibing Yu. Experimental and theoretical studies of [email protected] core-shell hybrid composites with high gas sensing performance towards ammonia. Sensors and Actuators B: Chemical 2017, 252 , 103-115. https://doi.org/10.1016/j.snb.2017.05.027
  56. Peng Xue, Yunchao Yin, Yongbo Wang, Jun Wan, Yongning Ma, Enzhou Liu, Xiaoyun Hu, Jun Fan. In situ fabrication of CdSe/TiO 2 nanotube arrays with enhanced photoelectrical and catalytic activity. Semiconductor Science and Technology 2017, 32 (11) , 115007. https://doi.org/10.1088/1361-6641/aa8e63
  57. Yimei Zhang, Fei Wang, Hao Zhu, Dandan Zhang, Jie Chen. Elongated TiO2 nanotubes directly grown on graphene nanosheets as an efficient material for supercapacitors and absorbents. Composites Part A: Applied Science and Manufacturing 2017, 101 , 297-305. https://doi.org/10.1016/j.compositesa.2017.06.026
  58. Shengsen Zhang, Xiujie Wang, Jiayuan Hu, Zhikun Xie, Hougen Lei, Feng Peng. Design of two kinds of branched TiO2 nano array photoanodes and their comparison of photoelectrochemical performances. Electrochimica Acta 2017, 252 , 368-373. https://doi.org/10.1016/j.electacta.2017.08.164
  59. Yazhou Wang, Meng Zu, Sheng Li, Teera Butburee, Lianzhou Wang, Feng Peng, Shanqing Zhang. Dual modification of TiO 2 nanorods for selective photoelectrochemical detection of organic compounds. Sensors and Actuators B: Chemical 2017, 250 , 307-314. https://doi.org/10.1016/j.snb.2017.04.113
  60. Jun Wu, Xuebo Cao. Growth of bismuth oxyhalide nanoplates on self-standing TiO2 nanowire film exhibiting enhanced photoelectrochemical performances. Electrochimica Acta 2017, 247 , 646-656. https://doi.org/10.1016/j.electacta.2017.07.026
  61. Na Wei, Hongzhi Cui, Xinzhen Wang, Xiang Xie, Mingliang Wang, Liqiang Zhang, Jian Tian. Hierarchical assembly of In 2 O 3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: Enhanced photocatalytic and gas-sensing properties. Journal of Colloid and Interface Science 2017, 498 , 263-270. https://doi.org/10.1016/j.jcis.2017.03.072
  62. Yanyan Duan, Mei Zhang, Lan Wang, Fu Wang, Liping Yang, Xiyou Li, Chuanyi Wang. Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies. Applied Catalysis B: Environmental 2017, 204 , 67-77. https://doi.org/10.1016/j.apcatb.2016.11.023
  63. Jingnan Song, Maojun Zheng, Bin Zhang, Qiang Li, Faze Wang, Liguo Ma, Yanbo Li, Changqing Zhu, Li Ma, Wenzhong Shen. Fast Growth of Highly Ordered TiO2 Nanotube Arrays on Si Substrate under High-Field Anodization. Nano-Micro Letters 2017, 9 (2) https://doi.org/10.1007/s40820-016-0114-4
  64. Jianfang Zhang, Yan Wang, Jingjie Wu, Xia Shu, Cuiping Yu, Jiewu Cui, Yongqiang Qin, Yong Zhang, Pulickel M. Ajayan, Yucheng Wu. Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies. Chemical Engineering Journal 2017, 313 , 1071-1081. https://doi.org/10.1016/j.cej.2016.11.004
  65. Gongming Wang, Yi Yang, Dongdong Han, Yat Li. Oxygen defective metal oxides for energy conversion and storage. Nano Today 2017, 13 , 23-39. https://doi.org/10.1016/j.nantod.2017.02.009
  66. Tingting Zhang, Zia Ur Rahman, Ning Wei, Yupeng Liu, Jun Liang, Daoai Wang. In situ growth of single-crystal TiO2 nanorod arrays on Ti substrate: Controllable synthesis and photoelectro-chemical water splitting. Nano Research 2017, 10 (3) , 1021-1032. https://doi.org/10.1007/s12274-016-1361-x
  67. Xiaofei Zhang, Yana Wang, Baishan Liu, Yuanhua Sang, Hong Liu. Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts. Applied Catalysis B: Environmental 2017, 202 , 620-641. https://doi.org/10.1016/j.apcatb.2016.09.068
  68. Hao Wang, Huili Ye, Bihong Zhang, Faqiong Zhao, Baizhao Zeng. Electrostatic interaction mechanism based synthesis of a Z-scheme BiOI–CdS photocatalyst for selective and sensitive detection of Cu 2+. Journal of Materials Chemistry A 2017, 5 (21) , 10599-10608. https://doi.org/10.1039/C7TA02691A
  69. Xiangye Liu, Guilian Zhu, Xin Wang, Xiaotao Yuan, Tianquan Lin, Fuqiang Huang. Progress in Black Titania: A New Material for Advanced Photocatalysis. Advanced Energy Materials 2016, 6 (17) , 1600452. https://doi.org/10.1002/aenm.201600452
  70. Samira Bagheri, Nurhidayatullaili Muhd Julkapli. Synergistic effects on hydrogenated TiO2 for photodegradation of synthetic compounds pollutants. International Journal of Hydrogen Energy 2016, 41 (33) , 14652-14664. https://doi.org/10.1016/j.ijhydene.2016.06.179
  71. Xiaodong Yan, Lihong Tian, Xinyu Tan, Minjie Zhou, Lei Liu, Xiaobo Chen. Modifying oxide nanomaterials’ properties by hydrogenation. MRS Communications 2016, 6 (3) , 192-203. https://doi.org/10.1557/mrc.2016.33
  72. Evangelia Ioannidou, Alexandra Ioannidi, Zacharias Frontistis, Maria Antonopoulou, Charalampos Tselios, Dimitris Tsikritzis, Ioannis Konstantinou, Stella Kennou, Dimitris I. Kondarides, Dionissios Mantzavinos. Correlating the properties of hydrogenated titania to reaction kinetics and mechanism for the photocatalytic degradation of bisphenol A under solar irradiation. Applied Catalysis B: Environmental 2016, 188 , 65-76. https://doi.org/10.1016/j.apcatb.2016.01.060
  73. Liuyong Chen, Xiaosong Zhou, Bei Jin, Jin Luo, Xuyao Xu, Lingling Zhang, Yanping Hong. Heterojunctions in g-C3N4/B-TiO2 nanosheets with exposed {001} plane and enhanced visible-light photocatalytic activities. International Journal of Hydrogen Energy 2016, 41 (18) , 7292-7300. https://doi.org/10.1016/j.ijhydene.2016.03.137
  74. Kang Peng, Liangjie Fu, Huaming Yang, Jing Ouyang. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep19723
  75. Jianying Huang, Keqin Zhang, Yuekun Lai. Recent Advances in Synthesis, Modification, and Applications of TiO2 Nanotube Arrays by Electrochemical Anodization. 2016,,, 1379-1416. https://doi.org/10.1007/978-3-319-15266-0_17
  76. Weixin Heng, Wei Zhang, Qinghong Zhang, Hongzhi Wang, Yaogang Li. Photoelectrocatalytic microfluidic reactors utilizing hierarchical TiO 2 nanotubes for determination of chemical oxygen demand. RSC Advances 2016, 6 (55) , 49824-49830. https://doi.org/10.1039/C6RA09230F
  77. Ting Su, Yulin Yang, Yanxia Jiang, Yan Shi, Ruiqing Fan, Wenwu Cao. Prolonged lifetime and retarded recombination in dye sensitized solar cells using hydrogenated fluorine doped TiO 2 nanocrystals as a photoanode. RSC Advances 2016, 6 (101) , 99251-99259. https://doi.org/10.1039/C6RA23449F
  78. Veronika Schmiedova, Petr Dzik, Michal Vesely, Oldrich Zmeskal, Magdalena Morozova, Petr Kluson. Optical Properties of Titania Coatings Prepared by Inkjet Direct Patterning of a Reverse Micelles Sol-Gel Composition. Molecules 2015, 20 (8) , 14552-14564. https://doi.org/10.3390/molecules200814552
  79. Zhonghui Gao, Zhenduo Cui, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Xianjin Yang. Design and synthesis of MWNTs-TiO 2 nanotube hybrid electrode and its supercapacitance performance. Journal of Power Sources 2015, 283 , 397-407. https://doi.org/10.1016/j.jpowsour.2015.02.080
  80. Tingting Zhang, Bo Yu, Daoai Wang, Feng Zhou. Molybdenum-doped and anatase/rutile mixed-phase TiO 2 nanotube photoelectrode for high photoelectrochemical performance. Journal of Power Sources 2015, 281 , 411-416. https://doi.org/10.1016/j.jpowsour.2015.02.017
  81. Sangkyu Lee, Hun Park, Ungyu Paik, Tae Hee Han. Exfoliation of titanium oxide powder into nanosheets using hydrothermal reaction and its reassembly into flexible papers for thin-film capacitors. Journal of Solid State Chemistry 2015, 224 , 76-81. https://doi.org/10.1016/j.jssc.2014.06.032
  82. Yong Qiu, Liangpeng Wu, Juan Li, Xinjun Li. Preparation of Titanate/N-Doped Anatase Composite Hierarchical Microspheres with Enhanced Visible Light Photocatalytic Activity. Catalysis Letters 2015, 145 (2) , 647-653. https://doi.org/10.1007/s10562-014-1423-1
  83. Jianying Huang, Keqin Zhang, Yuekun Lai. Recent Advances in Synthesis, Modification and Applications of TiO2 Nanotube Arrays by Electrochemical Anodization. 2015,,, 1-33. https://doi.org/10.1007/978-3-319-15207-3_17-1
  84. M. Qorbani, N. Naseri, O. Moradlou, R. Azimirad, A.Z. Moshfegh. How CdS nanoparticles can influence TiO 2 nanotube arrays in solar energy applications?. Applied Catalysis B: Environmental 2015, 162 , 210-216. https://doi.org/10.1016/j.apcatb.2014.06.053
  85. Jian Tian, Yanhua Leng, Zhenhuan Zhao, Yang Xia, Yuanhua Sang, Pin Hao, Jie Zhan, Meicheng Li, Hong Liu. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 2015, 11 , 419-427. https://doi.org/10.1016/j.nanoen.2014.10.025
  86. Xiaobo Chen, Lei Liu, Fuqiang Huang. Black titanium dioxide (TiO 2 ) nanomaterials. Chemical Society Reviews 2015, 44 (7) , 1861-1885. https://doi.org/10.1039/C4CS00330F
  87. Xiaoying Zhang, Zhuoyuan Chen. Enhanced photoelectrochemical performance of the hierarchical micro/nano-structured TiO 2 mesoporous spheres with oxygen vacancies via hydrogenation. RSC Advances 2015, 5 (13) , 9482-9488. https://doi.org/10.1039/C4RA13300E
  88. Huanhuan Huo, Zhaodong Xu, Ting Zhang, Cailing Xu. Ni/CdS/TiO 2 nanotube array heterostructures for high performance photoelectrochemical biosensing. Journal of Materials Chemistry A 2015, 3 (11) , 5882-5888. https://doi.org/10.1039/C4TA07190E
  89. Zheng-Nan Wei, Zhi-Hong Mo, Xiao-Li Pu, Yi-Chong Xu. Plasmonic swings during the Fenton reaction: catalytic sensing of organics in water via fullerene-decorated gold nanoparticles. Chemical Communications 2015, 51 (61) , 12231-12234. https://doi.org/10.1039/C5CC03284A
  90. Jingyu Wang, Yizhi Zhao, Xiaochan Xu, Xiaoli Feng, Junxia Yu, Tao Li. A facile interfacial assembling strategy for synthesizing yellow TiO 2 flakes with a narrowed bandgap. RSC Advances 2015, 5 (72) , 58176-58183. https://doi.org/10.1039/C5RA08101G
  91. Xiujie Wang, Shengsen Zhang, Hongjuan Wang, Hao Yu, Haihui Wang, Shanqing Zhang, Feng Peng. Visible light photoelectrochemical properties of a hydrogenated TiO 2 nanorod film and its application in the detection of chemical oxygen demand. RSC Advances 2015, 5 (93) , 76315-76320. https://doi.org/10.1039/C5RA15923G
  92. Sheng Li, Min Ling, Jingxia Qiu, Jisheng Han, Shanqing Zhang. Anchoring ultra-fine TiO 2 –SnO 2 solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (18) , 9700-9706. https://doi.org/10.1039/C5TA01350J
  93. Jingxia Qiu, Chao Lai, Yazhou Wang, Sheng Li, Shanqing Zhang. Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries. Chemical Engineering Journal 2014, 256 , 247-254. https://doi.org/10.1016/j.cej.2014.06.116
  94. Johns Naduvath, Parag Bhargava, Sudhanshu Mallick. Simple electrochemical synthesis of black metal oxides for enhanced visible light absorption. Materials Letters 2014, 130 , 131-134. https://doi.org/10.1016/j.matlet.2014.05.101
  95. Qian Zhang, Ling Wang, Jiangtao Feng, Hao Xu, Wei Yan. Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO 2 nanotube arrays. Phys. Chem. Chem. Phys. 2014, 16 (42) , 23431-23439. https://doi.org/10.1039/C4CP02967D