RETURN TO ISSUEPREVResearch ArticleNEXT

Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite

View Author Information
Departments of Chemical Engineering and Chemistry, Center for Electrochemistry, Texas Materials Institute, Center for Nano and Molecular Science, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712, United States
Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
*E-mail: [email protected] (C.B.M.).
*E-mail: [email protected] (G.S.).
Cite this: ACS Appl. Mater. Interfaces 2014, 6, 8, 5494–5499
Publication Date (Web):March 26, 2014
https://doi.org/10.1021/am405628r
Copyright © 2014 American Chemical Society
Article Views
2534
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

We report the growth of well-defined antimony-doped tin oxide (ATO) nanorods as a conductive scaffold to improve hematite’s photoelectrochemical water oxidation performance. The hematite grown on ATO exhibits greatly improved performance for photoelectrochemical water oxidation compared to hematite grown on flat fluorine-doped tin oxide (FTO). The optimized photocurrent density of hematite on ATO is 0.67 mA/cm2 (0.6 V vs Ag/AgCl), which is much larger than the photocurrent density of hematite on flat FTO (0.03 mA/cm2). Using H2O2 as a hole scavenger, it is shown that the ATO nanorods indeed act as a useful scaffold and enhanced the bulk charge separation efficiency of hematite from 2.5% to 18% at 0.4 V vs Ag/AgCl.

Supporting Information

ARTICLE SECTIONS
Jump To

Included are the experimental methods, SEM images of ATO nanorods, XPS spectra of Sn and Sb (3d3/2) regions, amperometric it stability testing plots, UV–vis absorbance, raw hole scavenger it data, and CV measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 54 publications.

  1. Shih-Yu Chen, Jih-Sheng Yang, Jih-Jen Wu. Three-Dimensional Undoped Crystalline SnO2 Nanodendrite Arrays Enable Efficient Charge Separation in BiVO4/SnO2 Heterojunction Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2018, 1 (5) , 2143-2149. https://doi.org/10.1021/acsaem.8b00203
  2. Lite Zhou, Chenqi Zhao, Binod Giri, Patrick Allen, Xiaowei Xu, Hrushikesh Joshi, Yangyang Fan, Lyubov V. Titova, and Pratap M. Rao . High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes. Nano Letters 2016, 16 (6) , 3463-3474. https://doi.org/10.1021/acs.nanolett.5b05200
  3. Jie Yang, Chunxiong Bao, Tao Yu, Yingfei Hu, Wenjun Luo, Weidong Zhu, Gao Fu, Zhaosheng Li, Hao Gao, Faming Li, and Zhigang Zou . Enhanced Performance of Photoelectrochemical Water Splitting with [email protected]α-Fe2O3 Core–Shell Nanowire Array as Photoanode. ACS Applied Materials & Interfaces 2015, 7 (48) , 26482-26490. https://doi.org/10.1021/acsami.5b07470
  4. Alagappan Annamalai, Aravindaraj G. Kannan, Su Yong Lee, Dong-Won Kim, Sun Hee Choi, and Jum Suk Jang . Role of Graphene Oxide as a Sacrificial Interlayer for Enhanced Photoelectrochemical Water Oxidation of Hematite Nanorods. The Journal of Physical Chemistry C 2015, 119 (34) , 19996-20002. https://doi.org/10.1021/acs.jpcc.5b06450
  5. Degao Wang, Huaican Chen, Guoliang Chang, Xiao Lin, Yuying Zhang, Ali Aldalbahi, Cheng Peng, Jianqiang Wang, and Chunhai Fan . Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (25) , 14072-14078. https://doi.org/10.1021/acsami.5b03298
  6. Wei Hsuan Hung, Sz Nian Lai, and An Ya Lo . Synthesis of Strong Light Scattering Absorber of TiO2–CMK-3/Ag for Photocatalytic Water Splitting under Visible Light Irradiation. ACS Applied Materials & Interfaces 2015, 7 (16) , 8412-8418. https://doi.org/10.1021/am508684e
  7. Anthony J. Abel, Ivan Garcia-Torregrosa, Anjli M. Patel, Borirak Opasanont, and Jason B. Baxter . SILAR-Deposited Hematite Films for Photoelectrochemical Water Splitting: Effects of Sn, Ti, Thickness, and Nanostructuring. The Journal of Physical Chemistry C 2015, 119 (9) , 4454-4465. https://doi.org/10.1021/jp510027u
  8. Ilina Kondofersky, Halina K. Dunn, Alexander Müller, Benjamin Mandlmeier, Johann M. Feckl, Dina Fattakhova-Rohlfing, Christina Scheu, Laurence M. Peter, and Thomas Bein . Electron Collection in Host–Guest Nanostructured Hematite Photoanodes for Water Splitting: The Influence of Scaffold Doping Density. ACS Applied Materials & Interfaces 2015, 7 (8) , 4623-4630. https://doi.org/10.1021/am5078667
  9. Lei Zhao, Xinqi Zhang, Zhimeng Liu, Cheng Deng, Huimin Xu, Yin Wang, Mengfu Zhu. Carbon nanotube-based electrocatalytic filtration membrane for continuous degradation of flow-through Bisphenol A. Separation and Purification Technology 2021, 265 , 118503. https://doi.org/10.1016/j.seppur.2021.118503
  10. Jing Liu, Yuanze Xu, Xiaoxiao Liang, Mingming Yan, Bo Wang, Tianchong Zhang, Futing Yi. The Influence of Silicon Nanopillars Structure as the Substrate on the SnO 2 ‐Based Gas Sensor. ChemistrySelect 2021, 6 (16) , 3982-3987. https://doi.org/10.1002/slct.202004780
  11. R. Ramarajan, D. Paul Joseph, K. Thangaraju, M. Kovendhan. Indium-Free Alternative Transparent Conducting Electrodes: An Overview and Recent Developments. 2021,,, 149-183. https://doi.org/10.1007/978-3-030-53065-5_5
  12. Chuang Li, Dan Wang, Norihiro Suzuki, Chiaki Terashima, Yichun Liu, Akira Fujishima, Xintong Zhang. A coral-like hematite photoanode on a macroporous SnO2: Sb substrate for enhanced photoelectrochemical water oxidation. Electrochimica Acta 2020, 360 , 137012. https://doi.org/10.1016/j.electacta.2020.137012
  13. Thomas Herzog, Naomi Weitzel, Sebastian Polarz. Oxygen vacancy injection-induced resistive switching in combined mobile and static gradient doped tin oxide nanorods. Nanoscale 2020, 12 (35) , 18322-18332. https://doi.org/10.1039/D0NR03734F
  14. Ningsi Zhang, Xin Wang, Jianyong Feng, Huiting Huang, Yongsheng Guo, Zhaosheng Li, Zhigang Zou. Paving the road toward the use of β-Fe2O3 in solar water splitting: Raman identification, phase transformation and strategies for phase stabilization. National Science Review 2020, 7 (6) , 1059-1067. https://doi.org/10.1093/nsr/nwaa039
  15. Zhiwei Wang, Tam Duy Nguyen, Loo Pin Yeo, Chiew Kei Tan, Lin Gan, Alfred Iing Yoong Tok. Periodic FTO IOs/CdS NRs/CdSe Clusters with Superior Light Scattering Ability for Improved Photoelectrochemical Performance. Small 2020, 16 (6) , 1905826. https://doi.org/10.1002/smll.201905826
  16. Pandian Manjunathan, Ganapati V. Shanbhag. Application of tin oxide-based materials in catalysis. 2020,,, 519-553. https://doi.org/10.1016/B978-0-12-815924-8.00018-9
  17. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian. Surfactants assisted SnO2 nanoparticles synthesized by a hydrothermal approach and potential applications in water purification and energy conversion. Journal of Materials Science: Materials in Electronics 2019, 30 (14) , 13174-13190. https://doi.org/10.1007/s10854-019-01681-7
  18. Devi Prashad Ojha, Jun Hee Song, Han Joo Kim. Facile synthesis of graphitic carbon-nitride supported antimony-doped tin oxide nanocomposite and its application for the adsorption of volatile organic compounds. Journal of Environmental Sciences 2019, 79 , 35-42. https://doi.org/10.1016/j.jes.2018.10.008
  19. D P Ojha, J H Song, H J Kim. Synthesis and Characterization of a g-C 3 N 4 Coupled Hybrid Nanocomposite for the Photocatalytic Effects. IOP Conference Series: Materials Science and Engineering 2019, 540 (1) , 012003. https://doi.org/10.1088/1757-899X/540/1/012003
  20. Pengfei Wang, Yu Deng, Limei Hao, Lei Zhao, Xinqi Zhang, Cheng Deng, Hongbin Liu, Mengfu Zhu. Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO2/C electrocatalytic membrane. Environmental Science and Pollution Research 2019, 26 (11) , 11399-11409. https://doi.org/10.1007/s11356-019-04576-6
  21. Henry Agbe, Emmanuel Nyankson, Nadeem Raza, David Dodoo-Arhin, Aditya Chauhan, Gabriel Osei, Vasant Kumar, Ki-Hyun Kim. Recent advances in photoinduced catalysis for water splitting and environmental applications. Journal of Industrial and Engineering Chemistry 2019, 72 , 31-49. https://doi.org/10.1016/j.jiec.2019.01.004
  22. Sandra Haschke, Ying Zhuo, Stefanie Schlicht, Maïssa K. S. Barr, Ricarda Kloth, Maxime E. Dufond, Lionel Santinacci, Julien Bachmann. Enhanced Oxygen Evolution Reaction Activity of Nanoporous SnO 2 /Fe 2 O 3 /IrO 2 Thin Film Composite Electrodes with Ultralow Noble Metal Loading. Advanced Materials Interfaces 2019, 6 (3) , 1801432. https://doi.org/10.1002/admi.201801432
  23. Dipyaman Mohanta, M. Ahmaruzzaman. Advanced Tin-Oxide Nanostructures: Green Synthesis, Prospects and Challenges for Clean Energy and Environmental Sustainability. 2018,,, 513-552. https://doi.org/10.1002/9781119418900.ch15
  24. Michael J. Powell, Benjamin A. D. Williamson, Song-Yi Baek, Joe Manzi, Dominic B. Potter, David O. Scanlon, Claire J. Carmalt. Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models. Chemical Science 2018, 9 (41) , 7968-7980. https://doi.org/10.1039/C8SC02152J
  25. Xiaokun Zhang, Yichuan Rui, Yuanqiang Wang, Jingli Xu, Hongzhi Wang, Qinghong Zhang, Peter Müller-Buschbaum. SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells. Journal of Power Sources 2018, 402 , 460-467. https://doi.org/10.1016/j.jpowsour.2018.09.072
  26. Haoxuan Sun, Kaimo Deng, Yayun Zhu, Min Liao, Jie Xiong, Yanrong Li, Liang Li. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20%. Advanced Materials 2018, 30 (28) , 1801935. https://doi.org/10.1002/adma.201801935
  27. Zhiwei Wang, Xianglin Li, Han Ling, Chiew Kei Tan, Loo Pin Yeo, Andrew Clive Grimsdale, Alfred Iing Yoong Tok. 3D FTO/FTO-Nanocrystal/TiO 2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting. Small 2018, 14 (20) , 1800395. https://doi.org/10.1002/smll.201800395
  28. Devi Prashad Ojha, Hem Prakash Karki, Han Joo Kim. Design of ternary hybrid ATO/g-C3N4/TiO2 nanocomposite for visible-light-driven photocatalysis. Journal of Industrial and Engineering Chemistry 2018, 61 , 87-96. https://doi.org/10.1016/j.jiec.2017.12.004
  29. Pengjun Shi, Xibo Li, Qiuju Zhang, Zao Yi, Jiangshan Luo. Photocatalytic activity of self-assembled porous TiO 2 nano-columns array fabricated by oblique angle sputter deposition. Materials Research Express 2018, 5 (4) , 045018. https://doi.org/10.1088/2053-1591/aaba57
  30. Hem Prakash Karki, Devi Prashad Ojha, Mahesh Kumar Joshi, Han Joo Kim. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite. Applied Surface Science 2018, 435 , 599-608. https://doi.org/10.1016/j.apsusc.2017.11.166
  31. Canan Acar, Ibrahim Dincer. 2.17 Photoactive Materials. 2018,,, 524-572. https://doi.org/10.1016/B978-0-12-809597-3.00236-4
  32. Nuo Yu, Chen Peng, Zhaojie Wang, Zixiao Liu, Bo Zhu, Zhigao Yi, Meifang Zhu, Xiaogang Liu, Zhigang Chen. Dopant-dependent crystallization and photothermal effect of Sb-doped SnO 2 nanoparticles as stable theranostic nanoagents for tumor ablation. Nanoscale 2018, 10 (5) , 2542-2554. https://doi.org/10.1039/C7NR08811F
  33. Nadeem Raza, Ki-Hyun Kim, Henry Agbe, Suresh Kumar Kailasa, Jan E. Szulejko, Richard J. C. Brown. Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds. Asian Journal of Atmospheric Environment 2017, 11 (4) , 217-234. https://doi.org/10.5572/ajae.2017.11.4.217
  34. Zhimeng Liu, Mengfu Zhu, Lei Zhao, Cheng Deng, Jun Ma, Zheng Wang, Hongbin Liu, Hong Wang. Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: Effect of nano antimony-doped tin dioxide coating. Chemical Engineering Journal 2017, 314 , 59-68. https://doi.org/10.1016/j.cej.2016.12.093
  35. J. Mazloom, F. E. Ghodsi, H. Zamani, H. Golmojdeh. Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1 − xSbxO2 nanoparticles. Journal of Materials Science: Materials in Electronics 2017, 28 (2) , 2183-2192. https://doi.org/10.1007/s10854-016-5784-7
  36. Stepan Kment, Francesca Riboni, Sarka Pausova, Lei Wang, Lingyun Wang, Hyungkyu Han, Zdenek Hubicka, Josef Krysa, Patrik Schmuki, Radek Zboril. Photoanodes based on TiO 2 and α-Fe 2 O 3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews 2017, 46 (12) , 3716-3769. https://doi.org/10.1039/C6CS00015K
  37. Xueni Huang, Libin Yang, Shuai Hao, Baozhan Zheng, Lei Yan, Fengli Qu, Abdullah M. Asiri, Xuping Sun. N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers 2017, 4 (3) , 537-540. https://doi.org/10.1039/C6QI00517A
  38. Alexander Müller, Ilina Kondofersky, Alena Folger, Dina Fattakhova-Rohlfing, Thomas Bein, Christina Scheu. Dual absorber Fe 2 O 3 /WO 3 host-guest architectures for improved charge generation and transfer in photoelectrochemical applications. Materials Research Express 2017, 4 (1) , 016409. https://doi.org/10.1088/2053-1591/aa570f
  39. Liaoyong Wen, Min Zhou, Chengliang Wang, Yan Mi, Yong Lei. Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. Advanced Energy Materials 2016, 6 (23) , 1600468. https://doi.org/10.1002/aenm.201600468
  40. Xu-Dong Wang, Yang-Fan Xu, Bai-Xue Chen, Ning Zhou, Hong-Yan Chen, Dai-Bin Kuang, Cheng-Yong Su. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting. ChemSusChem 2016, 9 (20) , 3012-3018. https://doi.org/10.1002/cssc.201601140
  41. Anuradha Verma, Anupam Srivastav, Dipika Sharma, Anamika Banerjee, Shailja Sharma, Vibha Rani Satsangi, Rohit Shrivastav, Devesh Kumar Avasthi, Sahab Dass. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016, 379 , 255-261. https://doi.org/10.1016/j.nimb.2016.04.006
  42. Lígia P. de Souza, Rodrigo O. G. Chaves, Angelo Malachias, Roberto Paniago, Sukarno O. Ferreira, Andre S. Ferlauto. Influence of annealing temperature and Sn doping on the optical properties of hematite thin films determined by spectroscopic ellipsometry. Journal of Applied Physics 2016, 119 (24) , 245104. https://doi.org/10.1063/1.4954315
  43. Yang-Fan Xu, Hua-Shang Rao, Xu-Dong Wang, Hong-Yan Chen, Dai-Bin Kuang, Cheng-Yong Su. In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. Journal of Materials Chemistry A 2016, 4 (14) , 5124-5129. https://doi.org/10.1039/C5TA10563C
  44. Shaohua Shen, Sarah A. Lindley, Xiangyan Chen, Jin Z. Zhang. Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy & Environmental Science 2016, 9 (9) , 2744-2775. https://doi.org/10.1039/C6EE01845A
  45. Dipyaman Mohanta, M. Ahmaruzzaman. Tin oxide nanostructured materials: an overview of recent developments in synthesis, modifications and potential applications. RSC Advances 2016, 6 (112) , 110996-111015. https://doi.org/10.1039/C6RA21444D
  46. Li Xu, Yuefei Lian. A Ti/SnO 2 -Sb Nanorods Anode for Electrochemical Degradation of C.I. Acid Red 73. Journal of The Electrochemical Society 2016, 163 (14) , H1144-H1150. https://doi.org/10.1149/2.0661614jes
  47. Wei Hsuan Hung, Sz Nian Lai, Cheng Yi Su, Min Yin, Dongdong Li, Xinzhong Xue, Chuan Ming Tseng. Combined Au-plasmonic nanoparticles with mesoporous carbon material (CMK-3) for photocatalytic water splitting. Applied Physics Letters 2015, 107 (7) , 073904. https://doi.org/10.1063/1.4928980
  48. Yang-Fan Xu, Hua-Shang Rao, Bai-Xue Chen, Ying Lin, Hong-Yan Chen, Dai-Bin Kuang, Cheng-Yong Su. Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl 4 Treated 3D Antimony-Doped SnO 2 Macropore/Branched α-Fe 2 O 3 Nanorod Heterojunction Photoanode. Advanced Science 2015, 2 (7) , 1500049. https://doi.org/10.1002/advs.201500049
  49. Quanping Wu, Jun Zhao, Kan Liu, Hongyan Wang, Zhe Sun, Ping Li, Song Xue. Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide. International Journal of Hydrogen Energy 2015, 40 (21) , 6763-6770. https://doi.org/10.1016/j.ijhydene.2015.03.160
  50. Veluru Jagadeesh Babu, Sesha Vempati, Tamer Uyar, Seeram Ramakrishna. Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics 2015, 17 (5) , 2960-2986. https://doi.org/10.1039/C4CP04245J
  51. Dong-Dong Qin, Yun-Lei Li, Ting Wang, Yang Li, Xiao-Quan Lu, Jing Gu, Yi-Xin Zhao, Yu-Min Song, Chun-Lan Tao. Sn-doped hematite films as photoanodes for efficient photoelectrochemical water oxidation. Journal of Materials Chemistry A 2015, 3 (13) , 6751-6755. https://doi.org/10.1039/C4TA06872F
  52. Xiaojian Zhang, Huan Liu, Jinrong Wang, Guangyuan Ren, Beizhen Xie, Hong Liu, Ying Zhu, Lei Jiang. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes. Nanoscale 2015, 7 (44) , 18763-18769. https://doi.org/10.1039/C5NR04765J
  53. Kwanghyun Kim, Ik-Hee Kim, Ki-Yong Yoon, Jeongyeop Lee, Ji-Hyun Jang. α-Fe 2 O 3 on patterned fluorine doped tin oxide for efficient photoelectrochemical water splitting. Journal of Materials Chemistry A 2015, 3 (15) , 7706-7709. https://doi.org/10.1039/C5TA00027K
  54. William D. Chemelewski, Jacob R. Rosenstock, C. Buddie Mullins. Electrodeposition of Ni-doped FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. Journal of Materials Chemistry A 2014, 2 (36) , 14957. https://doi.org/10.1039/C4TA03078H