RETURN TO ISSUEPREVResearch ArticleNEXT

Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot/TiO2 Nanorod Array Nanocomposites

View Author Information
Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
*E-mail: [email protected]. Tel: +852 3442 7849. Fax: +852 3442 0538.
Cite this: ACS Appl. Mater. Interfaces 2014, 6, 7, 4883–4890
Publication Date (Web):March 6, 2014
https://doi.org/10.1021/am4059183
Copyright © 2014 American Chemical Society
Article Views
4336
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (7 MB)
Supporting Info (1)»

Abstract

Photoelectrochemcial (PEC) properties of TiO2 nanorod arrays (TNRA) have been extensively investigated as they are photostable and cost-effective. However, due to the wide band gap, only the UV part of solar light can be employed by TiO2. To enhance the photoresponse of TNRA in the visible range, carbon dots (C dots) were applied as green sensitizer in this work by investigating the effects of C dot loading and length of TiO2 nanorod on the PEC properties of TNRA/C dot nanocomposites. As the C dot loading increases, the photocurrent density of the nanocomposites was enhanced and reached a maximum when the concentration of the C dots was 0.4 mg/mL. A further increase in the C dot concentration decreased the photocurrent, which might be caused by the surface aggregation of C dots. A compromise existed between charge transport and charge collection as the length of TiO2 nanorod increased. The incident photon to current conversion efficiency (IPCE) of the TNRA/C dot nanocomposites in the visible range was up to 1.2–3.4%. This work can serve as guidance for fabrication of highly efficient photoanode for PEC cells based on C dots.

Supporting Information

ARTICLE SECTIONS
Jump To

XPS spectrum and XRD pattern of TiO2 nanorod arrays with a growth time of 9 h. This information is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 141 publications.

  1. Jiayan Zhang, Jingjing Xu, Feifei Tao. Interface Modification of TiO2 Nanotubes by Biomass-Derived Carbon Quantum Dots for Enhanced Photocatalytic Reduction of CO2. ACS Applied Energy Materials 2021, 4 (11) , 13120-13131. https://doi.org/10.1021/acsaem.1c02760
  2. Akash S. Rasal, Sudesh Yadav, Anchal Yadav, Anil A. Kashale, Subrahmanya Thagare Manjunatha, Ali Altaee, Jia-Yaw Chang. Carbon Quantum Dots for Energy Applications: A Review. ACS Applied Nano Materials 2021, 4 (7) , 6515-6541. https://doi.org/10.1021/acsanm.1c01372
  3. Natesan Thirumalaivasan, Shu-Pao Wu. Bright Luminescent Carbon Dots for Multifunctional Selective Sensing and Imaging Applications in Living Cells. ACS Applied Bio Materials 2020, 3 (9) , 6439-6446. https://doi.org/10.1021/acsabm.0c00868
  4. Michela Gazzetto, Alice Sciortino, Maryam Nazari, Egmont Rohwer, Gaetano Giammona, Nicolò Mauro, Thomas Feurer, Fabrizio Messina, Andrea Cannizzo. Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics. ACS Applied Nano Materials 2020, 3 (7) , 6925-6934. https://doi.org/10.1021/acsanm.0c01259
  5. Juan Wu, Mixiang Qi, Gang Wang, Bin Yu, Chengdong Liu, Wei Hou, Weisheng Liu. Synergistic Effect of Metal–Organic Framework-Derived TiO2 Nanoparticles and an Ultrathin Carbon Layer on Passivation of Hematite Surface States. ACS Sustainable Chemistry & Engineering 2020, 8 (13) , 5200-5208. https://doi.org/10.1021/acssuschemeng.9b07709
  6. Yanfang He, Peipei Wang, Jianfei Zhu, Ying Yang, Yuan Liu, Mingming Chen, Dawei Cao, Xiaohong Yan. Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO2. ACS Applied Materials & Interfaces 2019, 11 (40) , 37322-37329. https://doi.org/10.1021/acsami.9b12537
  7. Dengjun Wang, Navid B. Saleh, Wenjie Sun, Chang Min Park, Chongyang Shen, Nirupam Aich, Willie J. G. M. Peijnenburg, Wei Zhang, Yan Jin, Chunming Su. Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science & Technology 2019, 53 (13) , 7265-7287. https://doi.org/10.1021/acs.est.9b01453
  8. Venkatesan Srinivasan, Mariadoss Asha Jhonsi, Murugavel Kathiresan, Arunkumar Kathiravan. Nanostructured Graphene Oxide Dots: Synthesis, Characterization, Photoinduced Electron Transfer Studies, and Detection of Explosives/Biomolecules. ACS Omega 2018, 3 (8) , 9096-9104. https://doi.org/10.1021/acsomega.8b01180
  9. Vijay Bhooshan Kumar, Avishay Dolitzky, Shulamit Michaeli, Aharon Gedanken. Antiparasitic Ointment Based on a Biocompatibile Carbon Dot Nanocomposite. ACS Applied Nano Materials 2018, 1 (4) , 1784-1791. https://doi.org/10.1021/acsanm.8b00213
  10. Jeremy B. Essner, Jennifer A. Kist, Luis Polo-Parada, Gary A. Baker. Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chemistry of Materials 2018, 30 (6) , 1878-1887. https://doi.org/10.1021/acs.chemmater.7b04446
  11. Arpan Bhattacharya and Tushar Kanti Mukherjee . Synergistic Enhancement of Electron-Accepting and -Donating Ability of Nonconjugated Polymer Nanodot in Micellar Environment. Langmuir 2017, 33 (51) , 14718-14727. https://doi.org/10.1021/acs.langmuir.7b04030
  12. Yu Zhang, Ying Li, Weining Sun, Chunxue Yuan, Baoxin Wang, Wei Zhang, and Xi-Ming Song . Fe2O3/BiOI-Based Photoanode with n-p Heterogeneous Structure for Photoelectric Conversion. Langmuir 2017, 33 (43) , 12065-12071. https://doi.org/10.1021/acs.langmuir.7b02969
  13. Chao Huang, Juncao Bian, and Rui-Qin Zhang . Role of Cl Ion Desorption in Photocurrent Enhancement of the Annealed Rutile Single-Crystalline TiO2 Nanorod Arrays. The Journal of Physical Chemistry C 2017, 121 (34) , 18892-18899. https://doi.org/10.1021/acs.jpcc.7b04071
  14. Iuliana Mihalache, Antonio Radoi, Razvan Pascu, Cosmin Romanitan, Eugenia Vasile, and Mihaela Kusko . Engineering Graphene Quantum Dots for Enhanced Ultraviolet and Visible Light p-Si Nanowire-Based Photodetector. ACS Applied Materials & Interfaces 2017, 9 (34) , 29234-29247. https://doi.org/10.1021/acsami.7b07667
  15. Chao Xue, Tianxi Zhang, Shujiang Ding, Jinjia Wei, and Guidong Yang . Anchoring Tailored Low-Index Faceted BiOBr Nanoplates onto TiO2 Nanorods to Enhance the Stability and Visible-Light-Driven Catalytic Activity. ACS Applied Materials & Interfaces 2017, 9 (19) , 16091-16102. https://doi.org/10.1021/acsami.7b00433
  16. Ding Zhou, Di Li, Pengtao Jing, Yuechen Zhai, Dezhen Shen, Songnan Qu, and Andrey L. Rogach . Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chemistry of Materials 2017, 29 (4) , 1779-1787. https://doi.org/10.1021/acs.chemmater.6b05375
  17. Saurab Dhar, Tanmoy Majumder, and Suvra Prakash Mondal . Graphene Quantum Dot-Sensitized ZnO Nanorod/Polymer Schottky Junction UV Detector with Superior External Quantum Efficiency, Detectivity, and Responsivity. ACS Applied Materials & Interfaces 2016, 8 (46) , 31822-31831. https://doi.org/10.1021/acsami.6b09766
  18. Young Kwang Kim, Eun Bi Kang, Sung Han Kim, Shazid Md. Sharker, Beyung Youn Kong, Insik In, Kang-Dae Lee, and Sung Young Park . Visible-Light-Driven Photocatalysts of Perfluorinated Silica-Based Fluorescent Carbon Dot/TiO2 for Tunable Hydrophilic–Hydrophobic Surfaces. ACS Applied Materials & Interfaces 2016, 8 (43) , 29827-29834. https://doi.org/10.1021/acsami.6b12618
  19. Tiance An, Jing Tang, Yueyu Zhang, Yingzhou Quan, Xingao Gong, Abdullah M. Al-Enizi, Ahmed A. Elzatahry, Lijuan Zhang, and Gengfeng Zheng . Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires. ACS Applied Materials & Interfaces 2016, 8 (20) , 12772-12779. https://doi.org/10.1021/acsami.6b01534
  20. Zewei Yang, Bing Wang, Hao Cui, Hao An, Yang Pan, and Jianping Zhai . Synthesis of Crystal-Controlled TiO2 Nanorods by a Hydrothermal Method: Rutile and Brookite as Highly Active Photocatalysts. The Journal of Physical Chemistry C 2015, 119 (29) , 16905-16912. https://doi.org/10.1021/acs.jpcc.5b02485
  21. Qiong Liu, Hao Lu, Zhiwei Shi, Fangli Wu, Jun Guo, Kaimo Deng, and Liang Li . 2D ZnIn2S4 Nanosheet/1D TiO2 Nanorod Heterostructure Arrays for Improved Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2014, 6 (19) , 17200-17207. https://doi.org/10.1021/am505015j
  22. Ruxin Deng, Lingling Lin, Liya Li, Jian Wu. Novel Ni 2 P-microporous nickel phosphite supported on nitrogen-doped graphene composite electrocatalyst for efficient hydrogen evolution reaction. Nanotechnology 2021, 32 (50) , 505703. https://doi.org/10.1088/1361-6528/abdd5d
  23. Yidong Han, Jie Wu, Yi Li, Xiaoqing Gu, Tiwei He, Yu Zhao, Hui Huang, Yang Liu, Zhenhui Kang. Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode. Applied Catalysis B: Environmental 2021, 48 , 120983. https://doi.org/10.1016/j.apcatb.2021.120983
  24. Yogeshwari Vyas, Priyanka Chundawat, Dharmendra Dharmendra, Pinki B. Punjabi, Chetna Ameta. Review on hydrogen production photocatalytically using carbon quantum dots: Future fuel. International Journal of Hydrogen Energy 2021, 46 (75) , 37208-37241. https://doi.org/10.1016/j.ijhydene.2021.09.004
  25. Shangrong Chen, Yang Peng, Changlin Li, Zhongyu Hou. The co-decorated TiO2 nanorod array photoanodes by CdS/CdSe to promote photoelectrochemical water splitting. International Journal of Hydrogen Energy 2021, 46 (63) , 32055-32068. https://doi.org/10.1016/j.ijhydene.2021.06.217
  26. Selvakumar Murugesan, Venkatesan Srinivasan, Dinesh Kumar Lakshmanan, Meenakshi R. Venkateswaran, Sasidharan Jayabal, M. S. A. Muthukumar Nadar, Arunkumar Kathiravan, Mariadoss Asha Jhonsi, Sivasudha Thilagar, Sureshkumar Periyasamy. Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats. Food & Function 2021, 12 (11) , 5038-5050. https://doi.org/10.1039/D1FO00471A
  27. Hong-Yan Wang, Rong Hu, Na Wang, Gui-Lin Hu, Kai Wang, Wei-Hua Xie, Rui Cao. Boosting Photoanodic Activity for Water Splitting in Carbon Dots Aqueous Solution without any Traditional Supporting Electrolyte. Applied Catalysis B: Environmental 2021, 103 , 120378. https://doi.org/10.1016/j.apcatb.2021.120378
  28. Lei Jin, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Quantum Dots‐Based Photoelectrochemical Hydrogen Evolution from Water Splitting. Advanced Energy Materials 2021, 11 (12) , 2003233. https://doi.org/10.1002/aenm.202003233
  29. A. Ansón-Casaos, J. Hernández-Ferrer, L. Vallan, H. Xie, M. Lira-Cantú, A.M. Benito, W.K. Maser. Functionalized carbon dots on TiO2 for perovskite photovoltaics and stable photoanodes for water splitting. International Journal of Hydrogen Energy 2021, 46 (22) , 12180-12191. https://doi.org/10.1016/j.ijhydene.2020.03.077
  30. Jiabao Luo, Zishan Sun, Weiying Zhou, Fuwang Mo, Zhan-chao Wu, Xinguo Zhang. Hydrothermal synthesis of bright blue-emitting carbon dots for bioimaging and fluorescent determination of baicalein. Optical Materials 2021, 113 , 110796. https://doi.org/10.1016/j.optmat.2020.110796
  31. Md Rifat Hasan, Nepu Saha, Thomas Quaid, M. Toufiq Reza. Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors. Energies 2021, 14 (4) , 986. https://doi.org/10.3390/en14040986
  32. Meiling Wang, Aoqun Jian, Huaping Jia, Ting Yang, Xuming Zhang, Shengbo Sang. Au/CQDs‐TiO 2 composite nanorod array film with simple preparation route and enhanced visible light response. Micro & Nano Letters 2021, 16 (2) , 132-141. https://doi.org/10.1049/mna2.12023
  33. Xiaoling Lang, Saianand Gopalan, Wanlin Fu, Seeram Ramakrishna. Photocatalytic Water Splitting Utilizing Electrospun Semiconductors for Solar Hydrogen Generation: Fabrication, Modification and Performance. Bulletin of the Chemical Society of Japan 2021, 94 (1) , 8-20. https://doi.org/10.1246/bcsj.20200175
  34. Amin Shiralizadeh Dezfuli, Elmira Kohan, Sepand Tehrani Fateh, Neda Alimirzaei, Hamidreza Arzaghi, Michael R. Hamblin. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Advances 2021, 11 (4) , 2253-2291. https://doi.org/10.1039/D0RA08041A
  35. Dibyendu Ghosh, Krishnendu Sarkar, Pooja Devi, Ki-Hyun Kim, Praveen Kumar. Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews 2021, 135 , 110391. https://doi.org/10.1016/j.rser.2020.110391
  36. Sergio Ramírez-Barroso, Alejandra Jacobo-Martín, Iván Navarro-Baena, Jaime J. Hernández, Cristina Navio, Isabel Rodríguez, Reinhold Wannemacher. On the nature of solvothermally synthesized carbon nanodots. Journal of Materials Chemistry C 2021, 63 https://doi.org/10.1039/D1TC04255F
  37. Yan Qiu, Die Gao, Honggang Yin, Kailian Zhang, Jing Zeng, Lujun Wang, Lan Xia, Kai Zhou, Zhining Xia, Qifeng Fu. Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr(VI). Sensors and Actuators B: Chemical 2020, 324 , 128722. https://doi.org/10.1016/j.snb.2020.128722
  38. Min Feng, Ying Liu, Sainan Zhang, Yupeng Liu, Ning Luo, Daoai Wang. Carbon quantum dots (CQDs) modified TiO2 nanorods photoelectrode for enhanced photocathodic protection of Q235 carbon steel. Corrosion Science 2020, 176 , 108919. https://doi.org/10.1016/j.corsci.2020.108919
  39. Juan Gao, Lin Zhao, Yanfen Wang, Guixia Pan, Yueqin Wang, Yang LI. Ultrathin alumina wrapped TiO2 nanorods for enhance photoelectrochemical performance via atomic layer deposition method. Chemical Physics 2020, 536 , 110791. https://doi.org/10.1016/j.chemphys.2020.110791
  40. Ayan Pal, Md Palashuddin Sk, Arun Chattopadhyay. Recent advances in crystalline carbon dots for superior application potential. Materials Advances 2020, 1 (4) , 525-553. https://doi.org/10.1039/D0MA00108B
  41. Jing Jin, Wei Song, Ning Zhang, Linjia Li, Hao Liu, Bai Yang, Bing Zhao. Highly efficient core–shell [email protected] dot modified TiO 2 nanofibers for photocatalytic degradation of organic pollutants and their SERS monitoring. RSC Advances 2020, 10 (45) , 26639-26645. https://doi.org/10.1039/D0RA00168F
  42. Xiaoya Yuan, Zijuan Feng, Dong Peng, Wen Jia, Xue Wu, Xuxu Zheng. Facile in-situ photoreduction-mediated synthesis of rGO/NaBiO3·2H2O composites with enhanced visible-light-driven photocatalytic activity. Physica E: Low-dimensional Systems and Nanostructures 2020, 121 , 114120. https://doi.org/10.1016/j.physe.2020.114120
  43. Dongbo Xu, Teng Xia, Huimin Xu, Weiqiang Fan, Weidong Shi. Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting. Chemical Engineering Journal 2020, 392 , 124838. https://doi.org/10.1016/j.cej.2020.124838
  44. Shangrong Chen, Changlin Li, Zhongyu Hou. The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science 2020, 55 (14) , 5969-5981. https://doi.org/10.1007/s10853-020-04379-y
  45. Anu Babusenan, B. Pandey, Somnath C. Roy, Jayeeta Bhattacharyya. Charge transfer mediated photoluminescence enhancement in carbon dots embedded in TiO2 nanotube matrix. Carbon 2020, 161 , 535-541. https://doi.org/10.1016/j.carbon.2020.01.097
  46. Seyedsina Hejazi, Marco Altomare, Patrik Schmuki. Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes – The Role of 1D Nanostructuring. Zeitschrift für Physikalische Chemie 2020, 234 (4) , 615-631. https://doi.org/10.1515/zpch-2019-1479
  47. Munevver Tuna Genc, Gizem Yanalak, Gulsin Arslan, Imren Hatay Patir. Green preparation of Carbon Quantum dots using Gingko biloba to sensitize TiO2 for the photohydrogen production. Materials Science in Semiconductor Processing 2020, 109 , 104945. https://doi.org/10.1016/j.mssp.2020.104945
  48. Bo Kong, Tong Yang, Peng Hou, Chun Hong Li, Hong Yan Zou, Cheng Zhi Huang. Enzyme‐triggered fluorescence turn‐off/turn‐on of carbon dots for monitoring β‐glucosidase and its inhibitor in living cells. Luminescence 2020, 35 (2) , 222-230. https://doi.org/10.1002/bio.3717
  49. R. R. Deshmukh, A. S. Kalekar, S. R. Khaladkar, O. C. Maurya. Versatile 1-D Nanostructures for Green Energy Conversion and Storage Devices. 2020,,, 329-354. https://doi.org/10.1007/978-3-030-33774-2_14
  50. Chencheng Dong, Mingyang Xing, Juying Lei, Jinlong Zhang. TiO2/carbon composite nanomaterials for photocatalysis. 2020,,, 303-321. https://doi.org/10.1016/B978-0-12-819000-5.00019-9
  51. Haichao Yang, Yang Peng, Liangxing Jiang, Fangyang Liu, Ming Jia. Carbon quantum dots sensitized Bi2O3 photoanode with enhanced photoelectrocatalytic properties. Chemical Physics Letters 2020, 739 , 137025. https://doi.org/10.1016/j.cplett.2019.137025
  52. Jin-Sheng Lin, Yi-Wen Tsai, Khalilalrahman Dehvari, Chih-Ching Huang, Jia-Yaw Chang. A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging. Nanoscale 2019, 11 (43) , 20917-20931. https://doi.org/10.1039/C9NR05746C
  53. Akansha Mehta, Amit Mishra, Soumen Basu, Nagaraj P. Shetti, Kakarla Raghava Reddy, Tawfik A. Saleh, Tejraj M. Aminabhavi. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production – A review. Journal of Environmental Management 2019, 250 , 109486. https://doi.org/10.1016/j.jenvman.2019.109486
  54. Anupma Thakur, Praveen Kumar, Sudeshna Bagchi, R.K. Sinha, Pooja Devi. Green synthesized plasmonic nanostructure decorated TiO2 nanofibers for photoelectrochemical hydrogen production. Solar Energy 2019, 193 , 715-723. https://doi.org/10.1016/j.solener.2019.10.022
  55. Chaorui Xue, Dong Li, Yangsen Li, Ning Li, Fen Zhang, Yanzhong Wang, Qing Chang, Shengliang Hu. 3D-carbon dots decorated black TiO2 nanotube [email protected] foam with enhanced photothermal and photocatalytic activities. Ceramics International 2019, 45 (14) , 17512-17520. https://doi.org/10.1016/j.ceramint.2019.05.313
  56. Shangrong Chen, Changlin Li, Zhongyu Hou. A novel in situ synthesis of TiO2/CdS heterojunction for improving photoelectrochemical water splitting. International Journal of Hydrogen Energy 2019, 44 (47) , 25473-25485. https://doi.org/10.1016/j.ijhydene.2019.08.049
  57. Jun Zhang, Danyang Nan, Shuang Pan, Hui Liu, Huan Yang, Xiaoli Hu. N,S co-doped carbon dots as a dual-functional fluorescent sensor for sensitive detection of baicalein and temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 221 , 117161. https://doi.org/10.1016/j.saa.2019.117161
  58. Biswanath Dutta, Laura A. Achola, Ryan Clarke, Vinit Sharma, Junkai He, Peter Kerns, Steven L. Suib. Photocatalytic Transformation of Amines to Imines by Meso‐Porous Copper Sulfides. ChemCatChem 2019, 11 (17) , 4262-4265. https://doi.org/10.1002/cctc.201900673
  59. Naeem Ullah, Shunwei Chen, Ruiqin Zhang. Mechanism of the charge separation improvement in carbon-nanodot sensitized g-C3N4. Applied Surface Science 2019, 487 , 151-158. https://doi.org/10.1016/j.apsusc.2019.05.032
  60. Idris Sargin, Gizem Yanalak, Gulsin Arslan, Imren Hatay Patir. Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2019, 44 (39) , 21781-21789. https://doi.org/10.1016/j.ijhydene.2019.06.168
  61. Huamin Liu, Jing Luo, Yan Li, Quanjing Zhu, Lichao Fang, Hui Huang, Jun Deng, Shu Zhang, Jian Huang, Wenbin Liang, Junsong Zheng. A novel photoelectrochemical strategy based on quenching effect of CdS quantum dots on PTB7 as photoelectroactive material for methylated DNA detection. Journal of Electroanalytical Chemistry 2019, 847 , 113220. https://doi.org/10.1016/j.jelechem.2019.113220
  62. Hakimeh Javan, Elnaz Asghari, Habib Ashassi-Sorkhabi. Fabrication and electrochemical kinetics studies of reduced carbon quantum dots- supported palladium nanoparticles as bifunctional catalysts in methanol oxidation and hydrogen evolution reactions. Synthetic Metals 2019, 254 , 153-163. https://doi.org/10.1016/j.synthmet.2019.06.006
  63. Yulei Sui, Ling Wu, Shengkui Zhong, Qingxia Liu. Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution. Applied Surface Science 2019, 480 , 810-816. https://doi.org/10.1016/j.apsusc.2019.03.028
  64. Muhammad Adil Mansoor, Farazila Binti Yusof, Huang Nay-Ming. Optimization of conditions for improved solar energy harvesting application by hydrothermally grown TiO2 nanorods. Journal of the Iranian Chemical Society 2019, 16 (5) , 1113-1122. https://doi.org/10.1007/s13738-018-01586-y
  65. Bin Yang, Guoqiang Chen, Huiwen Tian, Lei Wen. Improvement of the Photoelectrochemical Performance of TiO2 Nanorod Array by PEDOT and Oxygen Vacancy Co-Modification. Catalysts 2019, 9 (5) , 407. https://doi.org/10.3390/catal9050407
  66. Vijay Bhooshan Kumar, Yifat Harel, Rivka Ben‐Ishay, Jean‐Paul Lellouche, Aharon Gedanken. Functionalization of WS 2 Nanotubes with Fluorescent C‐dots and Conductive Polythiophenes. Macromolecular Chemistry and Physics 2019, 220 (7) , 1800476. https://doi.org/10.1002/macp.201800476
  67. Guangwei Yu, Xiaofei Zhang, Yuanhua Sang, Zhengping Wang, Xiaobo Hu, Xiangang Xu, Luying Li, Hong Liu, Jian-Jun Wang. Synthesis and characterization of a coaxial carbon-TiO2 nanotube arrays film with spectral response from UV to NIR and its application in solar energy conversion. Electrochimica Acta 2019, 301 , 325-331. https://doi.org/10.1016/j.electacta.2019.01.175
  68. Vijay Bhooshan Kumar, Raj Kumar, Aharon Gedanken, Orit Shefi. Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrasonics Sonochemistry 2019, 52 , 205-213. https://doi.org/10.1016/j.ultsonch.2018.11.017
  69. Chao Huang, Juncao Bian, Yao Guo, Miaoyan Huang, Rui-Qin Zhang. Thermal vacuum de-oxygenation and post oxidation of TiO 2 nanorod arrays for enhanced photoelectrochemical properties. Journal of Materials Chemistry A 2019, 7 (10) , 5434-5441. https://doi.org/10.1039/C8TA11830B
  70. Chunlai Wang, Kun Yang, Xiaohui Wei, Sheng Ding, Feng Tian, Fan Li. One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance. Ceramics International 2018, 44 (18) , 22481-22488. https://doi.org/10.1016/j.ceramint.2018.09.017
  71. Jinhyun Kim, Sahng Ha Lee, Florian Tieves, Da Som Choi, Frank Hollmann, Caroline E. Paul, Chan Beum Park. Biocatalytic C=C Bond Reduction through Carbon Nanodot‐Sensitized Regeneration of NADH Analogues. Angewandte Chemie 2018, 130 (42) , 14021-14024. https://doi.org/10.1002/ange.201804409
  72. Jinhyun Kim, Sahng Ha Lee, Florian Tieves, Da Som Choi, Frank Hollmann, Caroline E. Paul, Chan Beum Park. Biocatalytic C=C Bond Reduction through Carbon Nanodot‐Sensitized Regeneration of NADH Analogues. Angewandte Chemie International Edition 2018, 57 (42) , 13825-13828. https://doi.org/10.1002/anie.201804409
  73. Ru Wang, Kang-Qiang Lu, Fan Zhang, Zi-Rong Tang, Yi-Jun Xu. 3D carbon quantum dots/graphene aerogel as a metal-free catalyst for enhanced photosensitization efficiency. Applied Catalysis B: Environmental 2018, 233 , 11-18. https://doi.org/10.1016/j.apcatb.2018.03.108
  74. Hui Mao, Zhunian Jin, Fangfang Zhang, Haihua He, Jiangyun Chen, Yongteng Qian. A high efficiency photocatalyst based on porous Bi-doped TiO2 composites. Ceramics International 2018, 44 (14) , 17535-17538. https://doi.org/10.1016/j.ceramint.2018.06.074
  75. Yuechen Zhai, Yi Wang, Di Li, Ding Zhou, Pengtao Jing, Dezhen Shen, Songnan Qu. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. Journal of Colloid and Interface Science 2018, 528 , 281-288. https://doi.org/10.1016/j.jcis.2018.05.101
  76. Shaohua Shen, Jie Chen, Meng Wang, Xia Sheng, Xiangyan Chen, Xinjian Feng, Samuel S. Mao. Titanium dioxide nanostructures for photoelectrochemical applications. Progress in Materials Science 2018, 98 , 299-385. https://doi.org/10.1016/j.pmatsci.2018.07.006
  77. Mengli Li, Min Wang, Longfeng Zhu, Yiming Li, Zheng Yan, Zhongquan Shen, Xuebo Cao. Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Applied Catalysis B: Environmental 2018, 231 , 269-276. https://doi.org/10.1016/j.apcatb.2018.03.027
  78. Yu-Ting Gong, Fang Yuan, Yuming Dong, Zaijun Li, Guang-Li Wang. Switched photoelectrochemistry of carbon dots for split-type immunoassay. Analytica Chimica Acta 2018, 1014 , 19-26. https://doi.org/10.1016/j.aca.2018.02.028
  79. Yaru Li, Zhongmin Liu, Yongchuan Wu, Jitao Chen, Jingyu Zhao, Fengmin Jin, Ping Na. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: Favorable role of carbon dots. Applied Catalysis B: Environmental 2018, 224 , 508-517. https://doi.org/10.1016/j.apcatb.2017.10.023
  80. Qizhao Wang, Tengjiao Niu, Lei Wang, Changxin Yan, Jingwei Huang, Jijuan He, Houde She, Bitao Su, Yinpu Bi. FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chemical Engineering Journal 2018, 337 , 506-514. https://doi.org/10.1016/j.cej.2017.12.126
  81. Xin Xie, Yunhua Yang, Yong-Hao Xiao, Xiaomo Huang, Qingshan Shi, Wei-De Zhang. Enhancement of photoelectrochemical activity of Fe2O3 nanowires decorated with carbon quantum dots. International Journal of Hydrogen Energy 2018, 43 (14) , 6954-6962. https://doi.org/10.1016/j.ijhydene.2018.02.099
  82. Yuanqing Sun, Junbin Tan, Huihui Lin, Xiaojie Wang, Jian Liu, Yunxing Li, Chuanxi Wang. A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light. Journal of Colloid and Interface Science 2018, 516 , 138-144. https://doi.org/10.1016/j.jcis.2018.01.031
  83. Shanshan Liu, Shulin Zhao, Wenwen Tu, Xiaoying Wang, Xiao Wang, Jianchun Bao, Yu Wang, Min Han, Zhihui Dai. A “Signal On” Photoelectrochemical Biosensor Based on [email protected],O-Codoped-Carbon Core-Shell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells. Chemistry - A European Journal 2018, 24 (15) , 3677-3682. https://doi.org/10.1002/chem.201704251
  84. Tanmoy Majumder, Saurab Dhar, Pinak Chakraborty, Kamalesh Debnath, Suvra Prakash Mondal. Advantages of ZnO nanotaper photoanodes in photoelectrochemical cells and graphene quantum dot sensitized solar cell applications. Journal of Electroanalytical Chemistry 2018, 813 , 92-101. https://doi.org/10.1016/j.jelechem.2018.02.015
  85. Shaohua Shen, Meng Wang, Xiangyan Chen. Rational Heterostructure Design for Photoelectrochemical Water Splitting. 2018,,, 467-526. https://doi.org/10.1002/9783527342501.ch16
  86. Lingyun Wang, Yu Wang, Patrik Schmuki, Stepan Kment, Radek Zboril. Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region. Electrochimica Acta 2018, 260 , 212-220. https://doi.org/10.1016/j.electacta.2017.11.106
  87. De-Wen Zhang, Nikolaos Papaioannou, Naomi Michelle David, Hui Luo, Hui Gao, Liviu Cristian Tanase, Thibault Degousée, Paolo Samorì, Andrei Sapelkin, Oliver Fenwick, Maria-Magdalena Titirici, Steffi Krause. Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons 2018, 5 (3) , 423-428. https://doi.org/10.1039/C7MH00784A
  88. Seyed Alireza Shahamirifard, Mehrorang Ghaedi. Design of novel and modified dual optode membrane based on carbon dots for both ultratrace copper( ii ) and cobalt( ii ): derivative spectrophotometric and central composite design study. New Journal of Chemistry 2018, 42 (4) , 2590-2604. https://doi.org/10.1039/C7NJ04695B
  89. S. A. R. Shahamirifard, M. Ghaedi, M. Montazerozohori, A. Masoudiasl. Carbon dots as absorbance promoter probes for detection of Cu( ii ) ions in aqueous solution: central composite design approach. Photochemical & Photobiological Sciences 2018, 17 (2) , 245-255. https://doi.org/10.1039/C7PP00454K
  90. Min Feng, Ying Liu, Ning Wei, Shaochen Ma, Zhaoxia Li, Hongguang Li, Shougang Chen, Jian Liu, Daoai Wang. Alumina anchored CQDs/TiO 2 nanorods by atomic layer deposition for efficient photoelectrochemical water splitting under solar light. Journal of Materials Chemistry A 2018, 6 (37) , 18293-18303. https://doi.org/10.1039/C8TA05092A
  91. Fang Wang, Da Chen, Zijun Hu, Laishun Qin, Xingguo Sun, Yuexiang Huang. In situ decoration of CuSCN nanorod arrays with carbon quantum dots for highly efficient photoelectrochemical performance. Carbon 2017, 125 , 344-351. https://doi.org/10.1016/j.carbon.2017.09.073
  92. Run Shi, Zi Li, Huijun Yu, Lu Shang, Chao Zhou, Geoffrey I. N. Waterhouse, Li-Zhu Wu, Tierui Zhang. Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO 2 Composites for Photocatalytic Hydrogen Evolution. ChemSusChem 2017, 10 (22) , 4650-4656. https://doi.org/10.1002/cssc.201700943
  93. Hayoung Choi, Hyukhyun Ryu, Won-Jae Lee. Study of the morphological, optical, structural and photoelectrochemical properties of TiO2 nanorods grown with various precursor concentrations. Electronic Materials Letters 2017, 13 (6) , 497-504. https://doi.org/10.1007/s13391-017-6390-4
  94. Fanyong Yan, Qianghua Ye, Jinxia Xu, Juanjuan He, Li Chen, Xuguang Zhou. Carbon dots-bromoacetyl bromide conjugates as fluorescence probe for the detection of glutathione over cysteine and homocysteine. Sensors and Actuators B: Chemical 2017, 251 , 753-762. https://doi.org/10.1016/j.snb.2017.05.050
  95. Qizhao Wang, Jijuan He, Yanbiao Shi, Shuling Zhang, Tengjiao Niu, Houde She, Yingpu Bi, Ziqiang Lei. Synthesis of MFe 2 O 4 (M = Ni, Co)/BiVO 4 film for photolectrochemical hydrogen production activity. Applied Catalysis B: Environmental 2017, 214 , 158-167. https://doi.org/10.1016/j.apcatb.2017.05.044
  96. Yuechen Zhai, Ding Zhou, Pengtao Jing, Di Li, Haibo Zeng, Songnan Qu. Preparation and application of [email protected] composite phosphors with strong green emission. Journal of Colloid and Interface Science 2017, 497 , 165-171. https://doi.org/10.1016/j.jcis.2017.03.007
  97. Yuhang Wang, Chunmei Li, Jiaojun Tan, Wenbin Wang, Qiuyu Zhang, Hongxia Yan. Synthesis of magnetically separable core–shell structured NixFe1−[email protected] nanoparticles photocatalysts for the degradation of organic dyes. Journal of Porous Materials 2017, 24 (3) , 639-646. https://doi.org/10.1007/s10934-016-0300-2
  98. Xiaowei Lv, Minglei Cao, Weina Shi, Mingkui Wang, Yan Shen. A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application. Carbon 2017, 117 , 343-350. https://doi.org/10.1016/j.carbon.2017.02.096
  99. Hana Kmentova, Stepan Kment, Lingyun Wang, Sarka Pausova, Tereza Vaclavu, Radomir Kuzel, Hyungkyu Han, Zdenek Hubicka, Martin Zlamal, Jiri Olejnicek, Martin Cada, Josef Krysa, Radek Zboril. Photoelectrochemical and structural properties of TiO 2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catalysis Today 2017, 287 , 130-136. https://doi.org/10.1016/j.cattod.2016.10.022
  100. Juncao Bian, Lifei Xi, Jianfu Li, Ze Xiong, Chao Huang, Kathrin M. Lange, Jinyao Tang, Menny Shalom, Rui-Qin Zhang. C=C π Bond Modified Graphitic Carbon Nitride Films for Enhanced Photoelectrochemical Cell Performance. Chemistry - An Asian Journal 2017, 12 (9) , 1005-1012. https://doi.org/10.1002/asia.201700178
Load all citations