Pulsed-Laser Deposition of Nanostructured Iron Oxide Catalysts for Efficient Water Oxidation

View Author Information
Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo (Trento), Italy
Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
§ Istituto ENI Donegani per le Energie Non Convenzionali, Via Fauser 4, 28100 Novara, Italy
Cite this: ACS Appl. Mater. Interfaces 2014, 6, 9, 6186–6190
Publication Date (Web):April 17, 2014
https://doi.org/10.1021/am501021e
Copyright © 2014 American Chemical Society
Article Views
983
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Amorphous iron oxide nanoparticles were synthesized by pulsed-laser deposition (PLD) for functionalization of indium–tin oxide surfaces, resulting in electrodes capable of efficient catalysis in water oxidation. These electrodes, based on earth-abundant and nonhazardous iron metal, are able to sustain high current densities (up to 20 mA/cm2) at reasonably low applied potential (1.64 V at pH 11.8 vs reversible hydrogen electrode) for more than 1 h when employed as anodes for electrochemical water oxidation. The good catalytic performance proves the validity of PLD as a method to prepare nanostructured solid-state materials for catalysis, enabling control over critical properties such as surface coverage and morphology.

Supporting Information

ARTICLE SECTIONS
Jump To

Detailed experimental procedures, additional SEM data, XPS, UV–vis, and GIXD data for ITO and iron oxide, as well as longer chronoamperometry and in-depth IS analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 35 publications.

  1. Tahta Amrillah, Che Azurahanim Che Abdullah, Dita Puspita Sari, Zuhra Mumtazah, Fayza Putri Adila, Fahmi Astuti. Crafting a Next-Generation Device Using Iron Oxide Thin Film: A Review. Crystal Growth & Design 2021, Article ASAP.
  2. Michele Orlandi, Serena Berardi, Alberto Mazzi, Stefano Caramori, Rita Boaretto, Francesco Nart, Carlo A. Bignozzi, Nicola Bazzanella, Nainesh Patel, Antonio Miotello. Rational Design Combining Morphology and Charge-Dynamic for Hematite/Nickel–Iron Oxide Thin-Layer Photoanodes: Insights into the Role of the Absorber/Catalyst Junction. ACS Applied Materials & Interfaces 2019, 11 (51) , 48002-48012. https://doi.org/10.1021/acsami.9b19790
  3. Jianying Wang, Shangshang Zuo, Guangfeng Wei, Yanli Niu, Lixia Guo, Zuofeng Chen. Investigation of Fe-Based Integrated Electrodes for Water Oxidation in Neutral and Alkaline Solutions. The Journal of Physical Chemistry C 2019, 123 (19) , 12313-12320. https://doi.org/10.1021/acs.jpcc.9b01974
  4. Sweta Shrestha, Prabir K. Dutta. Photochemical Water Oxidation in a Buffered Tris(2,2′-bipyridyl)ruthenium–Persulfate System Using Iron(III)-Modified Potassium Manganese Oxides as Catalysts. ACS Omega 2018, 3 (9) , 11972-11981. https://doi.org/10.1021/acsomega.8b01918
  5. Vasily I. Mikhaylov, Elena F. Krivoshapkina, Alexander L. Trigub, Valery V. Stalugin, Pavel V. Krivoshapkin. Detection and Adsorption of Cr(VI) ions by Mesoporous Fe–Alumina Films. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 9283-9292. https://doi.org/10.1021/acssuschemeng.8b01598
  6. Michele Orlandi, Nicola Dalle Carbonare, Stefano Caramori, Carlo A. Bignozzi, Serena Berardi, Alberto Mazzi, Zakaria El Koura, Nicola Bazzanella, Nainesh Patel, and Antonio Miotello . Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. ACS Applied Materials & Interfaces 2016, 8 (31) , 20003-20011. https://doi.org/10.1021/acsami.6b05135
  7. Jihai Zhang, Tao Zhou, Liang Wen, Jing Zhao, and Aiming Zhang . A Simple Way to Achieve Legible and Local Controllable Patterning for Polymers Based on a Near-Infrared Pulsed Laser. ACS Applied Materials & Interfaces 2016, 8 (3) , 1977-1983. https://doi.org/10.1021/acsami.5b10243
  8. Luca Passoni, Luigino Criante, Francesco Fumagalli, Francesco Scotognella, Guglielmo Lanzani, and Fabio Di Fonzo . Self-Assembled Hierarchical Nanostructures for High-Efficiency Porous Photonic Crystals. ACS Nano 2014, 8 (12) , 12167-12174. https://doi.org/10.1021/nn5037202
  9. Artur Kościuszko, Piotr Czyżewski, Mateusz Rojewski. Modification of Laser Marking Ability and Properties of Polypropylene Using Silica Waste as a Filler. Materials 2021, 14 (22) , 6961. https://doi.org/10.3390/ma14226961
  10. Michaela Plevová, Jaromír Hnát, Karel Bouzek. Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources 2021, 507 , 230072. https://doi.org/10.1016/j.jpowsour.2021.230072
  11. Li Li, Jinyang Zhang, Yuyan Wang, Fakhr Uz Zaman, Yaming Zhang, Linrui Hou, Changzhou Yuan. Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges. InfoMat 2021, 196 https://doi.org/10.1002/inf2.12218
  12. Y. Popat, M. Orlandi, S. Gupta, N. Bazzanella, S. Pillai, M. K. Patel, A. Miotello, N. Patel. Morphological and Elemental Investigations on Co–Fe–B–O Thin Films Deposited by Pulsed Laser Deposition for Alkaline Water Oxidation: Charge Exchange Efficiency as the Prevailing Factor in Comparison with the Adsorption Process. Catalysis Letters 2021, 229 https://doi.org/10.1007/s10562-021-03642-4
  13. Elisa I. García-López, Giuseppe Marcì. Preparation of photocatalysts by physical methodologies. 2021,,, 37-62. https://doi.org/10.1016/B978-0-12-821859-4.00007-6
  14. Wenzheng Zhao, Daozhi Shen, Guisheng Zou, Guanlei Zhao, Hailin Bai, Lei Liu, Yunhong Zhou. Super black iron nanostructures with broadband ultralow reflectance for efficient photothermal conversion. Applied Surface Science 2020, 521 , 146388. https://doi.org/10.1016/j.apsusc.2020.146388
  15. Carles Ros, Teresa Andreu, Joan R. Morante. Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. Journal of Materials Chemistry A 2020, 8 (21) , 10625-10669. https://doi.org/10.1039/D0TA02755C
  16. Huang Zhou, Nannan Zhang, Hui Bai, Hai Ming, Qin Zhang, Jun Du, Xing Fan, Changyuan Tao. A pulse modulatable self-oscillation kinetics for water oxidation at large current on manganese catalyst. Electrochimica Acta 2020, 337 , 135798. https://doi.org/10.1016/j.electacta.2020.135798
  17. Elaheh Pousaneh, Marcus Korb, Khaybar Assim, Tobias Rüffer, Volodymyr Dzhagan, Julian Noll, Dietrich R.T. Zahn, Stefan E. Schulz, Heinrich Lang. Iron(III) β-diketonates: CVD precursors for iron oxide film formation. Inorganica Chimica Acta 2019, 487 , 1-8. https://doi.org/10.1016/j.ica.2018.11.029
  18. Marianna Bellardita, Agatino Di Paola, Sedat Yurdakal, Leonardo Palmisano. Preparation of Catalysts and Photocatalysts Used for Similar Processes. 2019,,, 25-56. https://doi.org/10.1016/B978-0-444-64015-4.00002-X
  19. Raja Arumugam Senthil, Junqing Pan, Xiaojian Yang, Yanzhi Sun. Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy 2018, 43 (48) , 21824-21834. https://doi.org/10.1016/j.ijhydene.2018.10.015
  20. Alberto Mazzi, Michele Orlandi, Nainesh Patel, Antonio Miotello. Laser-Inducing Extreme Thermodynamic Conditions in Condensed Matter to Produce Nanomaterials for Catalysis and the Photocatalysis. 2018,,, 89-106. https://doi.org/10.1007/978-3-319-96845-2_4
  21. U.P.M. Ashik, Shinji Kudo, Jun-ichiro Hayashi. An Overview of Metal Oxide Nanostructures. 2018,,, 19-57. https://doi.org/10.1016/B978-0-08-101975-7.00002-6
  22. Raju Edla, Andrea Tonezzer, Michele Orlandi, Nainesh Patel, Rohan Fernandes, Nicola Bazzanella, Kalyani Date, D.C. Kothari, Antonio Miotello. 3D hierarchical nanostructures of iron oxides coatings prepared by pulsed laser deposition for photocatalytic water purification. Applied Catalysis B: Environmental 2017, 219 , 401-411. https://doi.org/10.1016/j.apcatb.2017.07.063
  23. Ruijing Wang, Peng Sun, Huanwen Wang, Xuefeng Wang. Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction. Electrochimica Acta 2017, 258 , 876-882. https://doi.org/10.1016/j.electacta.2017.11.138
  24. Weiqiang Tang, Shangshang Zuo, Jianying Wang, Yongli Mi, Zuofeng Chen. A NiFe-Based Hierarchically Structured 3D Electrode by Hydrothermal Deposition for Highly Efficient Water Oxidation. Electrochimica Acta 2017, 247 , 835-842. https://doi.org/10.1016/j.electacta.2017.07.075
  25. Dingyi Guo, Jing Qi, Wei Zhang, Rui Cao. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation. ChemSusChem 2017, 10 (2) , 394-400. https://doi.org/10.1002/cssc.201601151
  26. Mohammad Mahdi Najafpour, Seyedeh Maedeh Hosseini. Toward a nanosized iron based water-oxidizing catalyst. International Journal of Hydrogen Energy 2016, 41 (48) , 22635-22642. https://doi.org/10.1016/j.ijhydene.2016.08.106
  27. Michele Orlandi, Alberto Mazzi, Giacomo Arban, Nicola Bazzanella, Paolo Rudatis, Stefano Caramori, Nainesh Patel, Rohan Fernandes, Carlo A. Bignozzi, Antonio Miotello. On the effect of Sn-doping in hematite anodes for oxygen evolution. Electrochimica Acta 2016, 214 , 345-353. https://doi.org/10.1016/j.electacta.2016.08.046
  28. Waleed M. Omymen, Ali S. Ebshish, Branimir Z. Jugović, Tomislav Lj. Trišović, Milica M. Gvozdenović, Branimir N. Grgur. Photoelectochemical behavior of TiO2-NT’s modified with SILAR deposited iron oxide. Electrochimica Acta 2016, 203 , 136-143. https://doi.org/10.1016/j.electacta.2016.04.038
  29. Erica Pizzolato, Stefano Scaramuzza, Francesco Carraro, Alessia Sartori, Stefano Agnoli, Vincenzo Amendola, Marcella Bonchio, Andrea Sartorel. Water oxidation electrocatalysis with iron oxide nanoparticles prepared via laser ablation. Journal of Energy Chemistry 2016, 25 (2) , 246-250. https://doi.org/10.1016/j.jechem.2015.12.004
  30. A. Mazzi, N. Bazzanella, M. Orlandi, R. Edla, N. Patel, R. Fernandes, A. Miotello. Physical vapor deposition of mixed-metal oxides based on Fe, Co and Ni as water oxidation catalysts. Materials Science in Semiconductor Processing 2016, 42 , 155-158. https://doi.org/10.1016/j.mssp.2015.08.006
  31. Chao Wang, Yiqian Wang, Xuehua Liu, Huaiwen Yang, Jirong Sun, Lu Yuan, Guangwen Zhou, Federico Rosei. Structure versus properties in α -Fe 2 O 3 nanowires and nanoblades. Nanotechnology 2016, 27 (3) , 035702. https://doi.org/10.1088/0957-4484/27/3/035702
  32. Matteo Schenato, Cristy Leonor Azanza Ricardo, Paolo Scardi, Raju Edla, Antonio Miotello, Michele Orlandi, Rachel Morrish. Effect of annealing and nanostructuring on pulsed laser deposited WS2 for HER catalysis. Applied Catalysis A: General 2016, 510 , 156-160. https://doi.org/10.1016/j.apcata.2015.11.009
  33. Chao Su, Tao Yang, Wei Zhou, Wei Wang, Xiaomin Xu, Zongping Shao. Pt/C–LiCoO 2 composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A 2016, 4 (12) , 4516-4524. https://doi.org/10.1039/C5TA10492K
  34. Debarati Roy Chowdhury, Leone Spiccia, S. S. Amritphale, Amit Paul, Archana Singh. A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions. Journal of Materials Chemistry A 2016, 4 (10) , 3655-3660. https://doi.org/10.1039/C6TA00313C
  35. Enrico Binetti, Zakaria El Koura, Nicola Bazzanella, Gianfranco Carotenuto, Antonio Miotello. Synthesis of mesoporous ITO/TiO2 electrodes for optoelectronics. Materials Letters 2015, 139 , 355-358. https://doi.org/10.1016/j.matlet.2014.10.120