RETURN TO ISSUEPREVResearch ArticleNEXT

Flexible, Transferable, and Thermal-Durable Dye-Sensitized Solar Cell Photoanode Consisting of TiO2 Nanoparticles and Electrospun TiO2/SiO2 Nanofibers

View Author Information
Program of Nanoscience and Nanoengineering, Program of Materials Engineering and Science, and §Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
*Tel.: 605-394-1229. Fax: 605-394-1232. E-mail: [email protected]
*Tel.: 605-394-2447. Fax: 605-394-1232. E-mail: [email protected]
Cite this: ACS Appl. Mater. Interfaces 2014, 6, 18, 15925–15932
Publication Date (Web):August 27, 2014
https://doi.org/10.1021/am503542g
Copyright © 2014 American Chemical Society
Article Views
1754
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Flexible dye-sensitized solar cells (DSSCs) often face the dilemma of the high temperature sintering of TiO2 photoanode to achieve superior performance and low thermal durability of the flexible substrate. Herein, we report a photoanode that combines the flexibility and high-temperature durability, which circumvents the long-standing challenge in flexible photoanode of DSSC. A hybrid mat consisting of anatase-phased TiO2 nanofibers and structurally amorphous SiO2 nanofibers is first prepared via the method of dual-spinneret electrospinning followed by pyrolysis. The hybrid fibrous mat is then impregnated with binder-free TiO2 nanoparticles and sintered at 480 °C to form a flexible composite photoanode for DSSC. The DSSC based on this composite photoanode achieves a power conversion efficiency of 6.74 ± 0.33% on FTO/glass substrate. Device characterization and phototransient measurement, dye-loading experiment, and structural characterization indicate that, in the composite photoanode, the TiO2 nanoparticles enhance the dye loading, the TiO2 nanofibers improve the electron transport, and the SiO2 nanofibers provide the mechanical strength/flexibility. The freestanding composite mat of TiO2 nanoparticles and electrospun TiO2/SiO2 nanofibers, as well as the preparation methods reported herein, not only is ideal for flexible DSSCs, but also can be applied for a broad range of flexible and low-cost energy conversion devices.

Supporting Information

ARTICLE SECTIONS
Jump To

Energy-dispersive X-ray spectrum of the hybrid nanofibrous mat of TiO2/SiO2; optical images of hybrid nanofibrous mat of TiO2/SiO2; optical images of the bending test of the neat TiO2 nanofibrous mat and the hybrid TiO2/SiO2 nanofibrous mat; TEM images of TiO2 nanoparticles and TiO2/SiO2 nanofibers; optical images of preparation of photoanode film based on binder-free TiO2 nanoparticles and the bending test of the hybrid mat on PET substrate; SEM images of the composite of hybrid nanofibrous mat and TiO2 nanoparticles on FTO substrate or the freestanding composite mat; optical images of four devices; SEM images of the composite photoanode of hybrid nanofibrous TiO2/SiO2 mat and TiO2 nanoparticles sintered at 150 or 480 °C; detailed discussion on the effect of sintering temperature; procedure for dye loading measurement. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 37 publications.

  1. Daibing Luo, Baoshun Liu, Akira Fujishima, Kazuya Nakata. TiO2 Nanotube Arrays Formed on Ti Meshes with Periodically Arranged Holes for Flexible Dye-Sensitized Solar Cells. ACS Applied Nano Materials 2019, 2 (6) , 3943-3950. https://doi.org/10.1021/acsanm.9b00849
  2. Yuelong Li, Xiaodan Zhang, Min Jae Ko. Direct Comparison of Electron Transport and Recombination Behaviors of Dye-Sensitized Solar Cells Prepared Using Different Sintering Processes. ACS Sustainable Chemistry & Engineering 2018, 6 (5) , 7193-7198. https://doi.org/10.1021/acssuschemeng.8b01351
  3. Sagar D. Delekar, Ananta G. Dhodamani, Krantiveer V. More, Tukaram D. Dongale, Rajanish K. Kamat, Steve F. A. Acquah, Naresh S. Dalal, Dillip K. Panda. Structural and Optical Properties of Nanocrystalline TiO2 with Multiwalled Carbon Nanotubes and Its Photovoltaic Studies Using Ru(II) Sensitizers. ACS Omega 2018, 3 (3) , 2743-2756. https://doi.org/10.1021/acsomega.7b01316
  4. Fan Zheng, Zhengtao Zhu. Flexible, Freestanding, and Functional SiO2 Nanofibrous Mat for Dye-Sensitized Solar Cell and Photocatalytic Dye Degradation. ACS Applied Nano Materials 2018, 1 (3) , 1141-1149. https://doi.org/10.1021/acsanm.7b00316
  5. Zhiguo Cheng, Kui Cheng, and Wenjian Weng . SiO2/TiO2 Nanocomposite Films on Polystyrene for Light-Induced Cell Detachment Application. ACS Applied Materials & Interfaces 2017, 9 (3) , 2130-2137. https://doi.org/10.1021/acsami.6b14182
  6. Maria A. Torres Arango, Alana S. Valença de Andrade, Domenic T. Cipollone, Lynnora O. Grant, Dimitris Korakakis, and Konstantinos A. Sierros . Robotic Deposition of TiO2 Films on Flexible Substrates from Hybrid Inks: Investigation of Synthesis–Processing–Microstructure–Photocatalytic Relationships. ACS Applied Materials & Interfaces 2016, 8 (37) , 24659-24670. https://doi.org/10.1021/acsami.6b05535
  7. Yuping Sun, Fen Li, Xiaoqiang Liu, Tengteng Qin, Tongtong Li, Hejie Zheng, Subbiah Alwarappan, Kostya (Ken) Ostrikov. Inter-lamellar nanostructures-by-design for high-performance dual-photoelectrode photofuel cell based genosensor. Sensors and Actuators B: Chemical 2022, 350 , 130838. https://doi.org/10.1016/j.snb.2021.130838
  8. Rafaela S. Andre, Murilo H.M. Facure, Luiza A. Mercante, Daniel S. Correa. Electronic nose based on hybrid free-standing inorganic mats for meat spoilage monitoring. Sensors and Actuators B: Chemical 2021, 55 , 131114. https://doi.org/10.1016/j.snb.2021.131114
  9. Jun Wang, Wanlin Fu, Wanlin Xu, Min Wu, Yueming Sun, Yunqian Dai. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection. Chemical Research in Chinese Universities 2021, 37 (3) , 366-378. https://doi.org/10.1007/s40242-021-1110-x
  10. Ken Yoshinaga, Yuji Horie, Akimasa Ichigi, Muhammad Zobayer Bin Mukhlish, Teruaki Nomiyama. Conductive self-standing nanofiber fabric of fluorine-doped tin oxide prepared by electrospinning for use in flexible electronics. Journal of Materials Science: Materials in Electronics 2021, 32 (9) , 11823-11834. https://doi.org/10.1007/s10854-021-05812-x
  11. Dapeng Cao, Anchen Wang, Xiaohui Yu, Huiming Yin, Jingbo Zhang, Baoxiu Mi, Zhiqiang Gao. Room-temperature preparation of TiO2/graphene composite photoanodes for efficient dye-sensitized solar cells. Journal of Colloid and Interface Science 2021, 586 , 326-334. https://doi.org/10.1016/j.jcis.2020.10.096
  12. Gibin George, T. Senthil, Zhiping Luo, S. Anandhan. Sol-gel electrospinning of diverse ceramic nanofibers and their potential applications. 2021,,, 689-764. https://doi.org/10.1016/B978-0-12-819611-3.00022-4
  13. Junfeng Wang, Haojie Xu, Yuanping Huo, Yuting Wang, Mingdong Dong. Progress of electrospray and electrospinning in energy applications. Nanotechnology 2020, 31 (13) , 132001. https://doi.org/10.1088/1361-6528/ab52bb
  14. Jin Zhang, Alfred Mensah, Christopher Narh, Xuebin Hou, Yibing Cai, Hui Qiao, Qufu Wei. Fabrication of flexible TiO2-SiO2 composite nanofibers with variable structure as efficient adsorbent. Ceramics International 2020, 46 (3) , 3543-3549. https://doi.org/10.1016/j.ceramint.2019.10.071
  15. Xue Yang, Yichun Ding, Zhigang Shen, Qian Sun, Fan Zheng, Hao Fong, Zhengtao Zhu, Jie Liu, Jieying Liang, Xiaoxu Wang. High-strength electrospun carbon nanofibrous mats prepared via rapid stabilization as frameworks for Li-ion battery electrodes. Journal of Materials Science 2019, 54 (17) , 11574-11584. https://doi.org/10.1007/s10853-019-03698-z
  16. S.N. Sadikin, M.Y.A. Rahman, A.A. Umar, T.H.T. Aziz. Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode. Superlattices and Microstructures 2019, 128 , 92-98. https://doi.org/10.1016/j.spmi.2019.01.014
  17. M. Y. A. Rahman, S. A. M. Samsuri, A. A. Umar. Dye-sensitized solar cell utilizing TiO2–sulphur composite photoanode: influence of sulphur precursor content. SN Applied Sciences 2019, 1 (3) https://doi.org/10.1007/s42452-019-0262-5
  18. Xiaojie Yang, Li Zhao, Kangle Lv, Binghai Dong, Shimin Wang. Enhanced efficiency for dye-sensitized solar cells with ZrO2 as a barrier layer on TiO2 nanofibers. Applied Surface Science 2019, 469 , 821-828. https://doi.org/10.1016/j.apsusc.2018.10.242
  19. Ramazan Asmatulu, Waseem S. Khan. Electrospun nanofibers for energy applications. 2019,,, 111-133. https://doi.org/10.1016/B978-0-12-813914-1.00006-7
  20. Yuting Cai, Jun Song, Xiaoyan Liu, Xia Yin, Xiaoran Li, Jianyong Yu, Bin Ding. Soft [email protected] 2 nanofibrous membranes with hierarchical heterostructures as efficient and recyclable visible-light photocatalysts. Environmental Science: Nano 2018, 5 (11) , 2631-2640. https://doi.org/10.1039/C8EN00866C
  21. Hui Liu, Zhi-Guang Zhang, Xiao-Xiong Wang, Guang-Di Nie, Jun Zhang, Shan-Xiang Zhang, Ning Cao, Shi-Ying Yan, Yun-Ze Long. Highly flexible Fe2O3/TiO2 composite nanofibers for photocatalysis and utraviolet detection. Journal of Physics and Chemistry of Solids 2018, 121 , 236-246. https://doi.org/10.1016/j.jpcs.2018.05.019
  22. He Lian, Zhaoxu Meng. A novel and highly photocatalytic “TiO2wallpaper” made of electrospun TiO2/bioglass hybrid nanofiber. Materials Science in Semiconductor Processing 2018, 80 , 68-73. https://doi.org/10.1016/j.mssp.2018.02.019
  23. Wen Liu, Bin Shi, Yong Wang, Yong Li, Haijuan Pei, Rui Guo, Xuwang Hou, Kai Zhu, Jingying Xie. A Flexible, Binder-Free Graphene Oxide/Copper Sulfides Film for High-Performance Sodium Ion Batteries. ChemistrySelect 2018, 3 (20) , 5608-5613. https://doi.org/10.1002/slct.201800401
  24. Fan Zheng, Zhengtao Zhu. Preparation of the [email protected] nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells. Materials Chemistry and Physics 2018, 208 , 35-40. https://doi.org/10.1016/j.matchemphys.2018.01.021
  25. Qingxin Nie, Zengyuan Pang, Dawei Li, Huimin Zhou, Fenglin Huang, Yibing Cai, Qufu Wei. Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 537 , 532-539. https://doi.org/10.1016/j.colsurfa.2017.10.065
  26. Jun Song, Xueqin Wang, Jianhua Yan, Jianyong Yu, Gang Sun, Bin Ding. Soft Zr-doped TiO2 Nanofibrous Membranes with Enhanced Photocatalytic Activity for Water Purification. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-01969-w
  27. Yingzhi Chen, Aoxiang Li, Ming Jin, Lu-Ning Wang, Zheng-Hong Huang. Inorganic Nanotube/Organic Nanoparticle Hybrids for Enhanced Photoelectrochemical Properties. Journal of Materials Science & Technology 2017, 33 (7) , 728-733. https://doi.org/10.1016/j.jmst.2016.08.030
  28. Zhuang Li, Ruigang Liu, Yong Huang, Ji Zhou. Effects of reversed arrangement of electrodes on electrospun nanofibers. Journal of Applied Polymer Science 2017, 134 (15) https://doi.org/10.1002/app.44687
  29. Arto Hiltunen, Kimmo Lahtonen, Jesse Saari, Anniina Ojanperä, Essi Sarlin, Holger Wondraczek, Alexander Efimov, Kimmo Kaunisto, Paola Vivo, Chiara Maccato, Davide Barreca, Pedro Fardim, Nikolai Tkachenko, Mika Valden, Helge Lemmetyinen. Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structures. ChemPhysChem 2017, 18 (1) , 64-71. https://doi.org/10.1002/cphc.201600930
  30. Xiaoli Mao, Ru Zhou, Shouwei Zhang, Liping Ding, Lei Wan, Shengxian Qin, Zhesheng Chen, Jinzhang Xu, Shiding Miao. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep19390
  31. Xiaoxu Wang, Min Xi, Xinhou Wang, Hao Fong, Zhengtao Zhu. Flexible composite felt of electrospun TiO2 and SiO2 nanofibers infused with TiO2 nanoparticles for lithium ion battery anode. Electrochimica Acta 2016, 190 , 811-816. https://doi.org/10.1016/j.electacta.2015.12.123
  32. Yingzhi Chen, Aoxiang Li, Xiaoqi Yue, Lu-Ning Wang, Zheng-Hong Huang, Feiyu Kang, Alex A. Volinsky. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale 2016, 8 (27) , 13228-13235. https://doi.org/10.1039/C5NR07893H
  33. Pei Cao, Guowei Zhou, Yixian Ren, Hong Xiao. Fabrication and photoactivity of short rod-shaped mesoporous SiO 2 @TiO 2 composites with TiO 2 shell. RSC Advances 2016, 6 (8) , 6551-6561. https://doi.org/10.1039/C5RA18418E
  34. Damien Joly, Ji-Won Jung, Il-Doo Kim, Renaud Demadrille. Electrospun materials for solar energy conversion: innovations and trends. Journal of Materials Chemistry C 2016, 4 (43) , 10173-10197. https://doi.org/10.1039/C6TC00702C
  35. Xiaoxu Wang, Min Xi, Fan Zheng, Bin Ding, Hao Fong, Zhengtao Zhu. Reduction of crack formation in TiO 2 mesoporous films prepared from binder-free nanoparticle pastes via incorporation of electrospun SiO 2 or TiO 2 nanofibers for dye-sensitized solar cells. Nano Energy 2015, 12 , 794-800. https://doi.org/10.1016/j.nanoen.2015.01.045
  36. Renzhong Zhang, Xueqin Wang, Jun Song, Yang Si, Xingmin Zhuang, Jianyong Yu, Bin Ding. In situ synthesis of flexible hierarchical TiO 2 nanofibrous membranes with enhanced photocatalytic activity. Journal of Materials Chemistry A 2015, 3 (44) , 22136-22144. https://doi.org/10.1039/C5TA05442G
  37. Xiaomin Shi, Weiping Zhou, Delong Ma, Qian Ma, Denzel Bridges, Ying Ma, Anming Hu. Electrospinning of Nanofibers and Their Applications for Energy Devices. Journal of Nanomaterials 2015, 2015 , 1-20. https://doi.org/10.1155/2015/140716