RETURN TO ISSUEPREVResearch ArticleNEXT

Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO2 Nanotube Arrays by Surface Passivation

View Author Information
Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
§ University of Chinese Academy of Sciences, Beijing 100039, China
Shanghai Key Laboratory of Special Artificial Microstructure Materials, and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Cite this: ACS Appl. Mater. Interfaces 2014, 6, 19, 17053–17058
Publication Date (Web):September 8, 2014
https://doi.org/10.1021/am504662w
Copyright © 2014 American Chemical Society
Article Views
1776
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)

Abstract

One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

Cited By


This article is cited by 92 publications.

  1. Shikai Cao, Wenqiang Huang, Lizhen Wu, Mengmeng Tian, Ye Song. On the Interfacial Adhesion between TiO2 Nanotube Array Layer and Ti Substrate. Langmuir 2018, 34 (46) , 13888-13896. https://doi.org/10.1021/acs.langmuir.8b03408
  2. Yi-Hsuan Chiu, Ting-Hsuan Lai, Chun-Yi Chen, Ping-Yen Hsieh, Kazunari Ozasa, Mitsuo Niinomi, Kiyoshi Okada, Tso-Fu Mark Chang, Nobuhiro Matsushita, Masato Sone, Yung-Jung Hsu. Fully Depleted Ti–Nb–Ta–Zr–O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. ACS Applied Materials & Interfaces 2018, 10 (27) , 22997-23008. https://doi.org/10.1021/acsami.8b00727
  3. Xiaoyun Yu and Kevin Sivula . Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe2. Chemistry of Materials 2017, 29 (16) , 6863-6875. https://doi.org/10.1021/acs.chemmater.7b02018
  4. Qian Cheng, Manpuneet K. Benipal, Qianlang Liu, Xingye Wang, Peter A. Crozier, Candace K. Chan, and Robert J. Nemanich . Al2O3 and SiO2 Atomic Layer Deposition Layers on ZnO Photoanodes and Degradation Mechanisms. ACS Applied Materials & Interfaces 2017, 9 (19) , 16138-16147. https://doi.org/10.1021/acsami.7b01274
  5. Raul Zazpe, Jan Prikryl, Viera Gärtnerova, Katerina Nechvilova, Ludvik Benes, Lukas Strizik, Ales Jäger, Markus Bosund, Hanna Sopha, and Jan M. Macak . Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers. Langmuir 2017, 33 (13) , 3208-3216. https://doi.org/10.1021/acs.langmuir.7b00187
  6. Zhenzhen Li, Yanmei Xin, Wenlong Wu, Baihe Fu, and Zhonghai Zhang . Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO2 Nanotube Photonic Crystals. ACS Applied Materials & Interfaces 2016, 8 (45) , 30972-30979. https://doi.org/10.1021/acsami.6b10688
  7. Raul Zazpe, Martin Knaut, Hanna Sopha, Ludek Hromadko, Matthias Albert, Jan Prikryl, V. Gärtnerová, Johann W. Bartha, and Jan M. Macak . Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32 (41) , 10551-10558. https://doi.org/10.1021/acs.langmuir.6b03119
  8. Manpuneet Kaur, Qianlang Liu, Peter A. Crozier, and Robert J. Nemanich . Photochemical Reaction Patterns on Heterostructures of ZnO on Periodically Poled Lithium Niobate. ACS Applied Materials & Interfaces 2016, 8 (39) , 26365-26373. https://doi.org/10.1021/acsami.6b06060
  9. Sainan Zhang, Tongtong Yu, Ying Liu, Min Feng, Xiaojuan Li, Weixiang Sun, Daoai Wang. A new SiP QDs/TiO2 NRs composite catalyst with Al2O3 passivation layer for enhanced photoelectrochemical water splitting. Chemical Engineering Journal 2022, 429 , 132248. https://doi.org/10.1016/j.cej.2021.132248
  10. Sameen Ilyas, Ishrat Sultana, Rabia Nasar, Imran Hanif, S. Hassan M. Jafri, M. Naveed-Ul- Haq, Aamir Razaq. Tuning of electrical conduction properties of natural fibers and TiO2 based flexible paper composite sheets by electrodeposition of metallic nanolayers. Ceramics International 2021, 47 (20) , 29435-29442. https://doi.org/10.1016/j.ceramint.2021.07.111
  11. Martin Motola, Raul Zazpe, Ludek Hromadko, Jan Prikryl, Veronika Cicmancova, Jhonatan Rodriguez-Pereira, Hanna Sopha, Jan M. Macak. Anodic TiO2 nanotube walls reconstructed: Inner wall replaced by ALD TiO2 coating. Applied Surface Science 2021, 549 , 149306. https://doi.org/10.1016/j.apsusc.2021.149306
  12. Yingfei Hu, Huiting Huang, Jianyong Feng, Wei Wang, Hangmin Guan, Zhaosheng Li, Zhigang Zou. Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar RRL 2021, 5 (4) , 2100100. https://doi.org/10.1002/solr.202100100
  13. Nadiia Pastukhova, Andraž Mavrič, Yanbo Li. Atomic Layer Deposition for the Photoelectrochemical Applications. Advanced Materials Interfaces 2021, 8 (7) , 2002100. https://doi.org/10.1002/admi.202002100
  14. Emine Başalan, Mustafa Erol, Orkut Sancakoğlu, Tuncay Dikici, Erdal Çelik. Comparison of processing parameter effects during magnetron sputtering and electrochemical anodization of TiO 2 nanotubes on ITO/glass and glass substrates. Materials Testing 2021, 63 (3) , 245-252. https://doi.org/10.1515/mt-2020-0036
  15. Yang Zhao, Lei Zhang, Jian Liu, Keegan Adair, Feipeng Zhao, Yipeng Sun, Tianpin Wu, Xuanxuan Bi, Khalil Amine, Jun Lu, Xueliang Sun. Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews 2021, 50 (6) , 3889-3956. https://doi.org/10.1039/D0CS00156B
  16. Ihsan Çaha, Alexandra C. Alves, Caterina Chirico, Ana M.P. Pinto, Sophia Tsipas, Elena Gordo, Fatih Toptan. A promising method to develop TiO2-based nanotubular surfaces on Ti-40Nb alloy with enhanced adhesion and improved tribocorrosion resistance. Applied Surface Science 2021, 542 , 148658. https://doi.org/10.1016/j.apsusc.2020.148658
  17. Xiaodong Li, Tiangui Hu, Shan Lin, Zhanhong Ma, Junfei Wang, Lixia Zhao. Fabrication of layer-ordered porous GaN for photocatalytic water splitting. International Journal of Hydrogen Energy 2021, 46 (11) , 7878-7884. https://doi.org/10.1016/j.ijhydene.2020.11.277
  18. Ling Cao, Kangli Xu, Mingming Fan. Zn0.5Cd0.5S nanoparticles modified TiO2 nanotube arrays with efficient charge separation and enhanced light harvesting for boosting visible-light-driven photoelectrochemical performance. Journal of Power Sources 2021, 482 , 228956. https://doi.org/10.1016/j.jpowsour.2020.228956
  19. Shaoce Zhang, Zhifeng Liu, Dong Chen, Weiguo Yan. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Applied Catalysis B: Environmental 2020, 277 , 119197. https://doi.org/10.1016/j.apcatb.2020.119197
  20. Min Feng, Ying Liu, Sainan Zhang, Yupeng Liu, Ning Luo, Daoai Wang. Carbon quantum dots (CQDs) modified TiO2 nanorods photoelectrode for enhanced photocathodic protection of Q235 carbon steel. Corrosion Science 2020, 176 , 108919. https://doi.org/10.1016/j.corsci.2020.108919
  21. Tiur Elysabeth, Dwi Annisa Agriyfani, Muhammad Ibadurrohman, Muhammad Nurdin, Slamet. Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions. Catalysts 2020, 10 (11) , 1234. https://doi.org/10.3390/catal10111234
  22. Changzhi Ai, Li Tong, Zhipeng Wang, Xidong Zhang, Guizhen Wang, Shengjue Deng, Jin Li, Shiwei Lin. Facile synthesis and photoelectrochemical properties of novel TiN/C3N4/CdS nanotube core/shell arrays. Chinese Journal of Catalysis 2020, 41 (10) , 1645-1653. https://doi.org/10.1016/S1872-2067(19)63512-6
  23. Tian-Feng Hou, Muhammad Ali Johar, Ramireddy Boppella, Mostafa Afifi Hassan, Swati J. Patil, Sang-Wan Ryu, Dong-Weon Lee. Vertically aligned one-dimensional ZnO/V2O5 core–shell hetero-nanostructure for photoelectrochemical water splitting. Journal of Energy Chemistry 2020, 49 , 262-274. https://doi.org/10.1016/j.jechem.2020.02.004
  24. Aizhen Liao, Huichao He, Yong Zhou, Zhigang Zou. Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite. Journal of Semiconductors 2020, 41 (9) , 091709. https://doi.org/10.1088/1674-4926/41/9/091709
  25. Juan Gao, Lin Zhao, Yanfen Wang, Guixia Pan, Yueqin Wang, Yang LI. Ultrathin alumina wrapped TiO2 nanorods for enhance photoelectrochemical performance via atomic layer deposition method. Chemical Physics 2020, 536 , 110791. https://doi.org/10.1016/j.chemphys.2020.110791
  26. Dandan Ma, Zhenyu Wang, Jian-Wen Shi, Yajun Zou, Yixuan Lv, Xin Ji, Zhihui Li, Yonghong Cheng, Lianzhou Wang. An ultrathin Al 2 O 3 bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. Journal of Materials Chemistry A 2020, 8 (21) , 11031-11042. https://doi.org/10.1039/D0TA03933K
  27. Sarang Kim, Mahadeo A. Mahadik, Weon-Sik Chae, Jungho Ryu, Sun Hee Choi, Jum Suk Jang. Synthesis of transparent Zr-doped ZnFe2O4 nanocorals photoanode and its surface modification via Al2O3/Co–Pi for efficient solar water splitting. Applied Surface Science 2020, 513 , 145528. https://doi.org/10.1016/j.apsusc.2020.145528
  28. Suhun Lee, Hyukhyun Ryu, Won-Jae Lee, Jong-Seong Bae. Improvement of an Al2O3/CuO heterostructure photoelectrode by controlling the Al2O3 precursor concentration. Journal of Industrial and Engineering Chemistry 2020, 82 , 63-70. https://doi.org/10.1016/j.jiec.2019.09.043
  29. Hanna Sopha, Jan M. Macak. Recent advancements in the synthesis, properties, and applications of anodic self-organized TiO2 nanotube layers. 2020,,, 173-209. https://doi.org/10.1016/B978-0-12-816706-9.00006-6
  30. Juan Gao, Xiaowei Sun, Yanfen Wang, Yang Li, Xuechao Li, Changzhao Chen, Jinbo Ni. Ultrathin Al2O3 passivation layer-wrapped [email protected] nanorods by atomic layer deposition for enhanced photoelectrochemical performance. Applied Surface Science 2020, 499 , 143971. https://doi.org/10.1016/j.apsusc.2019.143971
  31. Dongmei Niu, Aijun Han, Han Cheng, Songhua Ma, Mengmeng Tian, Lin Liu. Effects of organic solvents in anodization electrolytes on the morphology and tube-to-tube spacing of TiO2 nanotubes. Chemical Physics Letters 2019, 735 , 136776. https://doi.org/10.1016/j.cplett.2019.136776
  32. Yongcai Qiu, Zhenghui Pan, Haining Chen, Daiqi Ye, Lin Guo, Zhiyong Fan, Shihe Yang. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin 2019, 64 (18) , 1348-1380. https://doi.org/10.1016/j.scib.2019.07.017
  33. M. Zare, A. Shafiekhani, A. Mortezaali. Tuning the density distribution of deep localized states of TiO2 nanotube arrays through decoration with Pt and [email protected] Journal of Photochemistry and Photobiology A: Chemistry 2019, 380 , 111858. https://doi.org/10.1016/j.jphotochem.2019.111858
  34. Khaled M. Chahrour, F. K. Yam, Joshua John Samuel, Raed Abdalrheem, K. P. Beh, H. S. Lim. Controlled synthesis of vertically aligned honeycomb TiO2 nanotube arrays: effect of high-temperature annealing on physical properties. Applied Physics A 2019, 125 (6) https://doi.org/10.1007/s00339-019-2707-5
  35. Filip Dvorak, Raul Zazpe, Milos Krbal, Hanna Sopha, Jan Prikryl, Siowwoon Ng, Ludek Hromadko, Filip Bures, Jan M. Macak. One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications. Applied Materials Today 2019, 14 , 1-20. https://doi.org/10.1016/j.apmt.2018.11.005
  36. Jiajun Zhang, Wenqiang Huang, Kun Zhang, Dongze Li, Haoqing Xu, Xufei Zhu. Bamboo shoot nanotubes with diameters increasing from top to bottom: Evidence against the field-assisted dissolution equilibrium theory. Electrochemistry Communications 2019, 100 , 48-51. https://doi.org/10.1016/j.elecom.2019.01.019
  37. Rambabu Yalavarthi, Alberto Naldoni, Štěpán Kment, Luca Mascaretti, Hana Kmentová, Ondřej Tomanec, Patrik Schmuki, Radek Zbořil. Radiative and Non-Radiative Recombination Pathways in Mixed-Phase TiO2 Nanotubes for PEC Water-Splitting. Catalysts 2019, 9 (2) , 204. https://doi.org/10.3390/catal9020204
  38. Pushpendra Kumar, Ashish Kumar. Hydrogen Generation via Photoelectrochemical Splitting of Water. 2019,,, 1807-1844. https://doi.org/10.1007/978-3-319-68255-6_33
  39. Mengshi Yu, Wenqiang Huang, Puying Li, Hao Huang, Kun Zhang, Xufei Zhu. Morphology evolution of TiO2 nanotubes with additional reducing agent: Evidence of oxygen release. Electrochemistry Communications 2019, 98 , 28-32. https://doi.org/10.1016/j.elecom.2018.11.010
  40. Shikai Cao, Lizhen Wu, Wenqiang Huang, Xufei Zhu, Xiaoping Shen, Ye Song. Electrochemically Doped and Hydrogen Peroxide–Treated TiO 2  Nanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability. Journal of The Electrochemical Society 2019, 166 (10) , A1944-A1949. https://doi.org/10.1149/2.0841910jes
  41. Beatriz Eugenia Sanabria-Arenas, Anca Mazare, Jeongeun Yoo, Nhat Truong Nguyen, Seyedsina Hejazi, Haidong Bian, Maria Vittoria Diamanti, Maria Pia Pedeferri, Patrik Schmuki. Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation. Electrochimica Acta 2018, 292 , 865-870. https://doi.org/10.1016/j.electacta.2018.09.206
  42. Onoyivwe Monday Ama, Neeraj Kumar, Feyisayo Victoria Adams, Suprakas Sinha Ray. Efficient and Cost-effective Photoelectrochemical Degradation of Dyes in Wastewater over an Exfoliated Graphite-MoO3 Nanocomposite Electrode. Electrocatalysis 2018, 9 (5) , 623-631. https://doi.org/10.1007/s12678-018-0471-5
  43. Lixia Jia, Xin Tan, Tao Yu, Zhen Zhang. Enhanced photoelectrocatalytic performance of temperature-dependent 2D/1D BiOBr/TiO 2-x nanotubes. Materials Research Bulletin 2018, 105 , 322-329. https://doi.org/10.1016/j.materresbull.2018.05.005
  44. Xiao Li, Shengwei Liu, Ke Fan, Zhaoqing Liu, Bo Song, Jiaguo Yu. MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting. Advanced Energy Materials 2018, 8 (18) , 1800101. https://doi.org/10.1002/aenm.201800101
  45. Zhenbiao Dong, Dongyan Ding, Ting Li, Congqin Ning. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Applied Surface Science 2018, 443 , 321-328. https://doi.org/10.1016/j.apsusc.2018.03.031
  46. Ming Meng, Sihua Zhou, Lun Yang, Zhixing Gan, Kuili Liu, Fengshou Tian, Yu Zhu, ChunYang Li, Weifeng Liu, Honglei Yuan, Yan Zhang. Hydrogenated TiO 2 nanotube photonic crystals for enhanced photoelectrochemical water splitting. Nanotechnology 2018, 29 (15) , 155401. https://doi.org/10.1088/1361-6528/aaaace
  47. Maoying Liao, Jing Wang, Shaoyu Zhang, Weikang Zhang, Xufei Zhu. Well-matched electrochemical performances of TiO2 nanotubes based on Ti wires with strong adhesion to Ti substrate. Journal of Porous Materials 2018, 25 (2) , 415-424. https://doi.org/10.1007/s10934-017-0452-8
  48. Myeongwhun Pyeon, Tero-Petri Ruoko, Jennifer Leduc, Yakup Gönüllü, Meenal Deo, Nikolai V. Tkachenko, Sanjay Mathur. Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity. Journal of Materials Research 2018, 33 (4) , 455-466. https://doi.org/10.1557/jmr.2017.465
  49. Stefano Stassi, Andrea Lamberti, Ignazio Roppolo, Alberto Casu, Stefano Bianco, Davide Scaiola, Andrea Falqui, Candido Fabrizio Pirri, Carlo Ricciardi. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators. Nanotechnology 2018, 29 (8) , 085702. https://doi.org/10.1088/1361-6528/aaa46c
  50. Pushpendra Kumar, Ashish Kumar. Hydrogen Generation Via Photoelectrochemical Splitting of Water. 2018,,, 1-38. https://doi.org/10.1007/978-3-319-48281-1_33-1
  51. Mengxin Chen, Yang Liu, Chengcheng Li, Ang Li, Xiaoxia Chang, Wei Liu, Yun Sun, Tuo Wang, Jinlong Gong. Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy & Environmental Science 2018, 11 (8) , 2025-2034. https://doi.org/10.1039/C7EE03650G
  52. Changli Li, Qi Cao, Faze Wang, Yequan Xiao, Yanbo Li, Jean-Jacques Delaunay, Hongwei Zhu. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews 2018, 47 (13) , 4981-5037. https://doi.org/10.1039/C8CS00067K
  53. R. Zazpe, H. Sopha, J. Prikryl, M. Krbal, J. Mistrik, F. Dvorak, L. Hromadko, J. M. Macak. A 1D conical nanotubular TiO 2 /CdS heterostructure with superior photon-to-electron conversion. Nanoscale 2018, 10 (35) , 16601-16612. https://doi.org/10.1039/C8NR02418A
  54. Min Feng, Ying Liu, Ning Wei, Shaochen Ma, Zhaoxia Li, Hongguang Li, Shougang Chen, Jian Liu, Daoai Wang. Alumina anchored CQDs/TiO 2 nanorods by atomic layer deposition for efficient photoelectrochemical water splitting under solar light. Journal of Materials Chemistry A 2018, 6 (37) , 18293-18303. https://doi.org/10.1039/C8TA05092A
  55. Fanmin Shang, Suiyuan Chen, Jing Liang, Changsheng Liu. The Photocatalytic Properties and Mechanistic Study of ZnO,Ag Multiphase Co-Composited TiO 2 Nanotube Arrays Film Prepared by One-Step Anodization Method. Journal of The Electrochemical Society 2018, 165 (7) , D258-D265. https://doi.org/10.1149/2.0251807jes
  56. M. V. Nogueira, G. M. M. M. Lustosa, Y. Kobayakawa, W. Kogler, M. Ruiz, E. S. Monteiro Filho, M. A. Zaghete, L. A. Perazolli. Nb-Doped TiO 2 Photocatalysts Used to Reduction of CO 2 to Methanol. Advances in Materials Science and Engineering 2018, 2018 , 1-8. https://doi.org/10.1155/2018/7326240
  57. Alberto Casu, Andrea Lamberti, Stefano Stassi, Andrea Falqui. Crystallization of TiO2 Nanotubes by In Situ Heating TEM. Nanomaterials 2018, 8 (1) , 40. https://doi.org/10.3390/nano8010040
  58. Hanna Sopha, Milos Krbal, Siowwoon Ng, Jan Prikryl, Raul Zazpe, Fong Kwong Yam, Jan M. Macak. Highly efficient photoelectrochemical and photocatalytic anodic TiO2 nanotube layers with additional TiO2 coating. Applied Materials Today 2017, 9 , 104-110. https://doi.org/10.1016/j.apmt.2017.06.002
  59. Kuili Liu, Gaoliang Wang, Ming Meng, Songling Chen, Jitao Li, Xianke Sun, Honglei Yuan, Lingling Sun, Nan Qin. TiO2 nanotube photonic crystal fabricated by two-step anodization method for enhanced photoelectrochemical water splitting. Materials Letters 2017, 207 , 96-99. https://doi.org/10.1016/j.matlet.2017.07.060
  60. Ji Xing, Weikang Zhang, Min Yin, Xufei Zhu, Dongdong Li, Ye Song. Electrodeposition of polyaniline in long TiO2 nanotube arrays for high-areal capacitance supercapacitor electrodes. Journal of Solid State Electrochemistry 2017, 21 (8) , 2349-2354. https://doi.org/10.1007/s10008-017-3588-1
  61. Lucas M. Carneiro, Scott K. Cushing, Chong Liu, Yude Su, Peidong Yang, A. Paul Alivisatos, Stephen R. Leone. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nature Materials 2017, 16 (8) , 819-825. https://doi.org/10.1038/nmat4936
  62. Haowen Fan, He Zhang, Xiaolei Luo, Maoying Liao, Xufei Zhu, Jing Ma, Ye Song. Hydrothermal solid-gas route to TiO 2 nanoparticles/nanotube arrays for high-performance supercapacitors. Journal of Power Sources 2017, 357 , 230-240. https://doi.org/10.1016/j.jpowsour.2017.05.009
  63. Haowen Fan, Tong Lin, Weikang Zhang, Jing Ma, Sitong Lu, Xufei Zhu. Formation mechanism of petal-like micropattern and nanofibers in porous anodic alumina. Materials Research Bulletin 2017, 90 , 119-124. https://doi.org/10.1016/j.materresbull.2017.02.027
  64. Rong Jin, Maoying Liao, Tong Lin, Shaoyu Zhang, Xiaoping Shen, Ye Song, Xufei Zhu. Formation and evolution of anodic TiO 2 nanotube embryos. Materials Research Express 2017, 4 (6) , 065008. https://doi.org/10.1088/2053-1591/aa72b1
  65. Mahadeo A. Mahadik, Arunprabaharan Subramanian, Hee‐Suk Chung, Min Cho, Jum Suk Jang. CdS/Zr:Fe 2 O 3 Nanorod Arrays with Al 2 O 3 Passivation Layer for Photoelectrochemical Solar Hydrogen Generation. ChemSusChem 2017, 10 (9) , 2030-2039. https://doi.org/10.1002/cssc.201700140
  66. Haifeng Zhang, Weiwei Zhou, Yaping Yang, Chuanwei Cheng. 3D WO 3 /BiVO 4 /Cobalt Phosphate Composites Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting. Small 2017, 13 (16) , 1603840. https://doi.org/10.1002/smll.201603840
  67. Ali Eftekhari, Veluru Jagadeesh Babu, Seeram Ramakrishna. Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy 2017, 42 (16) , 11078-11109. https://doi.org/10.1016/j.ijhydene.2017.03.029
  68. Lionel Santinacci. ALD for Photoelectrochemical Water Splitting. 2017,,, 225-257. https://doi.org/10.1002/9783527694822.ch8
  69. Qiong Liu, Yang Liu, Chang Li, Jie Li, Haizhou He, Yaomin Li, Wenzhang Li. Hydrothermal Sm-doped tungsten oxide vertically plate-like array photoelectrode and its enhanced photoelectrocatalytic efficiency for degradation of organic dyes. Journal of Materials Science: Materials in Electronics 2017, 28 (5) , 4004-4013. https://doi.org/10.1007/s10854-016-6013-0
  70. G. He, W.D. Li, H.H. Wei, S.S. Jiang, X.D. Xiao, P. Jin, J. Gao. Modulation of electrical properties and current conduction mechanism of HfAlO/Ge gate stack by ALD-derived Al2O3 passivation layer. Journal of Alloys and Compounds 2017, 695 , 1591-1599. https://doi.org/10.1016/j.jallcom.2016.10.303
  71. Mingzheng Ge, Qingsong Li, Chunyan Cao, Jianying Huang, Shuhui Li, Songnan Zhang, Zhong Chen, Keqin Zhang, Salem S. Al-Deyab, Yuekun Lai. One-dimensional TiO 2 Nanotube Photocatalysts for Solar Water Splitting. Advanced Science 2017, 4 (1) , 1600152. https://doi.org/10.1002/advs.201600152
  72. Wei Jiao, Jingrui Wu, Siwen Cui, Ning Wei, Zia Ur Rahman, Meiyan Yu, Shougang Chen, Yangtao Zhou, Daoai Wang. Hollow hematite single crystals deposited with ultra-thin Al 2 O 3 by atom layer deposition for improved photoelectrochemical performance. Dalton Transactions 2017, 46 (32) , 10635-10640. https://doi.org/10.1039/C7DT00504K
  73. Zhuo Zhang, Minki Baek, Hongseon Song, Kijung Yong. An unconventional outer-to-inner synthesis strategy for core (Au)–shell nanostructures with photo-electrochemical enhancement. Nanoscale 2017, 9 (16) , 5342-5351. https://doi.org/10.1039/C7NR00336F
  74. Lingling Zhang, Isabel Álvarez-Martos, Alexander Vakurov, Elena E. Ferapontova. Seawater operating bio-photovoltaic cells coupling semiconductor photoanodes and enzymatic biocathodes. Sustainable Energy & Fuels 2017, 1 (4) , 842-850. https://doi.org/10.1039/C7SE00051K
  75. Maoying Liao, Mingqi Gao, Tong Lin, Xu Yang, Xiaoping Shen, Xuran Xu, Weihua Ma. Relationship between the Generation of Electronic Current and Film Morphology during Anodization of Ti. ECS Journal of Solid State Science and Technology 2017, 6 (9) , P589-P593. https://doi.org/10.1149/2.0121709jss
  76. Seung Wook Shin, M.P. Suryawanshi, Hee Kyeung Hong, Gun Yun, DongHa Lim, Jaeyeong Heo, Soon Hyung Kang, Jin Hyeok Kim. Strategy for enhancing the solar-driven water splitting performance of TiO 2 nanorod arrays with thin Zn(O,S) passivated layer by atomic layer deposition. Electrochimica Acta 2016, 219 , 470-481. https://doi.org/10.1016/j.electacta.2016.09.020
  77. Peng Yang, Yi Liu, Shiyi Chen, Jing Ma, Jie Gong, Tichun Zhang, Xufei Zhu. Influence of H 2 O 2 and H 2 O content on anodizing current and morphology evolution of anodic TiO 2 nanotubes. Materials Research Bulletin 2016, 83 , 581-589. https://doi.org/10.1016/j.materresbull.2016.07.006
  78. Radhakrishnan Venkatkarthick, Gobichettipalayam Venkataramani Man Kiruthika, Donald Jonas Davidson, Subbiah Ravichandran, Ganapathy Sozhan, Subramanyan Vasudevan. New Insight into Understand the Enhanced Photoconductivity Properties of Ti (O 2 ) Plate Spurted with Al 2 O 3 for Water Oxidation. ChemistrySelect 2016, 1 (15) , 5037-5041. https://doi.org/10.1002/slct.201600996
  79. Mariusz Szkoda, Anna Lisowska-Oleksiak, Katarzyna Grochowska, Łukasz Skowroński, Jakub Karczewski, Katarzyna Siuzdak. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate. Applied Surface Science 2016, 381 , 36-41. https://doi.org/10.1016/j.apsusc.2015.12.126
  80. Yichong Liu, Xiaoqin Yan, Zhuo Kang, Yong Li, Yanwei Shen, Yihui Sun, Li Wang, Yue Zhang. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29907
  81. Eunyong Jang, Kishore Sridharan, Young Min Park, Tae Joo Park. Eliminated Phototoxicity of TiO 2 Particles by an Atomic-Layer-Deposited Al 2 O 3 Coating Layer for UV-Protection Applications. Chemistry - A European Journal 2016, 22 (34) , 12022-12026. https://doi.org/10.1002/chem.201600815
  82. He Zhang, Zejun Chen, Ye Song, Min Yin, Dongdong Li, Xufei Zhu, Xiaoyuan Chen, P.C. Chang, Linfeng Lu. Fabrication and supercapacitive performance of long anodic TiO 2 nanotube arrays using constant current anodization. Electrochemistry Communications 2016, 68 , 23-27. https://doi.org/10.1016/j.elecom.2016.04.004
  83. S. Ananthakumar, J. Ramkumar, S. Moorthy Babu. Semiconductor nanoparticles sensitized TiO 2 nanotubes for high efficiency solar cell devices. Renewable and Sustainable Energy Reviews 2016, 57 , 1307-1321. https://doi.org/10.1016/j.rser.2015.12.129
  84. Jicheng Zhou, Xing Chen, Yunyun Wang, Baoxing Zhao. Influence of glass frits on the formation of back surface field in silicon solar cell. Materials Letters 2016, 169 , 197-199. https://doi.org/10.1016/j.matlet.2016.01.111
  85. Zhuo Zhang, Mingi Choi, Minki Baek, Zexiang Deng, Kijung Yong. Plasmonic and passivation effects of Au decorated [email protected] nanofilm uplifted by [email protected] nanorods with photoelectrochemical enhancement. Nano Energy 2016, 21 , 185-197. https://doi.org/10.1016/j.nanoen.2016.01.020
  86. Rong Jin, Haowen Fan, Yuting Liu, Wan Ma, Hongyan Lu, Peng Yang, Weihua Ma. Formation Mechanism of Lotus-root-shaped Nanostructure during Two-step Anodization. Electrochimica Acta 2016, 188 , 421-427. https://doi.org/10.1016/j.electacta.2015.12.027
  87. Sancan Han, Ying-Chih Pu, Lingxia Zheng, Linfeng Hu, Jin Zhong Zhang, Xiaosheng Fang. Uniform carbon-coated CdS core–shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. Journal of Materials Chemistry A 2016, 4 (3) , 1078-1086. https://doi.org/10.1039/C5TA09024E
  88. Min Zeng, Xiange Peng, Jianjun Liao, Guizhen Wang, Yanfang Li, Jianbao Li, Yong Qin, Joshua Wilson, Aimin Song, Shiwei Lin. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO 2 nanotube arrays with Al 2 O 3 overcoating by atomic layer deposition. Physical Chemistry Chemical Physics 2016, 18 (26) , 17404-17413. https://doi.org/10.1039/C6CP01299J
  89. Yuting Liu, Zhen Xu, Min Yin, Haowen Fan, Weijie Cheng, Linfeng Lu, Ye Song, Jing Ma, Xufei Zhu. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Nanoscale Research Letters 2015, 10 (1) https://doi.org/10.1186/s11671-015-1077-y
  90. Zhen Xu, Yinyue Lin, Min Yin, Haifeng Zhang, Chuanwei Cheng, Linfeng Lu, Xinzhong Xue, Hong Jin Fan, Xiaoyuan Chen, Dongdong Li. Understanding the Enhancement Mechanisms of Surface Plasmon‐Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO 2 Nanotubes. Advanced Materials Interfaces 2015, 2 (13) , 1500169. https://doi.org/10.1002/admi.201500169
  91. Xiaohui Yang, Xiongbang Wei, Shuanghong Wu, Tao Wu, Zhi Chen, Shibin Li. High-quality self-ordered TiO2 nanotubes on fluorine-doped tin oxide glass. Journal of Materials Science: Materials in Electronics 2015, 26 (9) , 7081-7085. https://doi.org/10.1007/s10854-015-3329-0
  92. Zhao Jing-zhong, Bai Yang, Zhang Kun, Lin Ye, Kathy Lu. Preparation of separated and open end TiO2 nanotubes. Ceramics International 2015, 41 (6) , 7235-7240. https://doi.org/10.1016/j.ceramint.2015.02.157