RETURN TO ISSUEPREVResearch ArticleNEXT

Co3O4-Modified TiO2 Nanotube Arrays via Atomic Layer Deposition for Improved Visible-Light Photoelectrochemical Performance

View Author Information
State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering and State Key Laboratory of Materials Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
*E-mail: [email protected]. Phone: +86-27-87558744. Fax: +86-27-87558744. (R.C.)
*E-mail: [email protected]. (B.S.)
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 1, 422–431
Publication Date (Web):December 10, 2014
https://doi.org/10.1021/am506392y
Copyright © 2014 American Chemical Society
Article Views
3106
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (7 MB)
Supporting Info (1)»

Abstract

Composite Co3O4/TiO2 nanotube arrays (NTs) were fabricated via atomic layer deposition (ALD) of Co3O4 thin film onto well-aligned anodized TiO2 NTs. The microscopic morphology, composition, and interfacial plane of the composite structure were characterized by scanning electron microscopy, energy dispersion mapping, X-ray photoelectron spectra, and high-resolution transmission electron microscopy. It was shown that the ultrathin Co3O4 film uniformly coat onto the inner wall of the high aspect ratio (>100:1) TiO2 NTs with film thickness precisely controlled by the number of ALD deposition cycles. The composite structure with ∼4 nm Co3O4 coating revealed optimal photoelectrochemical (PEC) performance in the visible-light range (λ > 420 nm). The photocurrent density reaches as high as 90.4 μA/cm2, which is ∼14 times that of the pristine TiO2 NTs and 3 times that of the impregnation method. The enhanced PEC performance could be attributed to the finely controlled Co3O4 coating layer that enhances the visible-light absorption, maintains large specific surface area to the electrolyte interface, and facilitates the charge transfer.

Supporting Information

ARTICLE SECTIONS
Jump To

The dependence of ALD cycles on thickness of Co3O4 on silicon wafer. SEM for impregnation method prepared Co3O4/TiO2 NTs samples. Raman spectrum for pure TiO2 and Co3O4/TiO2 NTs samples. XRD diffraction patterns of ALD-prepared Co3O4/TiO2 NTs samples. The intermittent photocurrent for impregnation method prepared Co3O4/TiO2 NTs. The XPS binding energy difference for Co 2p and Ti 2p. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 105 publications.

  1. Javier Fragoso, Davide Barreca, Lorenzo Bigiani, Cinzia Sada, Oleg I. Lebedev, Evgeny Modin, Ivana Pavlovic, Luis Sánchez, Chiara Maccato. Tailored Co3O4-Based Nanosystems: Toward Photocatalysts for Air Purification. ACS Applied Materials & Interfaces 2021, 13 (37) , 44520-44530. https://doi.org/10.1021/acsami.1c09921
  2. Ruoyu Zhang, Gerben van Straaten, Valerio di Palma, Georgios Zafeiropoulos, Mauritius C.M. van de Sanden, Wilhelmus M.M. Kessels, Mihalis N. Tsampas, Mariadriana Creatore. Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catalysis 2021, 11 (5) , 2774-2785. https://doi.org/10.1021/acscatal.0c04933
  3. Lingxia Zheng, Xiaoying Ye, Xiaolei Deng, Yongzhi Wang, Yijian Zhao, Xiaowei Shi, Huajun Zheng. Black Phosphorus Quantum Dot-Sensitized TiO2 Nanotube Arrays with Enriched Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry & Engineering 2020, 8 (42) , 15906-15914. https://doi.org/10.1021/acssuschemeng.0c04819
  4. Na Chen, Yiwen Hu, Xuyi Liu, Jue Yang, Wenrui Li, Donghai Lu, Junli Fu, Yujie Liang, Wenzhong Wang. A Dual-Heterojunction Cu2O/CdS/ZnO Nanotube Array Photoanode for Highly Efficient Photoelectrochemical Solar-Driven Hydrogen Production with 2.8% Efficiency. The Journal of Physical Chemistry C 2020, 124 (40) , 21968-21977. https://doi.org/10.1021/acs.jpcc.0c06045
  5. Zhengkang Shi, Lan Lan, Yuanzhi Li, Yi Yang, Qian Zhang, Jichun Wu, Gequan Zhang, Xiujian Zhao. Co3O4/TiO2 Nanocomposite Formation Leads to Improvement in Ultraviolet–Visible-Infrared-Driven Thermocatalytic Activity Due to Photoactivation and Photocatalysis–Thermocatalysis Synergetic Effect. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16503-16514. https://doi.org/10.1021/acssuschemeng.8b03602
  6. Jun-Yu Piao, Xiao-Chan Liu, Jinpeng Wu, Wanli Yang, Zengxi Wei, Jianmin Ma, Shu-Yi Duan, Xi-Jie Lin, Yan-Song Xu, An-Min Cao, Li-Jun Wan. Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance. ACS Applied Materials & Interfaces 2018, 10 (27) , 22896-22901. https://doi.org/10.1021/acsami.8b08528
  7. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  8. Shuai Zhang, Shufang Wu, Jinming Wang, Jingpeng Jin, and Tianyou Peng . Controllable Syntheses of Hierarchical WO3 Films Consisting of Orientation-Ordered Nanorod Bundles and Their Photocatalytic Properties. Crystal Growth & Design 2018, 18 (2) , 794-801. https://doi.org/10.1021/acs.cgd.7b01254
  9. Luping Zhu, Hao Lu, Dong Hao, Lingling Wang, Zihua Wu, Lijun Wang, Peng Li, and Jinhua Ye . Three-Dimensional Lupinus-like TiO2 [email protected] Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. ACS Applied Materials & Interfaces 2017, 9 (44) , 38537-38544. https://doi.org/10.1021/acsami.7b11872
  10. Qi Peng, Jun Wang, Zijian Feng, Chun Du, Yanwei Wen, Bin Shan, and Rong Chen . Enhanced Photoelectrochemical Water Oxidation by Fabrication of p-LaFeO3/n-Fe2O3 Heterojunction on Hematite Nanorods. The Journal of Physical Chemistry C 2017, 121 (24) , 12991-12998. https://doi.org/10.1021/acs.jpcc.7b01817
  11. Ahmad W. Amer, Mostafa A. El-Sayed, and Nageh K. Allam . Tuning The Photoactivity of Zirconia Nanotubes-Based Photoanodes via Ultrathin Layers of ZrN: An Effective Approach toward Visible-Light Water Splitting. The Journal of Physical Chemistry C 2016, 120 (13) , 7025-7032. https://doi.org/10.1021/acs.jpcc.6b01144
  12. Li Li, Jianmin Ma, Zichao Zhang, Bingqiang Cao, Yijing Wang, Lifang Jiao, and Huatang Yuan . Hierarchical [email protected] Nanoflowers: Synthesis and Electrochemical Properties as an Advanced Negative Material for Alkaline Secondary Batteries. ACS Applied Materials & Interfaces 2015, 7 (43) , 23978-23983. https://doi.org/10.1021/acsami.5b06603
  13. Mu Liu, Xiaolei Bao, Fahao Ma, Minrui Wang, Liren Zheng, Zeyan Wang, Peng Wang, Yuanyuan Liu, Hefeng Cheng, Ying Dai, Yuchen Fan, Zhaoke Zheng, Baibiao Huang. Enhanced stability and activity towards photocatalytic CO2 reduction via supercycle ALD of Cu and TiO2. Chemical Engineering Journal 2022, 429 , 132022. https://doi.org/10.1016/j.cej.2021.132022
  14. Paweł Mazierski, Patrycja Wilczewska, Wojciech Lisowski, Tomasz Klimczuk, Anna Białk-Bielińska, Adriana Zaleska-Medyska, Ewa M. Siedlecka, Aleksandra Pieczyńska. Ti/TiO2 nanotubes sensitized PbS quantum dots as photoelectrodes applied for decomposition of anticancer drugs under simulated solar energy. Journal of Hazardous Materials 2022, 421 , 126751. https://doi.org/10.1016/j.jhazmat.2021.126751
  15. Huijun Li, Linhan Jian, Yan Chen, Guowen Wang, Jiahui Lyu, Xiaoli Dong, Xinghui Liu, Hongchao Ma. Fabricating [email protected] core–shell heterogeneous architectures with Z‑scheme for superior photoelectrocatalytic water purification. Chemical Engineering Journal 2022, 427 , 131716. https://doi.org/10.1016/j.cej.2021.131716
  16. Fanyue Zhao, Yu Song, Xinghui Liu, Xinxin Zhang, Chun Ma, Guowen Wang, Yinghuan Fu, Hongchao Ma. Unraveling Electron-deficient Setaria-viridis-like [email protected] heterostructure with superior photoelectrocatalytic efficiency for water remediation. Applied Surface Science 2022, 573 , 151473. https://doi.org/10.1016/j.apsusc.2021.151473
  17. Lele Wang, Guogang Tang, Song Liu, Huilong Dong, Qinqin Liu, Jingfang Sun, Hua Tang. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal 2022, 428 , 131338. https://doi.org/10.1016/j.cej.2021.131338
  18. Meisam Soleimani, Jahan B. Ghasemi, Alireza Badiei. Black titania; novel researches in synthesis and applications. Inorganic Chemistry Communications 2022, 135 , 109092. https://doi.org/10.1016/j.inoche.2021.109092
  19. Aqeel Abbas, Hui-Yun Hung, Pi-Chen Lin, Kai-Chang Yang, Minn-Chang Chen, Hsin-Chih Lin, Yin-Yi Han. Atomic layer deposited TiO2 films on an equiatomic NiTi shape memory alloy for biomedical applications. Journal of Alloys and Compounds 2021, 886 , 161282. https://doi.org/10.1016/j.jallcom.2021.161282
  20. Ming Li, Wenfeng Li, Jiahui Lyu, Mahamat Ahmat Moussa, Xinghui Liu, Yinghuan Fu, Hongchao Ma. Constructed Co3O4-Sn3O4 hierarchical nanoflower-tree heterostructure with boosting photoelectrocatalytic efficiency for water decontamination. Chemical Engineering Journal 2021, 423 , 130252. https://doi.org/10.1016/j.cej.2021.130252
  21. Łukasz Haryński, Jakub Karczewski, Jacek Ryl, Katarzyna Grochowska, Katarzyna Siuzdak. Rapid development of the photoresponse and oxygen evolution of TiO2 nanotubes sputtered with Cr thin films realized via laser annealing. Journal of Alloys and Compounds 2021, 877 , 160316. https://doi.org/10.1016/j.jallcom.2021.160316
  22. Huijun Gao, Yuzhen Ma, Peng Song, Zhongxi Yang, Qi Wang. Three-dimensional reduced graphene oxide/cobaltosic oxide as a high-response sensor for triethylamine gas at room temperature. Materials Science in Semiconductor Processing 2021, 133 , 105904. https://doi.org/10.1016/j.mssp.2021.105904
  23. Qijia Ding, Lantong Gou, Danrui Wei, Dongbo Xu, Weiqiang Fan, Weidong Shi. Metal-organic framework derived Co3O4/TiO2 heterostructure nanoarrays for promote photoelectrochemical water splitting. International Journal of Hydrogen Energy 2021, 46 (49) , 24965-24976. https://doi.org/10.1016/j.ijhydene.2021.05.065
  24. Longfei Guo, Noriyuki Okinaka, Lihua Zhang, Seiichi Watanabe. Facile synthesis of ZnFe2O4/SnO2 composites for efficient photocatalytic degradation of methylene blue. Materials Chemistry and Physics 2021, 262 , 124273. https://doi.org/10.1016/j.matchemphys.2021.124273
  25. Zhongrui Yu, Haobo Liu, Mingyuan Zhu, Ying Li, Wenxian Li. Interfacial Charge Transport in 1D TiO 2 Based Photoelectrodes for Photoelectrochemical Water Splitting. Small 2021, 17 (9) , 1903378. https://doi.org/10.1002/smll.201903378
  26. Masoud Sarraf, Bahman Nasiri-Tabrizi, Chai Hong Yeong, Hamid Reza Madaah Hosseini, Saeed Saber-Samandari, Wan Jefrey Basirun, Takuya Tsuzuki. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?. Ceramics International 2021, 47 (3) , 2917-2948. https://doi.org/10.1016/j.ceramint.2020.09.177
  27. So Young Yang, Jiyeon Park, Hye Won Jeong, Hyunwoong Park. Electrocatalytic activities of electrochemically reduced tubular titania arrays loaded with cobalt ions in flow-through processes. Chemical Engineering Journal 2021, 404 , 126410. https://doi.org/10.1016/j.cej.2020.126410
  28. Zhongrui Yu, Ying Li, Jiangtao Qu, Rongkun Zheng, Julie M. Cairney, Jiujun Zhang, Mingyuan Zhu, Aslam Khan, Wenxian Li. Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored [email protected] core-shell nanorod arrays. Chemical Engineering Journal 2021, 404 , 126458. https://doi.org/10.1016/j.cej.2020.126458
  29. Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu, Mohammad B. Kassim. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy 2021, 46 (7) , 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
  30. S. Thambidurai, P. Gowthaman, M. Venkatachalam, S. Suresh, M. Kandasamy. Morphology dependent photovoltaic performance of zinc oxide-cobalt oxide nanoparticle/nanorod composites synthesized by simple chemical co-precipitation method. Journal of Alloys and Compounds 2021, 852 , 156997. https://doi.org/10.1016/j.jallcom.2020.156997
  31. Yuting Wang, Chengzhang Zhu, Gancheng Zuo, Yang Guo, Wei Xiao, Yuxuan Dai, Jijie Kong, Xiaoming Xu, Yuxuan Zhou, Aming Xie, Cheng Sun, Qiming Xian. 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Applied Catalysis B: Environmental 2020, 278 , 119298. https://doi.org/10.1016/j.apcatb.2020.119298
  32. Tihana Čižmar, Vedran Kojić, Marko Rukavina, Lidija Brkljačić, Krešimir Salamon, Ivana Grčić, Lucija Radetić, Andreja Gajović. Hydrothermal Synthesis of FeOOH and Fe2O3 Modified Self-Organizing Immobilized TiO2 Nanotubes for Photocatalytic Degradation of 1H-Benzotriazole. Catalysts 2020, 10 (12) , 1371. https://doi.org/10.3390/catal10121371
  33. Guilian Lan, Jinpeng Nong, Wei Wei, Xiangzhi Liu, Peng Luo, Weifeng Jin, Dacheng Wei, Dapeng Wei. Highly stable all-in-one photoelectrochemical electrodes based on carbon nanowalls. Nanotechnology 2020, 31 (33) , 335401. https://doi.org/10.1088/1361-6528/ab8cf5
  34. Juan Gao, Lin Zhao, Yanfen Wang, Guixia Pan, Yueqin Wang, Yang LI. Ultrathin alumina wrapped TiO2 nanorods for enhance photoelectrochemical performance via atomic layer deposition method. Chemical Physics 2020, 536 , 110791. https://doi.org/10.1016/j.chemphys.2020.110791
  35. Lizhen Yao, Wenzhong Wang, Tianyu Zhu, Yunan Wang, Yujie Liang, Junli Fu, Jun Wang, Ying Cheng, Sitong Liu. A rational design of CdS/ZnFe2O4/Cu2O core-shell nanorod array photoanode with stair-like type-II band alignment for highly efficient bias-free visible-light-driven H2 generation. Applied Catalysis B: Environmental 2020, 268 , 118460. https://doi.org/10.1016/j.apcatb.2019.118460
  36. Rong Chen, Yi-Cheng Li, Jia-Ming Cai, Kun Cao, Han-Bo-Ram Lee. Atomic level deposition to extend Moore’s law and beyond. International Journal of Extreme Manufacturing 2020, 2 (2) , 022002. https://doi.org/10.1088/2631-7990/ab83e0
  37. Jiaming Cai, Zhang Liu, Kun Cao, Yun Lang, Shengqi Chu, Bin Shan, Rong Chen. Highly dispersed Pt studded on CoO x nanoclusters for CO preferential oxidation in H 2. Journal of Materials Chemistry A 2020, 8 (20) , 10180-10187. https://doi.org/10.1039/D0TA01151G
  38. Han Feng, Liangliang Liang, Junyu Ge, Weiyi Wu, Zhaohong Huang, Yu Liu, Lin Li. Delicate manipulation of cobalt oxide nanodot clusterization on binder-free TiO2-nanorod photoanodes for efficient photoelectrochemical catalysis. Journal of Alloys and Compounds 2020, 820 , 153139. https://doi.org/10.1016/j.jallcom.2019.153139
  39. Xinrui You, Chunyu Huang, Wei Huang, Guoyue Shi, Jingjing Deng, Tianshu Zhou. Ultra-small CoO x /GO catalyst supported on ITO glass obtained by electrochemical post-treatment of a redox-active infinite coordination polymer: a portable reactor for real-time monitoring of catalytic oxidative degradation of colored wastewater. Environmental Science: Nano 2020, 7 (2) , 554-570. https://doi.org/10.1039/C9EN01163C
  40. Meng Li, Qi Guo, Lei Xing, Lijuan Yang, Tieyue Qi, Peiyao Xu, Shihan Zhang, Lidong Wang. Cobalt-based metal-organic frameworks promoting magnesium sulfite oxidation with ultrahigh catalytic activity and stability. Journal of Colloid and Interface Science 2020, 559 , 88-95. https://doi.org/10.1016/j.jcis.2019.10.004
  41. Rong Chen, Bin Shan, Xiao Liu, Kun Cao. Catalysts via Atomic Layer Deposition. 2020,,, 69-105. https://doi.org/10.1007/978-3-030-45823-2_3
  42. Hanna Sopha, Jan M. Macak. Recent advancements in the synthesis, properties, and applications of anodic self-organized TiO2 nanotube layers. 2020,,, 173-209. https://doi.org/10.1016/B978-0-12-816706-9.00006-6
  43. Yi Zhang, Chenchen Yuan, Qiang Wang, Michael R. Hoffmann, Xingwang Zhang, Jutao Nie, Chao Hu, Shuxin Chen, Jie Qiao, Qi Wang, Yanqing Cong. Photoelectrochemical activity of CdS/Ag/TiO2 nanorod composites: Degradation of nitrobenzene coupled with the concomitant production of molecular hydrogen. Electrochimica Acta 2019, 328 , 135124. https://doi.org/10.1016/j.electacta.2019.135124
  44. Wei-Kang Wang, Wenze Zhu, Liang Mao, Junying Zhang, Zhaoyu Zhou, Guohua Zhao. Two-dimensional TiO2-g-C3N4 with both Ti N and C O bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A. Journal of Colloid and Interface Science 2019, 557 , 227-235. https://doi.org/10.1016/j.jcis.2019.08.088
  45. Xiaochen Huai, Leonardo Girardi, Ran Lu, Shang Gao, Yu Zhao, Yunhan Ling, Gian Andrea Rizzi, Gaetano Granozzi, Zhengjun Zhang. The mechanism of concentric HfO2/Co3O4/TiO2 nanotubes investigated by intensity modulated photocurrent spectroscopy (IMPS) and electrochemical impedance spectroscopy (EIS) for photoelectrochemical activity. Nano Energy 2019, 65 , 104020. https://doi.org/10.1016/j.nanoen.2019.104020
  46. Majid Arvand, Sharareh Sayyar, Shiva Hemmati. Visible-light-driven polydopamine/CdS QDs hybrid materials with synergistic photocatalytic activity. Journal of Electroanalytical Chemistry 2019, 848 , 113288. https://doi.org/10.1016/j.jelechem.2019.113288
  47. Yongcai Qiu, Zhenghui Pan, Haining Chen, Daiqi Ye, Lin Guo, Zhiyong Fan, Shihe Yang. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin 2019, 64 (18) , 1348-1380. https://doi.org/10.1016/j.scib.2019.07.017
  48. R. Perekrestov, A. Spesyvyi, J. Maixner, K. Mašek, O. Leiko, I. Khalakhan, J. Maňák, P. Kšírová, Z. Hubička, M. Čada. The comparative study of electrical, optical and catalytic properties of Co3O4 thin nanocrystalline films prepared by reactive high-power impulse and radio frequency magnetron sputtering. Thin Solid Films 2019, 686 , 137427. https://doi.org/10.1016/j.tsf.2019.137427
  49. Jinpeng Nong, Guilian Lan, Weifeng Jin, Peng Luo, Caicheng Guo, Xiaosheng Tang, Zhigang Zang, Wei Wei. Eco-friendly and high-performance photoelectrochemical anode based on AgInS 2 quantum dots embedded in 3D graphene nanowalls. Journal of Materials Chemistry C 2019, 7 (32) , 9830-9839. https://doi.org/10.1039/C9TC01395D
  50. R. Ranjith, Vengudusamy Renganathan, Shen-Ming Chen, N. Senthamizh Selvan, P. Shameela Rajam. Green synthesis of reduced graphene oxide supported TiO2/Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet. Ceramics International 2019, 45 (10) , 12926-12933. https://doi.org/10.1016/j.ceramint.2019.03.219
  51. Mathieu Grandcolas, Brian Wabende, Juan Yang, Sen Mei, Kaiqi Xu, Truls Norby, Athanasios Chatzitakis. Preparation of TiO2 rutile nanorods decorated with cobalt oxide nanoparticles for solar photoelectrochemical activity. Materials Letters 2019, 247 , 1-3. https://doi.org/10.1016/j.matlet.2019.03.087
  52. Fatemeh Bakhnooh, Majid Arvand, Shiva Hemmati. CuCo 2 O 4 mixed metal oxide/TiO 2 nanotube arrays hetero-nanostructure with enhanced photoelectrocatalytic activity toward galantamine. Analytical Methods 2019, 11 (25) , 3221-3229. https://doi.org/10.1039/C9AY00665F
  53. Xin Zhao, Wenzhong Wang, Yujie Liang, Lizhen Yao, Junli Fu, Honglong Shi, Chunjiang Tao. Three-dimensional plasmonic photoanode of Co3O4 nanosheets coated onto TiO2 nanorod arrays for visible-light-driven water splitting. International Journal of Hydrogen Energy 2019, 44 (29) , 14561-14570. https://doi.org/10.1016/j.ijhydene.2019.04.053
  54. Limou Liu, Wenzhong Wang, Jinyan Long, Shuyi Fu, Yujie Liang, Junli Fu. Three-dimensional plasmonic photoanode of Au nanoparticles/ZnFe2O4 nanosheets coated onto ZnO nanotube arrays for photoelectrochemical production of hydrogen. Solar Energy Materials and Solar Cells 2019, 195 , 330-338. https://doi.org/10.1016/j.solmat.2019.03.028
  55. Shuang Hou, Pu Wang, Youpeng Li, Fang Pang, Miao Liu, Yizhen Luo, Lin Zhuang, Lingzhi Zhao. Podocarpus-like ɑ-Fe2O3/TiO2 composite with balsam pear texture for enhanced lithium storage. Applied Surface Science 2019, 476 , 959-965. https://doi.org/10.1016/j.apsusc.2019.01.183
  56. Huabin Kong, Chunshuang Yan, Chade Lv, Jian Pei, Gang Chen. Electric field effect in a Co 3 O 4 /TiO 2 p–n junction for superior lithium-ion storage. Materials Chemistry Frontiers 2019, 3 (5) , 909-915. https://doi.org/10.1039/C9QM00007K
  57. Xiaoliu Wang, Jianling Zhao, Tiantian Xiao, Zhongwei Li, Xixin Wang. Preparation and properties of Co3O4-doped TiO2 nanotube array electrodes. Journal of Applied Electrochemistry 2019, 49 (3) , 305-314. https://doi.org/10.1007/s10800-018-01281-z
  58. Filip Dvorak, Raul Zazpe, Milos Krbal, Hanna Sopha, Jan Prikryl, Siowwoon Ng, Ludek Hromadko, Filip Bures, Jan M. Macak. One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications. Applied Materials Today 2019, 14 , 1-20. https://doi.org/10.1016/j.apmt.2018.11.005
  59. Xiaoqin Wang, Qiong Wu, Hongchao Ma, Chun Ma, Zhihui Yu, Yinghuan Fu, Xiaoli Dong. Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater. Solar Energy Materials and Solar Cells 2019, 191 , 381-388. https://doi.org/10.1016/j.solmat.2018.12.005
  60. Xiaoli Zhao, Yu Jin, Chengjie Xiang, Jian Jin, Mei Ding, Sujuan Wu, Chuankun Jia, Lidong Sun. Conformal Filling of TiO 2 Nanotubes with Dense M x S y Films for 3D Heterojunctions: The Anion Effect. ChemElectroChem 2019, 6 (4) , 1177-1182. https://doi.org/10.1002/celc.201801380
  61. Chunmei Li, Zhihui Chen, Weiyong Yuan, Qing-Hua Xu, Chang Ming Li. In situ growth of α-Fe 2 O 3 @Co 3 O 4 core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11 (3) , 1111-1122. https://doi.org/10.1039/C8NR07041E
  62. Shervin Qarechalloo, Naimeh Naseri, Farshad Salehi, Alireza Z. Moshfegh. Simply tuned and sustainable cobalt oxide decorated titania nanotubes for photoelectrochemical water splitting. Applied Surface Science 2019, 464 , 68-77. https://doi.org/10.1016/j.apsusc.2018.09.014
  63. Jie Liu, Jun Ke, Ying Li, Baojun Liu, Lidong Wang, Huining Xiao, Shaobin Wang. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Applied Catalysis B: Environmental 2018, 236 , 396-403. https://doi.org/10.1016/j.apcatb.2018.05.042
  64. Bekir Çakıroğlu, Mahmut Özacar. A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosensors and Bioelectronics 2018, 119 , 34-41. https://doi.org/10.1016/j.bios.2018.07.049
  65. Lulu Wu, Qiaodan Li, Chaofan Yang, Xiaoqing Ma, Zefan Zhang, Xiaoli Cui. Constructing a novel TiO 2 /γ-graphyne heterojunction for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2018, 6 (42) , 20947-20955. https://doi.org/10.1039/C8TA07307D
  66. Mohamad Mohsen Momeni, Yousef Ghayeb, Mina Mahvari. Study of photoelectrochemical water splitting using films based on deposited TiO2 nanotubes. Applied Physics A 2018, 124 (9) https://doi.org/10.1007/s00339-018-2009-3
  67. Marek P. Kobylański, Paweł Mazierski, Anna Malankowska, Magda Kozak, Magdalena Diak, Michał J. Winiarski, Tomasz Klimczuk, Wojciech Lisowski, Grzegorz Nowaczyk, Adriana Zaleska-Medynska. TiO2CoxOy composite nanotube arrays via one step electrochemical anodization for visible light–induced photocatalytic reaction. Surfaces and Interfaces 2018, 12 , 179-189. https://doi.org/10.1016/j.surfin.2018.06.001
  68. Lizhen Yao, Wenzhong Wang, Lijuan Wang, Yujie Liang, Junli Fu, Honglong Shi. Chemical bath deposition synthesis of TiO2/Cu2O core/shell nanowire arrays with enhanced photoelectrochemical water splitting for H2 evolution and photostability. International Journal of Hydrogen Energy 2018, 43 (33) , 15907-15917. https://doi.org/10.1016/j.ijhydene.2018.06.127
  69. Mariusz Szkoda, Grzegorz Nowaczyk, Anna Lisowska-Oleksiak, Katarzyna Siuzdak. The influence of polarization of titania nanotubes modified by a hybrid system made of a conducting polymer PEDOT and Prussian Blue redox network on the Raman spectroscopy response and photoelectrochemical properties. Electrochimica Acta 2018, 279 , 34-43. https://doi.org/10.1016/j.electacta.2018.05.068
  70. Alfin Kurniawan, Chintya Effendi, Meng‐Jiy Wang. Electrospun titania fiber mats spin coated with thin polymer films as nanofibrous scaffolds for enhanced cell proliferation. Journal of Tissue Engineering and Regenerative Medicine 2018, 12 (4) , 1111-1122. https://doi.org/10.1002/term.2611
  71. Jeong Hwan Han. Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition. Journal of Korean Powder Metallurgy Institute 2018, 25 (1) , 60-68. https://doi.org/10.4150/KPMI.2018.25.1.60
  72. Han-Wei Chang, Yanming Fu, Wan-Yi Lee, Ying-Rui Lu, Yu-Cheng Huang, Jeng-Lung Chen, Chi-Liang Chen, Wu Ching Chou, Jin-Ming Chen, Jyh-Fu Lee, Shaohua Shen, Chung-Li Dong. Visible light-induced electronic structure modulation of Nb- and Ta-doped α -Fe 2 O 3 nanorods for effective photoelectrochemical water splitting. Nanotechnology 2018, 29 (6) , 064002. https://doi.org/10.1088/1361-6528/aa9d75
  73. Changhai Liu, Fang Wang, Yangyang Qiu, Qian Liang, Naotoshi Mitsuzak, Zhidong Chen. Facile electrodeposition of cobalt hydroxide on anodic TiO2 nanotubes arrays for enhanced photoelectrochemical application. Journal of Photochemistry and Photobiology A: Chemistry 2018, 353 , 200-205. https://doi.org/10.1016/j.jphotochem.2017.11.022
  74. Yi Zhang, Jutao Nie, Qiang Wang, Xingwang Zhang, Qi Wang, Yanqing Cong. Synthesis of Co3O4/Ag/TiO2 nanotubes arrays via photo-deposition of Ag and modification of Co3O4 (311) for enhancement of visible-light photoelectrochemical performance. Applied Surface Science 2018, 427 , 1009-1018. https://doi.org/10.1016/j.apsusc.2017.09.008
  75. Miao Xu, Liang Huang, Youxing Fang, Lei Han, You Yu, Shaojun Dong. The unified ordered mesoporous carbons supported Co-based electrocatalysts for full water splitting. Electrochimica Acta 2018, 261 , 412-420. https://doi.org/10.1016/j.electacta.2017.12.152
  76. Qiuling Ma, Huixuan Zhang, Yuqi Cui, Xiaoyong Deng, Ruonan Guo, Xiuwen Cheng, Mingzheng Xie, Qingfeng Cheng. Fabrication of Cu 2 O/TiO 2 nano-tube arrays photoelectrode and its enhanced photoelectrocatalytic performance for degradation of 2,4,6-trichlorophenol. Journal of Industrial and Engineering Chemistry 2018, 57 , 181-187. https://doi.org/10.1016/j.jiec.2017.08.020
  77. Xiang Cheng, Yajun Zhang, Hongyan Hu, Mingdong Shang, Yingpu Bi. High-efficiency SrTiO 3 /TiO 2 hetero-photoanode for visible-light water splitting by charge transport design and optical absorption management. Nanoscale 2018, 10 (8) , 3644-3649. https://doi.org/10.1039/C7NR09023D
  78. Chol-Nam Ri, Song-Gol Kim, Kyong-Sik Ju, Hyok-Su Ryo, Chol-Ho Mun, U-Hyon Kim. The synthesis of a Bi 2 MoO 6 /Bi 4 V 2 O 11 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity. RSC Advances 2018, 8 (10) , 5433-5440. https://doi.org/10.1039/C7RA12766A
  79. R. Zazpe, H. Sopha, J. Prikryl, M. Krbal, J. Mistrik, F. Dvorak, L. Hromadko, J. M. Macak. A 1D conical nanotubular TiO 2 /CdS heterostructure with superior photon-to-electron conversion. Nanoscale 2018, 10 (35) , 16601-16612. https://doi.org/10.1039/C8NR02418A
  80. Malkeshkumar Patel, Joondong Kim. Thickness-dependent photoelectrochemical properties of a semitransparent Co 3 O 4 photocathode. Beilstein Journal of Nanotechnology 2018, 9 , 2432-2442. https://doi.org/10.3762/bjnano.9.228
  81. Tripurari Sharan Tripathi, Maarit Karppinen. Atomic Layer Deposition of p-Type Semiconducting Thin Films: a Review. Advanced Materials Interfaces 2017, 4 (24) , 1700300. https://doi.org/10.1002/admi.201700300
  82. Quan Zhou, Junchen Zhou, Min Zeng, Guizhen Wang, Yongjun Chen, Shiwei Lin. Photoelectrochemical Performance of Quantum dot-Sensitized TiO2 Nanotube Arrays: a Study of Surface Modification by Atomic Layer Deposition Coating. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-2036-6
  83. Ruiyang Yin, Mingyang Liu, Rui Tang, Longwei Yin. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-2278-3
  84. Malkeshkumar Patel, Wang-Hee Park, Abhijit Ray, Joondong Kim, Jung-Ho Lee. Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co3O4 film. Solar Energy Materials and Solar Cells 2017, 171 , 267-274. https://doi.org/10.1016/j.solmat.2017.06.058
  85. Rui Tang, Shujie Zhou, Zhimin Yuan, Longwei Yin. Metal-Organic Framework Derived Co 3 O 4 /TiO 2 /Si Heterostructured Nanorod Array Photoanodes for Efficient Photoelectrochemical Water Oxidation. Advanced Functional Materials 2017, 27 (37) , 1701102. https://doi.org/10.1002/adfm.201701102
  86. Amaresh C. Pradhan, Anitha Senthamizhan, Tamer Uyar. Electrospun Mesoporous Composite CuO−Co 3 O 4 /N- TiO 2  Nanofibers as Efficient Visible Light Photocatalysts. ChemistrySelect 2017, 2 (24) , 7031-7043. https://doi.org/10.1002/slct.201701699
  87. Qian Sun, Jian Liu, Xia Li, Biqiong Wang, Hossein Yadegari, Andrew Lushington, Mohammad N. Banis, Yang Zhao, Wei Xiao, Ning Chen, Jian Wang, Tsun-Kong Sham, Xueliang Sun. Atomic Layer Deposited Non-Noble Metal Oxide Catalyst for Sodium-Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials 2017, 27 (16) , 1606662. https://doi.org/10.1002/adfm.201606662
  88. Sandeep Kumar, Kasinath Ojha, Ashok K. Ganguli. Interfacial Charge Transfer in Photoelectrochemical Processes. Advanced Materials Interfaces 2017, 4 (7) , 1600981. https://doi.org/10.1002/admi.201600981
  89. Lionel Santinacci. ALD for Photoelectrochemical Water Splitting. 2017,,, 225-257. https://doi.org/10.1002/9783527694822.ch8
  90. Hyeonseok Yoo, Kiseok Oh, Yu Ri Lee, Kyung Ho Row, Gibaek Lee, Jinsub Choi. Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting. International Journal of Hydrogen Energy 2017, 42 (10) , 6657-6664. https://doi.org/10.1016/j.ijhydene.2016.12.018
  91. Chengwu Yang, Xinyu Zhang, Jiaqian Qin, Xi Shen, Richeng Yu, Mingzhen Ma, Riping Liu. Porous carbon-doped TiO2 on TiC nanostructures for enhanced photocatalytic hydrogen production under visible light. Journal of Catalysis 2017, 347 , 36-44. https://doi.org/10.1016/j.jcat.2016.11.041
  92. Xiao Liu, Qianqian Zhu, Yun Lang, Kun Cao, Shengqi Chu, Bin Shan, Rong Chen. Oxide-Nanotrap-Anchored Platinum Nanoparticles with High Activity and Sintering Resistance by Area-Selective Atomic Layer Deposition. Angewandte Chemie 2017, 129 (6) , 1670-1674. https://doi.org/10.1002/ange.201611559
  93. Xiao Liu, Qianqian Zhu, Yun Lang, Kun Cao, Shengqi Chu, Bin Shan, Rong Chen. Oxide‐Nanotrap‐Anchored Platinum Nanoparticles with High Activity and Sintering Resistance by Area‐Selective Atomic Layer Deposition. Angewandte Chemie International Edition 2017, 56 (6) , 1648-1652. https://doi.org/10.1002/anie.201611559
  94. Chun Du, Jun Wang, Xiao Liu, Jie Yang, Kun Cao, Yanwei Wen, Rong Chen, Bin Shan. Ultrathin CoO x -modified hematite with low onset potential for solar water oxidation. Physical Chemistry Chemical Physics 2017, 19 (21) , 14178-14184. https://doi.org/10.1039/C7CP01588G
  95. Xue Lu, Zhifeng Liu. Efficient all p-type heterojunction photocathodes for photoelectrochemical water splitting. Dalton Transactions 2017, 46 (22) , 7351-7360. https://doi.org/10.1039/C7DT01285C
  96. Mehtap Büyükyazi, Thomas Fischer, Penmgei Yu, Mariona Coll, Sanjay Mathur. A cobalt( ii )heteroarylalkenolate precursor for homogeneous Co 3 O 4 coatings by atomic layer deposition. Dalton Transactions 2017, 46 (38) , 12996-13001. https://doi.org/10.1039/C7DT02757E
  97. Wen-Dong Wei, Xiang-Yu Liu, Shi-Cong Cui, Jin-Gang Liu. Loading of Co 3 O 4 onto Pt-modified nitrogen-doped TiO 2 nanocomposites promotes photocatalytic hydrogen production. RSC Advances 2017, 7 (41) , 25650-25656. https://doi.org/10.1039/C7RA03216A
  98. Qi Kang, Xuxiang Wang, Xiaolong Ma, Lingqiang Kong, Ping Zhang, Dazhong Shen. Sensitive detection of ascorbic acid and alkaline phosphatase activity by double-channel photoelectrochemical detection design based on g-C3N4/TiO2 nanotubes hybrid film. Sensors and Actuators B: Chemical 2016, 230 , 231-241. https://doi.org/10.1016/j.snb.2016.02.059
  99. Yang-Fan Xu, Xu-Dong Wang, Hong-Yan Chen, Dai-Bin Kuang, Cheng-Yong Su. Toward High Performance Photoelectrochemical Water Oxidation: Combined Effects of Ultrafine Cobalt Iron Oxide Nanoparticle. Advanced Functional Materials 2016, 26 (24) , 4414-4421. https://doi.org/10.1002/adfm.201600232
  100. Rongrong Fu, Xiaoqiao Zeng, Lu Ma, Shanmin Gao, Qingyao Wang, Zeyan Wang, Baibiao Huang, Ying Dai, Jun Lu. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2−x/BiOCl heterojunctions. Journal of Power Sources 2016, 312 , 12-22. https://doi.org/10.1016/j.jpowsour.2016.02.038
Load all citations