RETURN TO ISSUEPREVResearch ArticleNEXT

An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells

View Author Information
Department of Chemistry and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001, P. R. China
§ Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
*E-mail: [email protected]. Fax: +86-451-86418270.
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 6, 3754–3763
Publication Date (Web):January 26, 2015
https://doi.org/10.1021/am5085447
Copyright © 2015 American Chemical Society
Article Views
2467
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

Hydrogenated titanium dioxide (H-TiO2) nanocrystals were successfully prepared via annealing TiO2 in H2/N2 mixed gas flow at elevated temperatures ranging from 300 to 600 °C. Electron paramagnetic resonance (EPR) spectra were used to determine the produced oxygen vacancy in H-TiO2. Variations in temperature were studied to investigate the concentration change of oxygen vacancy in H-TiO2. The H-TiO2 nanocrystals prepared at different temperatures were employed into photoanodes sensitized by N719 dye and found to have exceptional effect on the solar-to-electric energy conversion efficiency (η). Photoanodes with H-TiO2 nanocrystals hydrogenated at 300 °C show the highest short-circuit current density (Jsc) of 18.92 mA cm–2 and photoelectrical conversion efficiency of 7.76% under standard AM 1.5 global solar irradiation, indicating a 27 and 28% enhancement in Jsc and η, respectively, in comparison to those with TiO2. The enhancement is attributed to high donor density, narrow band gap and positive shift of flat band energy (Vfb) of H-TiO2 that promote the driving force for electron injection. Intensity-modulated photocurrent spectroscopy (IMPS) accompanied by intensity-modulated photovoltage spectroscopy (IMVS) and other analyses were applied to shed more light on the fundamental mechanisms inside the charge transfer and transport in these systems.

Supporting Information

ARTICLE SECTIONS
Jump To

SEM images of TiO2 samples and hydrogenated TiO2; Tauc plots of TiO2 and hydrogenated TiO2; XPS spectra and atom percentages of the O 1s and Ti 2p peaks determined by the XPS analysis; photoelectric properties of DSSC with different treatment; equivalent circuit used to represent interface in DSSCs consisting of FTO glass substrate/TiO2/dye/I3/I∥Pt/FTO glass substrate; parameters obtained by the equivalent circuit. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 114 publications.

  1. Hao Wang, Guangcheng Zhang, Guoli Fan, Lan Yang, Feng Li. Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO2 Hydrogenation to Produce Methanol. Industrial & Engineering Chemistry Research 2021, 60 (45) , 16188-16200. https://doi.org/10.1021/acs.iecr.1c03117
  2. Jie Mao, Xiaoqiang An, Zhenao Gu, Jing Zhou, Huijuan Liu, Jiuhui Qu. Visualizing the Interfacial Charge Transfer between Photoactive Microcystis aeruginosa and Hydrogenated TiO2. Environmental Science & Technology 2020, 54 (16) , 10323-10332. https://doi.org/10.1021/acs.est.0c01658
  3. Qing Wang, Motonori Watanabe, Kaveh Edalati. Visible-Light Photocurrent in Nanostructured High-Pressure TiO2-II (Columbite) Phase. The Journal of Physical Chemistry C 2020, 124 (25) , 13930-13935. https://doi.org/10.1021/acs.jpcc.0c03923
  4. Laís Chantelle, André L. Menezes de Oliveira, Brendan J. Kennedy, Jefferson Maul, Márcia R. S. da Silva, Thiago M. Duarte, Anderson R. Albuquerque, Julio R. Sambrano, Richard Landers, Máximo Siu-Li, Elson Longo, Iêda M. G. dos Santos. Probing the Site-Selective Doping in SrSnO3:Eu Oxides and Its Impact on the Crystal and Electronic Structures Using Synchrotron Radiation and DFT Simulations. Inorganic Chemistry 2020, 59 (11) , 7666-7680. https://doi.org/10.1021/acs.inorgchem.0c00664
  5. Łukasz Haryński, Katarzyna Grochowska, Jakub Karczewski, Jacek Ryl, Katarzyna Siuzdak. Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Applied Materials & Interfaces 2020, 12 (2) , 3225-3235. https://doi.org/10.1021/acsami.9b19206
  6. D. Das, A. Barman, S. Kumar, A. K. Sinha, M. Gupta, R. Singhal, P. Johari, A. Kanjilal. Synergistic Effect of Singly Charged Oxygen Vacancies and Ligand Field for Regulating Transport Properties of Resistive Switching Memories. The Journal of Physical Chemistry C 2019, 123 (44) , 26812-26822. https://doi.org/10.1021/acs.jpcc.9b08078
  7. Faqi Zhan, Yang Liu, Keke Wang, Yisi Liu, Xuetao Yang, Yahui Yang, Xiaoqing Qiu, Wenzhang Li, Jie Li. In Situ Formation of WO3-Based Heterojunction Photoanodes with Abundant Oxygen Vacancies via a Novel Microbattery Method. ACS Applied Materials & Interfaces 2019, 11 (17) , 15467-15477. https://doi.org/10.1021/acsami.8b21895
  8. Xiaoyu Yao, Chao Wang, Hui Liu, Hongping Li, Peiwen Wu, Lei Fan, Huaming Li, Wenshuai Zhu. Immobilizing Highly Catalytically Molybdenum Oxide Nanoparticles on Graphene-Analogous BN: Stable Heterogeneous Catalysts with Enhanced Aerobic Oxidative Desulfurization Performance. Industrial & Engineering Chemistry Research 2019, 58 (2) , 863-871. https://doi.org/10.1021/acs.iecr.8b05088
  9. Reza Katal, Mojtaba Salehi, Mohammad Hossein Davood Abadi Farahani, Saeid Masudy-Panah, Say Leong Ong, Jiangyong Hu. Preparation of a New Type of Black TiO2 under a Vacuum Atmosphere for Sunlight Photocatalysis. ACS Applied Materials & Interfaces 2018, 10 (41) , 35316-35326. https://doi.org/10.1021/acsami.8b14680
  10. Xiaoqiang An, Chengzhi Hu, Huijuan Liu, and Jiuhui Qu . Hierarchical Nanotubular Anatase/Rutile/TiO2(B) Heterophase Junction with Oxygen Vacancies for Enhanced Photocatalytic H2 Production. Langmuir 2018, 34 (5) , 1883-1889. https://doi.org/10.1021/acs.langmuir.7b03745
  11. Min Li, Yihe Zhang, Xiaowei Li, Yonggang Wang, Fan Dong, Liqun Ye, Shixin Yu, and Hongwei Huang . Nature-Derived Approach to Oxygen and Chlorine Dual-Vacancies for Efficient Photocatalysis and Photoelectrochemistry. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2395-2406. https://doi.org/10.1021/acssuschemeng.7b03847
  12. C. P. Saini, A. Barman, D. Das, B. Satpati, S. R. Bhattacharyya, D. Kanjilal, A. Ponomaryov, S. Zvyagin, and A. Kanjilal . Role of Oxygen Vacancy on the Hydrophobic Behavior of TiO2 Nanorods on Chemically Etched Si Pyramids. The Journal of Physical Chemistry C 2017, 121 (1) , 278-283. https://doi.org/10.1021/acs.jpcc.6b08991
  13. Kan Zhang and Jong Hyeok Park . Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. The Journal of Physical Chemistry Letters 2017, 8 (1) , 199-207. https://doi.org/10.1021/acs.jpclett.6b02289
  14. S. Samaneh Ataei, M. Reza Mohammadizadeh, Nicola Seriani. Ab Initio Simulation of the Effects of Hydrogen Concentration on Anatase TiO2. The Journal of Physical Chemistry C 2016, 120 (16) , 8421-8427. https://doi.org/10.1021/acs.jpcc.6b00019
  15. Xiaoyun Chen, Ting Huang, Dong-Hau Kuo, Huizhi Sun, Ping Li, Osman Ahmed Zelekew, Adugna Boke Abdeta, Qinhan Wu, Jubin Zhang, Zhanhui Yuan, Jinguo Lin. Material design with the concept of solid solution-type defect engineering in realizing the conversion of an electrocatalyst of NiS2 into a photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental 2021, 298 , 120542. https://doi.org/10.1016/j.apcatb.2021.120542
  16. Sreed Sharma Kanakkillam, Bindu Krishnan, Selene Sepulveda Guzman, Josue Amilcar Aguilar Martinez, David Avellaneda Avellaneda, Sadasivan Shaji. Defects rich nanostructured black zinc oxide formed by nanosecond pulsed laser irradiation in liquid. Applied Surface Science 2021, 567 , 150858. https://doi.org/10.1016/j.apsusc.2021.150858
  17. Emerson C. Kohlrausch, Roberto dos Reis, Rhys W. Lodge, Isabel Vicente, Alexandre G. Brolo, Jairton Dupont, Jesum Alves Fernandes, Marcos. J. L. Santos. Selective suppression of {112} anatase facets by fluorination for enhanced TiO 2 particle size and phase stability at elevated temperatures. Nanoscale Advances 2021, 3 (21) , 6223-6230. https://doi.org/10.1039/D1NA00528F
  18. Zdeněk Bad'ura, Alberto Naldoni, Shanshan Qin, Aristides Bakandritsos, Štěpán Kment, Patrik Schmuki, Giorgio Zoppellaro. Light‐Induced Migration of Spin Defects in TiO 2 Nanosystems and their Contribution to the H 2 Evolution Catalysis from Water. ChemSusChem 2021, 14 (20) , 4408-4414. https://doi.org/10.1002/cssc.202101218
  19. Nada A. Azab, Abdel-Azem M. El-Sharkawy, Z.A. Omran, W.A.A. Bayoumy, Mohamed Mokhtar. C3N4 interlayer formation while synthesizing black titania and their dye sensitized solar cell and conductivity performances. Solar Energy Materials and Solar Cells 2021, 232 , 111347. https://doi.org/10.1016/j.solmat.2021.111347
  20. Hafiz Muhammad Asif Javed, Muhammad Sarfaraz, M. Zubair Nisar, Akbar Ali Qureshi, M. Fakhar e Alam, Wenxiu Que, Xingtian Yin, Hisham S. M. Abd‐Rabboh, Arslan Shahid, M. Irfan Ahmad, Sana Ullah. Plasmonic Dye‐Sensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives. ChemistrySelect 2021, 6 (34) , 9337-9350. https://doi.org/10.1002/slct.202102177
  21. Dabo Jiang, Qiao Zhang, Long Yang, Youer Deng, Bo Yang, Yachun Liu, Chao Zhang, Zaihui Fu. Regulating effects of anthraquinone substituents and additives in photo-catalytic oxygenation of p-xylene by molecular oxygen under visible light irradiation. Renewable Energy 2021, 174 , 928-938. https://doi.org/10.1016/j.renene.2021.04.100
  22. Xiaoyun Chen, Huizhi Sun, Dong-Hau Kuo, Adugna Boke Abdeta, Osman Ahmed Zelekew, Yuanbo Guo, Jubin Zhang, Zhanhui Yuan, Jinguo Lin. Spherical nanoflower-like bimetallic (Mo,Ni)(S,O)3- sulfo-oxide catalysts for efficient hydrogen evolution under visible light. Applied Catalysis B: Environmental 2021, 287 , 119992. https://doi.org/10.1016/j.apcatb.2021.119992
  23. Jia Yu, Chuanxiang Zhang, Yulin Yang, Ting Su, Guiyun Yi, Xiuxiu Zhang. Facile synthesis of molecularly imprinted black TiO2-x/carbon dots nanocomposite and its recognizable photocatalytic performance under visible-light. Applied Surface Science 2021, 551 , 149476. https://doi.org/10.1016/j.apsusc.2021.149476
  24. Yu Zhao, Ran Lu, Xin Wang, Xiaochen Huai, Caiyun Wang, Yuji Wang, Su Chen. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO 2 nanotubes/Ti foil composite. Nanotechnology 2021, 32 (19) , 195101. https://doi.org/10.1088/1361-6528/abe156
  25. Jyun-Hong Shen, Yong-Hsuan Tang, Zhu-Wu Jiang, Dong-Qi Liao, Jao-Jia Horng. Optimized preparation and characterization of Co-N codoped TiO2 with enhanced visible light activity: An insight into effect of dopants on surface redox reactions of photogenerated charge carriers for hydroxyl radical formation. Journal of Alloys and Compounds 2021, 862 , 158697. https://doi.org/10.1016/j.jallcom.2021.158697
  26. Congcong Ni, Yifan Li, Xianzhe Meng, Shuliang Liu, Siyi Luo, Jing Guan, Bo Jiang. Synergistic role of electron-trapped oxygen vacancy and exposed TiO2 [0 0 1] facets toward electrochemical p-nitrophenol reduction: Characterization, performance and mechanism. Chemical Engineering Journal 2021, 411 , 128485. https://doi.org/10.1016/j.cej.2021.128485
  27. Chunmei Lv, Xiuwen Wang, Qun Li, Chunyan Li, Qiuyun Ouyang, Yongjun Liu, Lihong Qi. Template-assisted synthesis of porous TiO2 photoanode for efficient dye-sensitized solar cells. Journal of Materials Research 2021, https://doi.org/10.1557/s43578-020-00058-5
  28. Shuyang Wu, Manoel Y. Manuputty, Yuan Sheng, Haojing Wang, Yong Yan, Markus Kraft, Rong Xu. Flame Synthesized Blue TiO 2− x with Tunable Oxygen Vacancies from Surface to Grain Boundary to Bulk. Small Methods 2021, 5 (2) , 2000928. https://doi.org/10.1002/smtd.202000928
  29. Qi Wang, Shan Zhang, Hanna He, Chunlin Xie, Yougen Tang, Chuanxin He, Minhua Shao, Haiyan Wang. Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry – An Asian Journal 2021, 16 (1) , 3-19. https://doi.org/10.1002/asia.202001172
  30. Liguo Sun, Xini Chu, Chengli He, Shixiang Zuo, Xiazhang Li, Chao Yao. Efficient photocatalytic nitrogen fixation over up-conversion nonlinear optical material Pr3+:LiNbO3 under visible light irradiation. Applied Physics A 2021, 127 (1) https://doi.org/10.1007/s00339-020-04186-x
  31. Shiqi Wang, Zeling Zhang, Wenyi Huo, Xuhai Zhang, Feng Fang, Zonghan Xie, Jianqing Jiang. Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI). Chemical Engineering Journal 2021, 403 , 126331. https://doi.org/10.1016/j.cej.2020.126331
  32. Yun Li, Xinyuan Wei. Deep in-gap states induced by double-oxygen-vacancy clusters in hydrogenated TiO 2 . Physica B: Condensed Matter 2021, 600 , 412631. https://doi.org/10.1016/j.physb.2020.412631
  33. Vitaly Gurylev. Bulk vs Surface Defects. 2021,,, 73-101. https://doi.org/10.1007/978-3-030-81911-8_3
  34. Hao Wang, Ruixin Zheng, Chaozhu Shu, Jianping Long. Promoting the Electrocatalytic Activity of Ti 3 C 2 T x MXene by Modulating CO 2 Adsorption through Oxygen Vacancies for High‐Performance Lithium‐Carbon Dioxide Batteries. ChemElectroChem 2020, 7 (24) , 4922-4930. https://doi.org/10.1002/celc.202001319
  35. Jihyun Lim, Woongsik Jang, Min Soo Kim, Myeongjun Ji, Young-In Lee, Dong Hwan Wang. Hydrogenerated black titanium dioxide-embedded conducting polymer for boosting electron flow in perovskite devices. Journal of Alloys and Compounds 2020, 846 , 156329. https://doi.org/10.1016/j.jallcom.2020.156329
  36. Camila Rivera‐Cárcamo, Canio Scarfiello, Ana B. García, Yann Tison, Hervé Martinez, Walid Baaziz, Ovidiu Ersen, Carole Le Berre, Philippe Serp. Stabilization of Metal Single Atoms on Carbon and TiO 2 Supports for CO 2 Hydrogenation: The Importance of Regulating Charge Transfer. Advanced Materials Interfaces 2020, 200 , 2001777. https://doi.org/10.1002/admi.202001777
  37. Shiqi Wang, Zeling Zhang, Wenyi Huo, Kui Zhu, Xuhai Zhang, Xuefeng Zhou, Feng Fang, Zonghan Xie, Jianqing Jiang. Preferentially oriented Ag-TiO2 nanotube array film: An efficient visible-light-driven photocatalyst. Journal of Hazardous Materials 2020, 399 , 123016. https://doi.org/10.1016/j.jhazmat.2020.123016
  38. Mingyue Chi, Ting Su, Lulu Sun, Zhiguo Zhu, Weiping Liao, Wanzhong Ren, Yuchao Zhao, Hongying Lü. Biomimetic oxygen activation and electron transfer mechanism for oxidative desulfurization. Applied Catalysis B: Environmental 2020, 275 , 119134. https://doi.org/10.1016/j.apcatb.2020.119134
  39. Dabo Jiang, Mengke Chen, Youer Deng, Wenwei Hu, Anqun Su, Bo Yang, Feng Mao, Chao Zhang, Yachun Liu, Zaihui Fu. 9,10-Dihydroanthracene auto-photooxidation efficiently triggered photo-catalytic oxidation of organic compounds by molecular oxygen under visible light. Molecular Catalysis 2020, 494 , 111127. https://doi.org/10.1016/j.mcat.2020.111127
  40. Ikuro Fujita, Parisa Edalati, Qing Wang, Motonori Watanabe, Makoto Arita, Shinji Munetoh, Tatsumi Ishihara, Kaveh Edalati. Novel black bismuth oxide (Bi2O3) with enhanced photocurrent generation, produced by high-pressure torsion straining. Scripta Materialia 2020, 187 , 366-370. https://doi.org/10.1016/j.scriptamat.2020.06.052
  41. Zhu Ding, Xiao Min Zhang, Xue Chang, Shuo Wang, Dan-Hong Wang, Ming Hui Zhang, Tian Hao Zhang. Synergistic Effect between Zr-MOF and Phosphomolybdic Acid with the Promotion of TiF4 Template. Molecules 2020, 25 (20) , 4673. https://doi.org/10.3390/molecules25204673
  42. Nikita Denisov, Shanshan Qin, Gihoon Cha, JeongEun Yoo, Patrik Schmuki. Photoelectrochemical properties of “increasingly dark” TiO2 nanotube arrays. Journal of Electroanalytical Chemistry 2020, 872 , 114098. https://doi.org/10.1016/j.jelechem.2020.114098
  43. Abolfazl Azarniya, Mahdi Zekavat, Mohammad Soltaninejad, Fatemeh Bakhshandeh, Hamid Reza Madaah Hosseini, Shima Kashani, Chinnappan Amutha, Seyed Khatiboleslam Sadrnezhaad, Seeram Ramakrishna. Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal of organic pollutants from aqueous media. Advanced Powder Technology 2020, 31 (8) , 3328-3341. https://doi.org/10.1016/j.apt.2020.06.020
  44. Qingwen Tang, Xiaoqiang An, Huachun Lan, Huijuan Liu, Jiuhui Qu. Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation. Applied Catalysis B: Environmental 2020, 268 , 118394. https://doi.org/10.1016/j.apcatb.2019.118394
  45. Zhong Su, Jiahua Liu, Meng Li, Yuxuan Zhu, Shangshu Qian, Mouyi Weng, Jiaxin Zheng, Yulin Zhong, Feng Pan, Shanqing Zhang. Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochemical Energy Reviews 2020, 3 (2) , 286-343. https://doi.org/10.1007/s41918-020-00064-5
  46. Vu Khac Hoang Bui, Vinh Van Tran, Ju-Young Moon, Duckshin Park, Young-Chul Lee. Titanium Dioxide Microscale and Macroscale Structures: A Mini-Review. Nanomaterials 2020, 10 (6) , 1190. https://doi.org/10.3390/nano10061190
  47. Lei Zhang, Tze Chiang Albert Ng, Ximeng Liu, Qilin Gu, Yajun Pang, Zhixiao Zhang, Zhiyang Lyu, Zeming He, How Yong Ng, John Wang. Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Applied Catalysis B: Environmental 2020, 264 , 118528. https://doi.org/10.1016/j.apcatb.2019.118528
  48. Jakub Wawrzyniak, Katarzyna Grochowska, Jakub Karczewski, Piotr Kupracz, Jacek Ryl, Anna Dołęga, Katarzyna Siuzdak. The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance. Surface and Coatings Technology 2020, 389 , 125628. https://doi.org/10.1016/j.surfcoat.2020.125628
  49. Elham Khorashadizade, Shiva Mohajernia, Seyedsina Hejazi, Hamid Mehdipour, Naimeh Naseri, Omran Moradlou, Ning Liu, Alireza Z. Moshfegh, Patrik Schmuki. Alkali Metal Cation Incorporation in Conductive TiO 2 Nanoflakes with Improved Photoelectrochemical H 2 Generation. ChemElectroChem 2020, 7 (7) , 1699-1706. https://doi.org/10.1002/celc.202000238
  50. Sonali Mehra, Swati Bishnoi, Ankit Jaiswal, Metikoti Jagadeeswararao, Avinash K. Srivastava, Shailesh N. Sharma, Parth Vashishtha. A review on spectral converting nanomaterials as a photoanode layer in dye‐sensitized solar cells with implementation in energy storage devices. Energy Storage 2020, 2 (2) https://doi.org/10.1002/est2.120
  51. Kumaravelu Pavithra, Sakkarapalayam Murugesan Senthil Kumar. Embedding oxygen vacancies at SnO 2 –CNT surfaces via a microwave polyol strategy towards effective electrocatalytic reduction of carbon-dioxide to formate. Catalysis Science & Technology 2020, 10 (5) , 1311-1322. https://doi.org/10.1039/C9CY01960J
  52. Songmin Zhang, Guanglan Liu, Wenming Qiao, Jitong Wang, Licheng Ling. Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide. Journal of Colloid and Interface Science 2020, 562 , 193-203. https://doi.org/10.1016/j.jcis.2019.12.015
  53. Armstrong Godoy Junior, André Pereira, Marcilene Gomes, Mariana Fraga, Rodrigo Pessoa, Douglas Leite, Gilberto Petraconi, Adailton Nogueira, Heberton Wender, Walter Miyakawa, Marcos Massi, Argemiro da Silva Sobrinho. Black TiO2 Thin Films Production Using Hollow Cathode Hydrogen Plasma Treatment: Synthesis, Material Characteristics and Photocatalytic Activity. Catalysts 2020, 10 (3) , 282. https://doi.org/10.3390/catal10030282
  54. Nemat Tahmasebi, Sahar Sezari, Parisaa Zaman. Fabrication and characterization of hydrogen-treated tungsten oxide nanofibers for cationic dyes removal from water. Solid State Sciences 2020, 100 , 106073. https://doi.org/10.1016/j.solidstatesciences.2019.106073
  55. Mohamad Firdaus Mohamad Noh, Nurul Affiqah Arzaee, Mohd Asri Mat Teridi. Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells. 2020,,, 283-305. https://doi.org/10.1007/978-3-030-36354-3_11
  56. Chen-Xi Tian, Shi-Cong Cui, Xiang-Yu Liu, Jin-Gang Liu. A hybrid composite of rhenium complexes covalently grafted on reduced graphene oxide/hydrogenated TiO2 as an efficient catalyst for CO2 reduction under visible light. Research on Chemical Intermediates 2020, 46 (1) , 1-13. https://doi.org/10.1007/s11164-019-04028-3
  57. Nazanin Rahimi, Randolph A. Pax, Evan MacA. Gray. Mechanism of hydrogen modification of titanium-dioxide. Journal of Alloys and Compounds 2020, 815 , 152249. https://doi.org/10.1016/j.jallcom.2019.152249
  58. Yurong Yang, Jiaming Chen, Xuelian Liu, Min Qiu, Li Liu, Fan Gao. Oxygen vacancy-mediated WO 3 nanosheets by etched {200} facets and the efficient visible-light photocatalytic oxygen evolution. New Journal of Chemistry 2019, 43 (41) , 16391-16395. https://doi.org/10.1039/C9NJ04286E
  59. Haiyan Liang, Hongjuan Xi, Shaoqiong Liu, Xuemei Zhang, Haiqing Liu. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale 2019, 11 (39) , 18183-18190. https://doi.org/10.1039/C9NR06222J
  60. Ying Wu, Zengxi Wei, Rui Xu, Yue Gong, Lin Gu, Jianmin Ma, Yan Yu. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Research 2019, 12 (9) , 2211-2217. https://doi.org/10.1007/s12274-018-2248-9
  61. Di Zu, Haiyang Wang, Sen Lin, Gang Ou, Hehe Wei, Shuqing Sun, Hui Wu. Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Research 2019, 12 (9) , 2150-2163. https://doi.org/10.1007/s12274-019-2377-9
  62. Yoshiteru Mizukoshi, Megumi Ohwada, Satoshi Seino, Hiroshi Horibe, Yoshimi Nishimura, Chiaki Terashima. Synthesis of oxygen-deficient blue titanium oxide by discharge plasma generated in aqueous ammonia solution. Applied Surface Science 2019, 489 , 255-261. https://doi.org/10.1016/j.apsusc.2019.05.353
  63. Xiong He, Yan Guo, Jinghua Liu, Xin Li, Jingyao Qi. Fabrication of peanut-like TiO2 microarchitecture with enhanced surface light trapping and high specific surface area for high-efficiency dye sensitized solar cells. Journal of Power Sources 2019, 423 , 236-245. https://doi.org/10.1016/j.jpowsour.2019.03.090
  64. Kaiqiang Jing, Wen Ma, Yahang Ren, Jinhua Xiong, Binbin Guo, Yujie Song, Shijing Liang, Ling Wu. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Applied Catalysis B: Environmental 2019, 243 , 10-18. https://doi.org/10.1016/j.apcatb.2018.10.027
  65. Chao Huang, Juncao Bian, Yao Guo, Miaoyan Huang, Rui-Qin Zhang. Thermal vacuum de-oxygenation and post oxidation of TiO 2 nanorod arrays for enhanced photoelectrochemical properties. Journal of Materials Chemistry A 2019, 7 (10) , 5434-5441. https://doi.org/10.1039/C8TA11830B
  66. Ayan Sarkar, Gobinda Gopal Khan. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11 (8) , 3414-3444. https://doi.org/10.1039/C8NR09666J
  67. Yanrong Guo, Tingting Zou, Qin Cheng, Binqing Jiao, Xiaoli Zhang. Towards Improvement of Photovoltaic Performance of Aqueous Dye-sensitized Solar Cells by Tungsten-doped Mesoporous Nanobeads TiO2 Working Electrode. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2019, 34 (1) , 17-22. https://doi.org/10.1007/s11595-019-2008-z
  68. Reza Katal, Saeideh Kholghi Eshkalak, Saeid Masudy-panah, Mohammadreza Kosari, Mohsen Saeedikhani, Mehrdad Zarinejad, Seeram Ramakrishna. Evaluation of Solar-Driven Photocatalytic Activity of Thermal Treated TiO2 under Various Atmospheres. Nanomaterials 2019, 9 (2) , 163. https://doi.org/10.3390/nano9020163
  69. Xiong He, Jingyu Zhang, Yan Guo, Jinghua Liu, Xin Li. Hierarchical TiO 2 microspheres composed with nanoparticle-decorated nanorods for the enhanced photovoltaic performance in dye-sensitized solar cells. RSC Advances 2019, 9 (6) , 3056-3062. https://doi.org/10.1039/C8RA09145E
  70. Devika Laishram, Kiran P. Shejale, Ritu Gupta, Rakesh K. Sharma. Heterostructured HfO2/TiO2 spherical nanoparticles for visible photocatalytic water remediation. Materials Letters 2018, 231 , 225-228. https://doi.org/10.1016/j.matlet.2018.08.053
  71. Hui-Jun Li, Nan-Quan Ou, Xiong Sun, Bo-Wen Sun, Dong-Jin Qian, Meng Chen, Xianying Wang, Junhe Yang. Exploitation of the synergistic effect between surface and bulk defects in ultra-small N-doped titanium suboxides for enhancing photocatalytic hydrogen evolution. Catalysis Science & Technology 2018, 8 (21) , 5515-5525. https://doi.org/10.1039/C8CY01717D
  72. Meifang Wang, Zhiyao Hou, Abdulaziz A. Al Kheraif, Bengang Xing, Jun Lin. Mini Review of TiO 2 -Based Multifunctional Nanocomposites for Near-Infrared Light-Responsive Phototherapy. Advanced Healthcare Materials 2018, 7 (20) , 1800351. https://doi.org/10.1002/adhm.201800351
  73. Xin Ying Kong, Boon-Junn Ng, Kok Hong Tan, Xiaofang Chen, Huanting Wang, Abdul Rahman Mohamed, Siang-Piao Chai. Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catalysis Today 2018, 314 , 20-27. https://doi.org/10.1016/j.cattod.2018.04.018
  74. Minwoo Nam, Jin Young Huh, Yongkook Park, Yong Cheol Hong, Doo-Hyun Ko. Interfacial Modification Using Hydrogenated TiO 2 Electron-Selective Layers for High-Efficiency and Light-Soaking-Free Organic Solar Cells. Advanced Energy Materials 2018, 8 (14) , 1703064. https://doi.org/10.1002/aenm.201703064
  75. Junjian Lu, Min Zhang, Fei Luo, Meixiu Wan, Wen Jin, Chuanyue Hu. Fabrication and characterisation of the dye‐sensitised solar cells with the mixture of one‐dimension TiO 2 nanorods and graphite nanosheets as the mesoporous scafford. Micro & Nano Letters 2018, 13 (5) , 580-582. https://doi.org/10.1049/mnl.2017.0591
  76. Abdo Hezam, K. Namratha, Q.A. Drmosh, Bananakere Nanjegowda Chandrashekar, Gururaj Kudur Jayaprakash, Chun Cheng, S. Srikanta Swamy, K. Byrappa. Electronically semitransparent ZnO nanorods with superior electron transport ability for DSSCs and solar photocatalysis. Ceramics International 2018, 44 (6) , 7202-7208. https://doi.org/10.1016/j.ceramint.2018.01.167
  77. Muhammad Shakeel Ahmad, Nasrudin Abd Rahim, A.K. Pandey. Improved electron transfer of TiO2 based dye sensitized solar cells using Ge as sintering aid. Optik 2018, 157 , 134-140. https://doi.org/10.1016/j.ijleo.2017.11.073
  78. Samira Bagheri, Nurhidayatullaili Muhd Julkapli. Black Titania for Photodecomposition of Organic Compounds. 2018,,, 37-50. https://doi.org/10.1007/978-3-319-69557-0_3
  79. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. Preparation of Reduced TiO2–x for Photocatalysis. 2018,,, 75-105. https://doi.org/10.1007/978-981-13-2113-9_4
  80. Lili Hou, Min Zhang, Zhongjie Guan, Qiuye Li, Jianjun Yang. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Applied Surface Science 2018, 428 , 640-647. https://doi.org/10.1016/j.apsusc.2017.09.144
  81. Andreas I. Savva, Kassiopeia A. Smith, Matthew Lawson, Sterling R. Croft, Ariel E. Weltner, Chris D. Jones, Hailey Bull, Paul J. Simmonds, Lan Li, Hui Xiong. Defect generation in TiO 2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Physical Chemistry Chemical Physics 2018, 20 (35) , 22537-22546. https://doi.org/10.1039/C8CP04368J
  82. Jong Hyun Shim, In-Tae Bae, Junghyun Cho. Microstructure development of hydrothermally grown TiO 2 thin films with vertically aligned nanorods. Journal of the American Ceramic Society 2018, 101 (1) , 50-60. https://doi.org/10.1111/jace.15110
  83. Jia-You Gong, Yen-Chi Chen, Kuo-Pin Yu. Photocatalytic decomposition of indoor ozone motivated by the white-light-emitting diode. Clean Technologies and Environmental Policy 2017, 19 (10) , 2393-2404. https://doi.org/10.1007/s10098-017-1427-9
  84. Yangyang Du, Hongkun Cai, Zhixue Xing, Yunhao Wu, Jian Xu, Zhenglong Li, Like Huang, Jian Ni, Juan Li, Jianjun Zhang. Propelling efficiency and stability of planar perovskite solar cells via Al2O3 interface modification to compact TiO2 layer. Organic Electronics 2017, 51 , 249-256. https://doi.org/10.1016/j.orgel.2017.08.027
  85. Bingzhang Lu, Bin Yao, Graham Roseman, Christopher P. Deming, Jia En Lu, Glenn L. Millhauser, Yat Li, Shaowei Chen. Ethanol Oxidation Reaction Catalyzed by Palladium Nanoparticles Supported on Hydrogen‐Treated TiO 2 Nanobelts: Impact of Oxygen Vacancies. ChemElectroChem 2017, 4 (9) , 2211-2217. https://doi.org/10.1002/celc.201700425
  86. Yan Liu, Yanzong Zhang, Lilin Wang, Gang Yang, Fei Shen, Shihuai Deng, Xiaohong Zhang, Yan He, Yaodong Hu, Xiaobo Chen. Fast and Large-Scale Anodizing Synthesis of Pine-Cone TiO2 for Solar-Driven Photocatalysis. Catalysts 2017, 7 (8) , 229. https://doi.org/10.3390/catal7080229
  87. Houda Ennaceri, Mourad Boujnah, Abdelhafed Taleb, Asmae Khaldoun, Rodrigo Sáez-Araoz, Ahmed Ennaoui, Abdallah El Kenz, Abdelilah Benyoussef. Thickness effect on the optical properties of TiO2-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study. International Journal of Hydrogen Energy 2017, 42 (30) , 19467-19480. https://doi.org/10.1016/j.ijhydene.2017.06.015
  88. Ying Wu, Yu Jiang, Jinan Shi, Lin Gu, Yan Yu. Multichannel Porous TiO 2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. Small 2017, 13 (22) , 1700129. https://doi.org/10.1002/smll.201700129
  89. Yan Liu, Zhe Li, Michael Green, Michael Just, Yang Yang Li, Xiaobo Chen. Titanium dioxide nanomaterials for photocatalysis. Journal of Physics D: Applied Physics 2017, 50 (19) , 193003. https://doi.org/10.1088/1361-6463/aa6500
  90. I-Hsiang Tseng, Yu-Min Sung, Po-Ya Chang, Si-Wei Lin. Photocatalytic Performance of Titania Nanosheets Templated by Graphene Oxide. Journal of Photochemistry and Photobiology A: Chemistry 2017, 339 , 1-11. https://doi.org/10.1016/j.jphotochem.2017.01.036
  91. Yan Liu, Lihong Tian, Xinyu Tan, Xin Li, Xiaobo Chen. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Science Bulletin 2017, 62 (6) , 431-441. https://doi.org/10.1016/j.scib.2017.01.034
  92. Jiawei Gong, K. Sumathy, Qiquan Qiao, Zhengping Zhou. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews 2017, 68 , 234-246. https://doi.org/10.1016/j.rser.2016.09.097
  93. Yan Liu, Xiaobo Chen. Black Titanium Dioxide for Photocatalysis. 2017,,, 393-428. https://doi.org/10.1016/bs.semsem.2017.04.001
  94. Yanhui Zhang, Rongying Dai, Shirong Hu. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO 2. Physical Chemistry Chemical Physics 2017, 19 (10) , 7307-7315. https://doi.org/10.1039/C7CP00630F
  95. Yangyang Du, Hongkun Cai, Yunhao Wu, Zhixue Xing, Zhenglong Li, Jian Xu, Like Huang, Jian Ni, Juan Li, Jianjun Zhang. Enhanced planar perovskite solar cells with efficiency exceeding 16% via reducing the oxygen vacancy defect state in titanium oxide electrode. Physical Chemistry Chemical Physics 2017, 19 (21) , 13679-13686. https://doi.org/10.1039/C7CP01936J
  96. Daniel Adjei Agyeman, Mihui Park, Yong-Mook Kang. Pd-Impregnated NiCo 2 O 4 nanosheets/porous carbon composites as a free-standing and binder-free catalyst for a high energy lithium–oxygen battery. J. Mater. Chem. A 2017, 5 (42) , 22234-22241. https://doi.org/10.1039/C7TA05391F
  97. Zhaoyu Ma, Penghui Li, Liqun Ye, Ying Zhou, Fengyun Su, Chenghua Ding, Haiquan Xie, Yang Bai, Po Keung Wong. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO 2 conversion. Journal of Materials Chemistry A 2017, 5 (47) , 24995-25004. https://doi.org/10.1039/C7TA08766G
  98. Xiujie Wang, Shengsen Zhang, Yaobin Xie, Hongjuan Wang, Hao Yu, Yixing Shen, Zihao Li, Shanqing Zhang, Feng Peng. Branched hydrogenated TiO 2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light. International Journal of Hydrogen Energy 2016, 41 (44) , 20192-20197. https://doi.org/10.1016/j.ijhydene.2016.09.029
  99. Xiong He, Xin Li, Menghua Zhu. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. Journal of Power Sources 2016, 333 , 10-16. https://doi.org/10.1016/j.jpowsour.2016.09.133
  100. Jinhua Xiong, Yuhao Liu, Shijing Liang, Shiying Zhang, Yanhua Li, Ling Wu. Insights into the role of Cu in promoting photocatalytic hydrogen production over ultrathin HNb3O8 nanosheets. Journal of Catalysis 2016, 342 , 98-104. https://doi.org/10.1016/j.jcat.2016.07.016
Load all citations