The Alignment of Carbon Nanotubes: An Effective Route To Extend Their Excellent Properties to Macroscopic Scale

View Author Information
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
*Corresponding author. E-mail address: [email protected]
Cite this: Acc. Chem. Res. 2013, 46, 2, 539–549
Publication Date (Web):November 21, 2012
https://doi.org/10.1021/ar300221r
Copyright © 2012 American Chemical Society
Article Views
4316
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)

Abstract

To improve the practical application of carbon nanotubes, it is critically important to extend their physical properties from the nanoscale to the macroscopic scale. Recently, chemists aligned continuous multiwalled carbon nanotube (MWCNT) sheets and fibers to produce materials with high mechanical strength and electrical conductivity. This provided an important clue to the use of MWCNTs at macroscopic scale. Researchers have made multiple efforts to optimize this aligned structure and improve the properties of MWCNT sheets and fibers. In this Account, we briefly highlight the new synthetic methods and promising applications of aligned MWCNTs for organic optoelectronic materials and devices.

We describe several general methods to prepare both horizontally and perpendicularly aligned MWCNT/polymer composite films, through an easy solution or melting process. The composite films exhibit the combined properties of being flexible, transparent, and electrically conductive. These advances may pave the way to new flexible substrates for organic solar cells, sensing devices, and other related applications. Similarly, we discuss the synthesis of aligned MWCNT/polymer composite fibers with interesting mechanical and electrical properties. Through these methods, we can incorporate a wide variety of soluble or fusible polymers for such composite films and fibers.

In addition, we can later introduce functional polymers with conjugated backbones or side chains to improve the properties of these composite materials. In particular, cooperative interactions between aligned MWCNTs and polymers can produce novel properties that do not occur individually. Common examples of this are two types of responsive polymers, photodeformable azobenzene-containing liquid crystalline polymer and chromatic polydiacetylene. Aligning the structure of MWCNTs induces the orientation of azobenzene-containing mesogens, and produces photodeformable polymer elastomers. This strategy also solves the long-standing problems from the traditional mechanical rubbing method, which include production of broken debris and structure damage during fabrication and building up electrostatic charge during use. Aligning MWCNTs induces a conformational change in polydiacetylene, which causes the composite fibers to be electrochromatic, a previously unknown reaction in chromatic polymers.

Due to their large surface area, flexibility, electrical conductivity, and remarkable electrocatalytic activity, aligned MWCNT films can be used as counter electrodes to produce highly efficient dye-sensitized solar cells. In addition, chemists have developed new electrodes from the aligned MWCNT fibers to make a family of high-performing, wire-shaped dye-sensitized solar cells.

Cited By


This article is cited by 103 publications.

  1. Yimin Jiang, Xia Xiao, Chenchen Li, Yu Luo, Shu Chen, Guoyue Shi, Kai Han, Hui Gu. Facile Ratiometric Electrochemical Sensor for In Vivo/Online Repetitive Measurements of Cerebral Ascorbic Acid in Brain Microdiaysate. Analytical Chemistry 2020, 92 (5) , 3981-3989. https://doi.org/10.1021/acs.analchem.9b05484
  2. Richard Mayne, Thomas C. Draper, Neil Phillips, James G. H. Whiting, Roshan Weerasekera, Claire Fullarton, Ben P. J. de Lacy Costello, Andrew Adamatzky. Neuromorphic Liquid Marbles with Aqueous Carbon Nanotube Cores. Langmuir 2019, 35 (40) , 13182-13188. https://doi.org/10.1021/acs.langmuir.9b02552
  3. Lucas Montero de Espinosa, Worarin Meesorn, Dafni Moatsou, Christoph Weder. Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chemical Reviews 2017, 117 (20) , 12851-12892. https://doi.org/10.1021/acs.chemrev.7b00168
  4. Limin Zhang, Fangling Liu, Xuemei Sun, Guang-feng Wei, Yang Tian, Zhi-pan Liu, Rong Huang, Yanyan Yu, and Huisheng Peng . Engineering Carbon Nanotube Fiber for Real-Time Quantification of Ascorbic Acid Levels in a Live Rat Model of Alzheimer’s Disease. Analytical Chemistry 2017, 89 (3) , 1831-1837. https://doi.org/10.1021/acs.analchem.6b04168
  5. Silvia Agnelli, Stefano Pandini, Andrea Serafini, Sara Musto, and Maurizio Galimberti . Anisotropic Nonlinear Mechanical Behavior in Carbon Nanotubes/Poly(1,4-cis-isoprene) Nanocomposites. Macromolecules 2016, 49 (22) , 8686-8696. https://doi.org/10.1021/acs.macromol.6b01682
  6. Luisa Ariza-Carmona, Carlos Rubia-Payá, G. García-Espejo, María T. Martín-Romero, Juan J. Giner-Casares, and Luis Camacho . Diacetylene Mixed Langmuir Monolayers for Interfacial Polymerization. Langmuir 2015, 31 (19) , 5333-5344. https://doi.org/10.1021/acs.langmuir.5b00175
  7. Miao Wang, Hongyuan Chen, Wei Lin, Zhuo Li, Qiang Li, Minghai Chen, Fancheng Meng, Yajuan Xing, Yagang Yao, Ching-ping Wong, and Qingwen Li . Crack-Free and Scalable Transfer of Carbon Nanotube Arrays into Flexible and Highly Thermal Conductive Composite Film. ACS Applied Materials & Interfaces 2014, 6 (1) , 539-544. https://doi.org/10.1021/am404594m
  8. Ifra Marriam, Mike Tebyetekerwa, Zhen Xu, Hiran Chathuranga, Su Chen, Hao Chen, Jun-Chao Zheng, Aijun Du, Cheng Yan. Techniques Enabling Inorganic Materials into Wearable Fiber/Yarn and Flexible Lithium-Ion Batteries. Energy Storage Materials 2021, 12 https://doi.org/10.1016/j.ensm.2021.08.039
  9. Sudip Suklabaidya, Sekhar Chakraborty, Jaba Saha, Bapi Dey, Surajit Sarkar, Debajyoti Bhattacharjee, Syed Arshad Hussain. Study of polydiacetylenes and rhodamine-800 mixed film at air–water interface and onto solid support: Trace of fluorescence resonance energy transfer (FRET). Polymer Bulletin 2021, 78 (1) , 93-113. https://doi.org/10.1007/s00289-020-03102-w
  10. A. Kh. Zhakina, Ye. P. Vassilets, O. V. Arnt, Ye. V. Kudryavtseva, T. S. Zhivotova, A. M. Gazaliev, Z. M. Muldakhmetov. Synthesis and Properties of a Nanocomposite Material Based on a Product of Coal Waste Processing. Solid Fuel Chemistry 2020, 54 (5) , 274-279. https://doi.org/10.3103/S0361521920050109
  11. Yourri-Samuel Dessureault, Claire Jolowsky, Samantha Bell, Stefan Spiric, Josiah Molyneux, Jin Gyu Park, Ayou Hao, Zhiyong Liang. Tensile performance and failure modes of continuous carbon nanotube yarns for composite applications. Materials Science and Engineering: A 2020, 792 , 139824. https://doi.org/10.1016/j.msea.2020.139824
  12. Wenbei Zhang, Tianlu Cui, Shuai Bi, Lie Ma, Deng Lu, Dongqing Wu, Fan Zhang. A monomer-assembly template-directed synthesis of conjugated porous polymer microtubular bundles. Materials Horizons 2020, 7 (2) , 551-558. https://doi.org/10.1039/C9MH01381D
  13. Huisheng Peng. Charge Separation and Transport Mechanism in Fiber Electronics. 2020,,, 53-70. https://doi.org/10.1007/978-981-15-9945-3_3
  14. Huisheng Peng. Fiber Dye-Sensitized Solar Cells. 2020,,, 71-111. https://doi.org/10.1007/978-981-15-9945-3_4
  15. Fatemeh Jahanmard, Mohamadreza Baghban Eslaminejad, Mohammad Amani-Tehran, Fatemeh Zarei, Naeimeh Rezaei, Michiel Croes, Saber Amin Yavari. Incorporation of F-MWCNTs into electrospun nanofibers regulates osteogenesis through stiffness and nanotopography. Materials Science and Engineering: C 2020, 106 , 110163. https://doi.org/10.1016/j.msec.2019.110163
  16. Yevgeniya Kalachyova, Olga Guselnikova, Vladimir Hnatowicz, Pavel Postnikov, Vaclav Švorčík, Oleksiy Lyutakov. Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers 2019, 11 (11) , 1856. https://doi.org/10.3390/polym11111856
  17. Jose Garcia-Torres, Alexander J. Roberts, Robert C.T. Slade, Carol Crean. One-step wet-spinning process of CB/CNT/MnO2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors. Electrochimica Acta 2019, 296 , 481-490. https://doi.org/10.1016/j.electacta.2018.10.201
  18. Noe T. Alvarez, Sathya Narayan Kanakaraj, Kiera Gazica, Qingyue Yu, Seyram Gbordzoe, Vesselin Shanov. Carbon Nanotube Fiber Strength Improvements: Cross-Linking and Densification. 2019,,, 313-333. https://doi.org/10.1016/B978-0-12-812667-7.00013-6
  19. Filipe V. Ferreira, Wesley Franceschi, Beatriz R.C. Menezes, Audrey F. Biagioni, Aparecido R. Coutinho, Luciana S. Cividanes. Synthesis, Characterization, and Applications of Carbon Nanotubes. 2019,,, 1-45. https://doi.org/10.1016/B978-0-12-813248-7.00001-8
  20. LePing Yu, Munkhbayar Batmunkh, Cameron Shearer, Joseph G. Shapter, Joseph G. Shapter. Use of Carbon Nanotubes (CNTs) in Third‐Generation Solar Cells. 2018,,, 551-609. https://doi.org/10.1002/9781119407690.ch15
  21. Trevor L Buckner, Rebecca Kramer-Bottiglio. Functional fibers for robotic fabrics. Multifunctional Materials 2018, 1 (1) , 012001. https://doi.org/10.1088/2399-7532/aad378
  22. Jizhong Song. Nanowires for Smart Textiles. 2018,,, 127-176. https://doi.org/10.1002/9781119460367.ch5
  23. Simon G. King, Nicholas J. Terrill, Andrew J. Goodwin, Robert Stevens, Vlad Stolojan, S.Ravi P. Silva. Probing of polymer to carbon nanotube surface interactions within highly aligned electrospun nanofibers for advanced composites. Carbon 2018, 138 , 207-214. https://doi.org/10.1016/j.carbon.2018.06.019
  24. Gustavo A. Zelada-Guillén, Martha V. Escárcega-Bobadilla, Marcin Wegrzyn, Enrique Giménez, Gerhard Maier, Arjan W. Kleij. Enhanced Conductivity for Carbon Nanotube Based Materials through Supramolecular Hierarchical Self-Assembly. Advanced Materials Interfaces 2018, 5 (9) , 1701585. https://doi.org/10.1002/admi.201701585
  25. Shuying Wu, Shuhua Peng, Chun Wang. Multifunctional Polymer Nanocomposites Reinforced by Aligned Carbon Nanomaterials. Polymers 2018, 10 (5) , 542. https://doi.org/10.3390/polym10050542
  26. Razieh Beigmoradi, Abdolreza Samimi, Davod Mohebbi-Kalhori. Engineering of oriented carbon nanotubes in composite materials. Beilstein Journal of Nanotechnology 2018, 9 , 415-435. https://doi.org/10.3762/bjnano.9.41
  27. Mingfei Zhang, Lulu Fu, Jun Ye, Mark G. Humphrey, Huan Liu, Bing Yan, Long Zhang, Jianda Shao, Chi Zhang. Covalent-linked porphyrin/single-walled carbon nanotube nanohybrids: synthesis and influence of porphyrin substituents on nonlinear optical performance. Carbon 2017, 124 , 618-629. https://doi.org/10.1016/j.carbon.2017.08.060
  28. Yuanyuan Li, Hongli Zhu, Yibo Wang, Upamanyu Ray, Shuze Zhu, Jiaqi Dai, Chaoji Chen, Kun Fu, Soo‐Hwan Jang, Doug Henderson, Teng Li, Liangbing Hu. Cellulose‐Nanofiber‐Enabled 3D Printing of a Carbon‐Nanotube Microfiber Network. Small Methods 2017, 1 (10) , 1700222. https://doi.org/10.1002/smtd.201700222
  29. Seyram Gbordzoe, Sergey Yarmolenko, Yu-Yun Hsieh, Paa Kwasi Adusei, Noe T. Alvarez, Svitlana Fialkova, Vesselin Shanov. Three-dimensional texture analysis of aligned carbon nanotube structures. Carbon 2017, 121 , 591-601. https://doi.org/10.1016/j.carbon.2017.06.028
  30. Hao Sun, Ye Zhang, Jing Zhang, Xuemei Sun, Huisheng Peng. Energy harvesting and storage in 1D devices. Nature Reviews Materials 2017, 2 (6) https://doi.org/10.1038/natrevmats.2017.23
  31. Yingjun Liu, Zhen Xu, Weiwei Gao, Zhengdong Cheng, Chao Gao. Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. Advanced Materials 2017, 29 (14) , 1606794. https://doi.org/10.1002/adma.201606794
  32. Elias P. Koumoulos, C.A. Charitidis. Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation. Applied Surface Science 2017, 396 , 681-687. https://doi.org/10.1016/j.apsusc.2016.11.008
  33. Xin Wang, Jiangtao Di, Liwen Zhang, Qingwen Li, Philip D. Bradford, Yuntian T. Zhu. High-Performance Composites Produced from Dry-Processable Multi-Walled Carbon Nanotubes. 2017,,, 3-27. https://doi.org/10.1007/978-3-662-53804-3_1
  34. Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang. Electronic Polymer Composite. 2017,,, 107-149. https://doi.org/10.1016/B978-0-12-811091-1.00004-5
  35. T. Grace, C. Shearer, D. Tune, L. Yu, M. Batmunkh, M.J. Biggs, Z.A. ALOthman, J.G. Shapter. Use of Carbon Nanotubes in Third-Generation Solar Cells. 2017,,, 201-249. https://doi.org/10.1016/B978-0-323-41481-4.00008-3
  36. Wenbo Shi, Jinjing Li, Erik S. Polsen, C. Ryan Oliver, Yikun Zhao, Eric R. Meshot, Michael Barclay, D. Howard Fairbrother, A. John Hart, Desiree L. Plata. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. Nanoscale 2017, 9 (16) , 5222-5233. https://doi.org/10.1039/C6NR09802A
  37. Li Hua, Zhongyuan Ma, Peipei Shi, Li Li, Kun Rui, Jinyuan Zhou, Xiao Huang, Xiang Liu, Jixin Zhu, Gengzhi Sun, Wei Huang. Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. Journal of Materials Chemistry A 2017, 5 (6) , 2483-2487. https://doi.org/10.1039/C6TA10619F
  38. Cinzia Silvestri, Federico Marciano, Bruno Morana, Violeta Podranovic, Sten Vollebregt, Guo Qi Zhang, Pasqualina M. Sarro. Horizontally aligned carbon nanotube scaffolds for freestanding structures with enhanced conductivity. 2017,,, 266-269. https://doi.org/10.1109/MEMSYS.2017.7863392
  39. Dimitris K. Perivoliotis, Malamatenia A. Koklioti, Elias P. Koumoulos, Yiannis S. Raptis, Costas A. Charitidis. Vertically aligned CNT arrays: structural integrity and surface properties. International Journal of Structural Integrity 2016, 7 (6) , 703-711. https://doi.org/10.1108/IJSI-10-2015-0046
  40. Mahsa Nahavandi Nejad, Morteza Asghari, Morteza Afsari. Investigation of Carbon Nanotubes in Mixed Matrix Membranes for Gas Separation: A Review. ChemBioEng Reviews 2016, 3 (6) , 276-298. https://doi.org/10.1002/cben.201600012
  41. Tian Lv, Yao Yao, Ning Li, Tao Chen. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 2016, 11 (5) , 644-660. https://doi.org/10.1016/j.nantod.2016.08.010
  42. Yongfeng Luo, Xinghai Yu. Light and electrically responsive materials based on aligned carbon nanotubes. European Polymer Journal 2016, 82 , 290-299. https://doi.org/10.1016/j.eurpolymj.2015.07.059
  43. Aikaterini-Flora Trompeta, Malamatenia A. Koklioti, Dimitrios K. Perivoliotis, Iseult Lynch, Costas A. Charitidis. Towards a holistic environmental impact assessment of carbon nanotube growth through chemical vapour deposition. Journal of Cleaner Production 2016, 129 , 384-394. https://doi.org/10.1016/j.jclepro.2016.04.044
  44. A.A. Pirzado, T. Dintzer, I. Janowska. Macronization/densification of graphenes via vibratory compaction. Powder Technology 2016, 295 , 303-306. https://doi.org/10.1016/j.powtec.2016.03.050
  45. Katarzyna Krukiewicz, John S. Bulmer, Krzysztof K.K. Koziol, Jerzy K. Zak. Charging and discharging of the electrochemically swelled, aligned carbon nanotube fibers. Electrochemistry Communications 2016, 64 , 30-34. https://doi.org/10.1016/j.elecom.2016.01.010
  46. Bin Wang, Chuangang Hu, Liming Dai. Functionalized carbon nanotubes and graphene-based materials for energy storage. Chemical Communications 2016, 52 (100) , 14350-14360. https://doi.org/10.1039/C6CC05581H
  47. Li Luo, Zheng Zhou, Ye Ren, Guang-Xin Chen, Qifang Li. Uniformly deposited Pt nanoparticles onto crosslinked ionic liquids wrapped carbon nanotubes for methanol electrooxidation. RSC Advances 2016, 6 (86) , 82726-82732. https://doi.org/10.1039/C6RA17094C
  48. Umair Gulzar, Subrahmanyam Goriparti, Ermanno Miele, Tao Li, Giulia Maidecchi, Andrea Toma, Francesco De Angelis, Claudio Capiglia, Remo Proietti Zaccaria. Next-generation textiles: from embedded supercapacitors to lithium ion batteries. Journal of Materials Chemistry A 2016, 4 (43) , 16771-16800. https://doi.org/10.1039/C6TA06437J
  49. Luisa Ariza-Carmona, María T. Martín-Romero, Juan J. Giner-Casares, Luis Camacho. Direct observation by using Brewster angle microscopy of the diacetylene polimerization in mixed Langmuir film. Journal of Colloid and Interface Science 2015, 459 , 53-62. https://doi.org/10.1016/j.jcis.2015.08.003
  50. Xingxing Wu, Maojin Yun, Mei Wang, Chao Liu, Kai Li, Xiheng Qin, Weijin Kong, Lifeng Dong. Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays. Optics Communications 2015, 356 , 182-185. https://doi.org/10.1016/j.optcom.2015.07.074
  51. Bruno C. Janegitz, Marina Baccarin, Paulo A. Raymundo-Pereira, Fabrício A. dos Santos, Geiser G. Oliveira, Sergio A.S. Machado, Marcos R.V. Lanza, Orlando Fatibello-Filho, Valtencir Zucolotto. The use of dihexadecylphosphate in sensing and biosensing. Sensors and Actuators B: Chemical 2015, 220 , 805-813. https://doi.org/10.1016/j.snb.2015.06.020
  52. Peining Chen, Yifan Xu, Sisi He, Xuemei Sun, Shaowu Pan, Jue Deng, Daoyong Chen, Huisheng Peng. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotechnology 2015, 10 (12) , 1077-1083. https://doi.org/10.1038/nnano.2015.198
  53. M Nazhipkyzy, S D Mohan, F J Davis, G R Mitchell. Carbon nanotubes in electrospun polyethylene oxide nanofibres: A potential route to conducting nanofibres. Journal of Physics: Conference Series 2015, 646 , 012007. https://doi.org/10.1088/1742-6596/646/1/012007
  54. Peining Chen, Sisi He, Yifan Xu, Xuemei Sun, Huisheng Peng. Electromechanical Actuator Ribbons Driven by Electrically Conducting Spring-Like Fibers. Advanced Materials 2015, 27 (34) , 4982-4988. https://doi.org/10.1002/adma.201501731
  55. Qian Sun, Xin Fang, Wei Weng, Jue Deng, Peining Chen, Jing Ren, Guozhen Guan, Min Wang, Huisheng Peng. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie 2015, 127 (36) , 10685-10690. https://doi.org/10.1002/ange.201504514
  56. Qian Sun, Xin Fang, Wei Weng, Jue Deng, Peining Chen, Jing Ren, Guozhen Guan, Min Wang, Huisheng Peng. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie International Edition 2015, 54 (36) , 10539-10544. https://doi.org/10.1002/anie.201504514
  57. Sergio Alonso Medina Escobar, César Augusto Isaza Merino, Juan Manuel Meza Meza. Mechanical and thermal behavior of polyvinyl alcohol reinforced with aligned carbon nanotubes. Matéria (Rio de Janeiro) 2015, 20 (3) , 794-802. https://doi.org/10.1590/S1517-707620150003.0085
  58. Zheng Li, Zheng Liu, Haiyan Sun, Chao Gao. Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. Chemical Reviews 2015, 115 (15) , 7046-7117. https://doi.org/10.1021/acs.chemrev.5b00102
  59. Ru Li, Xi Xiang, Xiao Tong, Jingyun Zou, Qingwen Li. Wearable Double-Twisted Fibrous Perovskite Solar Cell. Advanced Materials 2015, 27 (25) , 3831-3835. https://doi.org/10.1002/adma.201501333
  60. Antoine Stopin, Florent Pineux, Riccardo Marega, Davide Bonifazi. Magnetically Active Carbon Nanotubes at Work. Chemistry - A European Journal 2015, 21 (26) , 9288-9301. https://doi.org/10.1002/chem.201500944
  61. Gengzhi Sun, Xiao Zhang, Rongzhou Lin, Jian Yang, Hua Zhang, Peng Chen. Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-Walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors. Angewandte Chemie 2015, 127 (15) , 4734-4739. https://doi.org/10.1002/ange.201411533
  62. Gengzhi Sun, Xiao Zhang, Rongzhou Lin, Jian Yang, Hua Zhang, Peng Chen. Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-Walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors. Angewandte Chemie International Edition 2015, 54 (15) , 4651-4656. https://doi.org/10.1002/anie.201411533
  63. YiShu Jiang, Hao Sun, HuiSheng Peng. Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Science China Materials 2015, 58 (4) , 289-293. https://doi.org/10.1007/s40843-015-0040-7
  64. Simon G. King, Liam McCafferty, Vlad Stolojan, S. Ravi P. Silva. Highly aligned arrays of super resilient carbon nanotubes by steam purification. Carbon 2015, 84 , 130-137. https://doi.org/10.1016/j.carbon.2014.11.061
  65. Hao Sun, Xuemei Sun, Zhibin Yang, Huisheng Peng. Aligned Carbon Nanotubes and Their Hybrids for Supercapacitors. 2015,,, 339-359. https://doi.org/10.1002/9783527680054.ch12
  66. Wei Tang, Yanpeng Liu, Chengxin Peng, Mary Y. Hu, Xuchu Deng, Ming Lin, Jian Zhi Hu, Kian Ping Loh. Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System. Journal of the American Chemical Society 2015, 137 (7) , 2600-2607. https://doi.org/10.1021/ja5116259
  67. Peining Chen, Yifan Xu, Sisi He, Xuemei Sun, Wenhan Guo, Zhitao Zhang, Longbin Qiu, Jianfeng Li, Daoyong Chen, Huisheng Peng. Biologically Inspired, Sophisticated Motions from Helically Assembled, Conducting Fibers. Advanced Materials 2015, 27 (6) , 1042-1047. https://doi.org/10.1002/adma.201402867
  68. Huisheng Peng. Fiber-Shaped Dye-Sensitized Solar Cell. 2015,,, 39-76. https://doi.org/10.1007/978-3-662-45744-3_3
  69. Yuanyuan Li, Hongli Zhu, Shuze Zhu, Jiayu Wan, Zhen Liu, Oeyvind Vaaland, Steven Lacey, Zhiqiang Fang, Hongqi Dai, Teng Li, Liangbing Hu. Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Materials 2015, 7 (1) , e150-e150. https://doi.org/10.1038/am.2014.111
  70. Hao Sun, Jue Deng, Longbin Qiu, Xin Fang, Huisheng Peng. Recent progress in solar cells based on one-dimensional nanomaterials. Energy & Environmental Science 2015, 8 (4) , 1139-1159. https://doi.org/10.1039/C4EE03853C
  71. Murugesan Janani, Pillalamarri Srikrishnarka, Shantikumar V. Nair, A. Sreekumaran Nair. An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells. Journal of Materials Chemistry A 2015, 3 (35) , 17914-17938. https://doi.org/10.1039/C5TA03644E
  72. Andrew M. Zeidell, Nathanael D. Cox, Shawn M. Huston, Jamie E. Rossi, Brian J. Landi, Brad R. Conrad. Cyclopentadienyliron dicarbonyl dimer carbon nanotube synthesis. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2015, 33 (1) , 011204. https://doi.org/10.1116/1.4904743
  73. Haitao Wang, Chongzheng Na. Binder-Free Carbon Nanotube Electrode for Electrochemical Removal of Chromium. ACS Applied Materials & Interfaces 2014, 6 (22) , 20309-20316. https://doi.org/10.1021/am505838r
  74. Jiangtao Di, Xin Wang, Yajuan Xing, Yongyi Zhang, Xiaohua Zhang, Weibang Lu, Qingwen Li, Yuntian T. Zhu. Dry-Processable Carbon Nanotubes for Functional Devices and Composites. Small 2014, 10 (22) , 4606-4625. https://doi.org/10.1002/smll.201401465
  75. Haoyu Tang, Ying Ling, Yong Deng, Donghui Zhang. Synthesis and solid-state self-assembly of poly(ethylene glycol)- b -poly( γ -benzyl- l -glutamate)s and single-walled carbon nanotubes. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52 (13) , 1905-1915. https://doi.org/10.1002/pola.27193
  76. Shaowu Pan, Zhitao Zhang, Wei Weng, Huijuan Lin, Zhibin Yang, Huisheng Peng. Miniature wire-shaped solar cells, electrochemical capacitors and lithium-ion batteries. Materials Today 2014, 17 (6) , 276-284. https://doi.org/10.1016/j.mattod.2014.04.024
  77. Hao Sun, Xiao You, Jue Deng, Xuli Chen, Zhibin Yang, Peining Chen, Xin Fang, Huisheng Peng. A Twisted Wire-Shaped Dual-Function Energy Device for Photoelectric Conversion and Electrochemical Storage. Angewandte Chemie 2014, 126 (26) , 6782-6786. https://doi.org/10.1002/ange.201403168
  78. Hao Sun, Xiao You, Jue Deng, Xuli Chen, Zhibin Yang, Peining Chen, Xin Fang, Huisheng Peng. A Twisted Wire-Shaped Dual-Function Energy Device for Photoelectric Conversion and Electrochemical Storage. Angewandte Chemie International Edition 2014, 53 (26) , 6664-6668. https://doi.org/10.1002/anie.201403168
  79. Leilei Lü, Zhimin Chen, Guiheng Xu, Jianan Zhang, Qun Xu. Pine needle-like nanocomposite: Supercritical CO2 assisted polythiophene synthesis on carbon nanotubes. Chemical Research in Chinese Universities 2014, 30 (3) , 521-526. https://doi.org/10.1007/s40242-014-3379-5
  80. Guadalupe Díaz Costanzo, Laura Ribba, Silvia Goyanes, Silvia Ledesma. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes. Journal of Physics D: Applied Physics 2014, 47 (13) , 135103. https://doi.org/10.1088/0022-3727/47/13/135103
  81. H. Fayazfar, A. Afshar, A. Dolati, M. Ghalkhani. Modification of well-aligned carbon nanotubes with dihexadecyl hydrogen phosphate: application to highly sensitive nanomolar detection of simvastatin. Journal of Applied Electrochemistry 2014, 44 (2) , 263-277. https://doi.org/10.1007/s10800-013-0654-y
  82. Qing Hua Wang, Darin O. Bellisario, Lee W. Drahushuk, Rishabh M. Jain, Sebastian Kruss, Markita P. Landry, Sayalee G. Mahajan, Steven F. E. Shimizu, Zachary W. Ulissi, Michael S. Strano. Low Dimensional Carbon Materials for Applications in Mass and Energy Transport. Chemistry of Materials 2014, 26 (1) , 172-183. https://doi.org/10.1021/cm402895e
  83. Haitao Wang, Chongzheng Na. Synthesis of millimeter-long vertically aligned carbon nanotube arrays on aluminum oxide buffer prepared by layer-by-layer assembly of boehmite nanoplates. Carbon 2014, 66 , 727-729. https://doi.org/10.1016/j.carbon.2013.09.034
  84. P.S. Goh, A.F. Ismail, B.C. Ng. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Composites Part A: Applied Science and Manufacturing 2014, 56 , 103-126. https://doi.org/10.1016/j.compositesa.2013.10.001
  85. Douglas R. MacFarlane, Naoki Tachikawa, Maria Forsyth, Jennifer M. Pringle, Patrick C. Howlett, Gloria D. Elliott, James H. Davis, Masayoshi Watanabe, Patrice Simon, C. Austen Angell. Energy applications of ionic liquids. Energy Environ. Sci. 2014, 7 (1) , 232-250. https://doi.org/10.1039/C3EE42099J
  86. Hao Sun, Houpu Li, Xiao You, Zhibin Yang, Jue Deng, Longbin Qiu, Huisheng Peng. Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 2014, 2 (2) , 345-349. https://doi.org/10.1039/C3TA13818F
  87. Darin O. Bellisario, Rishabh M. Jain, Zackary Ulissi, Michael S. Strano. Deterministic modelling of carbon nanotube near-infrared solar cells. Energy Environ. Sci. 2014, 7 (11) , 3769-3781. https://doi.org/10.1039/C4EE01765J
  88. Xin Lu, Zhitao Zhang, Houpu Li, Xuemei Sun, Huisheng Peng. Conjugated polymer composite artificial muscle with solvent-induced anisotropic mechanical actuation. J. Mater. Chem. A 2014, 2 (41) , 17272-17280. https://doi.org/10.1039/C4TA03983A
  89. Gengzhi Sun, Juqing Liu, Lianxi Zheng, Wei Huang, Hua Zhang. Preparation of Weavable, All-Carbon Fibers for Non-Volatile Memory Devices. Angewandte Chemie 2013, 125 (50) , 13593-13597. https://doi.org/10.1002/ange.201306770
  90. Gengzhi Sun, Juqing Liu, Lianxi Zheng, Wei Huang, Hua Zhang. Preparation of Weavable, All-Carbon Fibers for Non-Volatile Memory Devices. Angewandte Chemie International Edition 2013, 52 (50) , 13351-13355. https://doi.org/10.1002/anie.201306770
  91. Dongwei Yan, Yitao Feng, Chunru Wang. Self-assembled array of rectangular single-crystal microtubes of perchlorinated copper phthalocyanines. Progress in Natural Science: Materials International 2013, 23 (6) , 543-548. https://doi.org/10.1016/j.pnsc.2013.11.008
  92. Haiyang Zhao, Zhijun Zhou, Hang Dong, Lin Zhang, Huanlin Chen, Lian Hou. A facile method to align carbon nanotubes on polymeric membrane substrate. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03480
  93. Zhi Yang, Xingzhong Zhu, Xiaolu Huang, Yingwu Cheng, Yun Liu, Huijuan Geng, Yue Wu, Yanjie Su, Hao Wei, Yafei Zhang. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays. Nanoscale Research Letters 2013, 8 (1) https://doi.org/10.1186/1556-276X-8-501
  94. Xuli Chen, Longbin Qiu, Jing Ren, Guozhen Guan, Huijuan Lin, Zhitao Zhang, Peining Chen, Yonggang Wang, Huisheng Peng. Novel Electric Double-Layer Capacitor with a Coaxial Fiber Structure. Advanced Materials 2013, 25 (44) , 6436-6441. https://doi.org/10.1002/adma.201301519
  95. Jing Pei Huo, Guo Hua Deng, Wei Wu, Jin Feng Xiong, Ming Li Zhong, Zhao Yang Wang. Electrophoretic Deposition Polymerization of Diacetylenes with Tunable Structure. Macromolecular Rapid Communications 2013, 34 (22) , 1779-1784. https://doi.org/10.1002/marc.201300637
  96. Haoyu Tang, Donghui Zhang. Solid state self-assembly of the single-walled carbon nanotubes and poly(γ-benzyl- l -glutamate)s with different conformations. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (21) , 4489-4497. https://doi.org/10.1002/pola.26856
  97. Haitao Zhou, Fengliu Lou, Per Erik Vullum, Mari-Ann Einarsrud, De Chen, Fride Vullum-Bruer. 3D [email protected] 2 FeSiO 4 arrays as high rate capability cathodes for Li-ion batteries. Nanotechnology 2013, 24 (43) , 435703. https://doi.org/10.1088/0957-4484/24/43/435703
  98. Haibao Lu, Wei Huang, Fei Liang, Kai Yu. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity. Materials 2013, 6 (9) , 3742-3754. https://doi.org/10.3390/ma6093742
  99. By Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu. Ultrathin W 18 O 49 Nanowire Assemblies for Electrochromic Devices. Nano Letters 2013, 13 (8) , 3589-3593. https://doi.org/10.1021/nl401304n
  100. Xuemei Sun, Zhitao Zhang, Xin Lu, Guozhen Guan, Houpu Li, Huisheng Peng. Electric Current Test Paper Based on Conjugated Polymers and Aligned Carbon Nanotubes. Angewandte Chemie 2013, 125 (30) , 7930-7934. https://doi.org/10.1002/ange.201303209
Load all citations