A Competitive Electron Transport Mechanism in Hierarchical Homogeneous Hybrid Structures Composed of TiO2 Nanoparticles and Nanotubes

View Author Information
Department of Chemical Engineering, Pohang University of Science and Technology, San31, Nam-gu, Pohang, Kyoungbuk 790-780, Korea
Cite this: Chem. Mater. 2015, 27, 4, 1359–1366
Publication Date (Web):February 2, 2015
Copyright © 2015 American Chemical Society
Article Views
Read OnlinePDF (4 MB)
Supporting Info (1)»


We prepared well-defined hierarchical structures comprising doubly open-ended TiO2 nanotube (NT) arrays covered with various layers of few-nanometer-sized TiO2 nanoparticles (NPs) to investigate the electron collection mechanisms in homogeneous hybrid structures. We found that competitive electron transport pathways (direct transport through the NT and randomized transport through the NPs) are present in the homogeneous hybrid structures. Photoinduced electrons generated at the few-nanometer-sized TiO2 NPs directly connected with TiO2 NTs (e.g., isolated and single-layer NPs on the surface of NTs) dominantly traveled to the NTs. With an increasing number of TiO2 NP layers, photoinduced electrons are randomly transported through the TiO2 NP layers. Enhanced light harvesting and efficient charge collection (∼95%) caused by the increased amounts of dye loading and the direct transport through the NT, respectively, are achieved in a structure with ∼1.4 layers of few-nanometer-sized TiO2 NPs, resulting in a power conversion efficiency of 11.3% with a JSC value (22.9 mA/cm2) close to the theoretical value (∼26 mA/cm2) of a N719-based dye-sensitized solar cell.

Supporting Information

Jump To

Experimental details; extra HR-SEM images; XPS, UPS, and UV–vis spectra; and charge collection parameters for NT100-based DSC. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 27 publications.

  1. Jongmin Choi, Seulki Song, Maximilian T. Hörantner, Henry J. Snaith, and Taiho Park . Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano 2016, 10 (6) , 6029-6036. https://doi.org/10.1021/acsnano.6b01575
  2. In Young Song, Minjun Kim, and Taiho Park . Effect of Ion-Chelating Chain Lengths in Thiophene-Based Monomers on in Situ Photoelectrochemical Polymerization and Photovoltaic Performances. ACS Applied Materials & Interfaces 2015, 7 (21) , 11482-11489. https://doi.org/10.1021/acsami.5b02411
  3. Hafiz Muhammad Asif Javed, Wenxiu Que, Muhammad Shahid, Akbar Ali Qureshi, M. Afzaal, M. Salman Mustafa, Shahid Hussain, Abdullah Saad Alsubaie, Khaled H. Mahmoud, Zeinhom M. El-Bahy, Ling Bing Kong. Investigations of anodization parameters and TiCl4 treatments on TiO2 nanostructures for highly optimized dye-sensitized solar cells. Surfaces and Interfaces 2021, 27 , 101578. https://doi.org/10.1016/j.surfin.2021.101578
  4. M. Ghanavatinejad, S.M.B. Ghorashi, Z. Chamanzadeh. Preparation and characterization of vertical regular arrayed and needle-shaped irregular titanium dioxide nanotubes for dye-sensitized solar cells. Optik 2020, 203 , 163432. https://doi.org/10.1016/j.ijleo.2019.163432
  5. Hari Murthy. Nanoarchitectures as Photoanodes. 2019,,, 35-77. https://doi.org/10.1002/9781119557401.ch3
  6. Nianqing Fu, Xiongzhuo Jiang, Dongchu Chen, Yandong Duan, Guoge Zhang, Menglei Chang, Yanyan Fang, Yuan Lin. Au/TiO2 nanotube array based multi-hierarchical architecture for highly efficient dye-sensitized solar cells. Journal of Power Sources 2019, 439 , 227076. https://doi.org/10.1016/j.jpowsour.2019.227076
  7. Nianqing Fu, Yandong Duan, Wei Lu, Mingshan Zhu, Guoge Zhang, Dongmei Xie, Yuan Lin, Mingdeng Wei, Haitao Huang. Realization of ultra-long columnar single crystals in TiO 2 nanotube arrays as fast electron transport channels for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A 2019, 7 (18) , 11520-11529. https://doi.org/10.1039/C9TA00241C
  8. Wen Zhu, Yanchun Liu, Aihua Yi, Mingshan Zhu, Wenfang Li, Nianqing Fu. Facile fabrication of open-ended TiO2 nanotube arrays with large area for efficient dye-sensitized solar cells. Electrochimica Acta 2019, 299 , 339-345. https://doi.org/10.1016/j.electacta.2019.01.021
  9. Negin Pishkar, Mahmood Ghoranneviss, Zohreh Ghorannevis, Hossein Akbari. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Results in Physics 2018, 9 , 1246-1249. https://doi.org/10.1016/j.rinp.2018.02.009
  10. Jasmin S. Shaikh, Navajsharif S. Shaikh, Sawanta S. Mali, Jyoti V. Patil, Krishna K. Pawar, Pongsakorn Kanjanaboos, Chang Kook Hong, J. H. Kim, Pramod S. Patil. Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale 2018, 10 (11) , 4987-5034. https://doi.org/10.1039/C7NR08350E
  11. Jinxia Xu, Zhenhuan Wang, Wenqing Li, Xingang Zhang, Dong He, Xiangheng Xiao. Ag Nanoparticles Located on Three-Dimensional Pine Tree-Like Hierarchical TiO2 Nanotube Array Films as High-Efficiency Plasmonic Photocatalysts. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-1834-1
  12. Behzad Rezaei, Ismaeil Mohammadi, Ali Asghar Ensafi, Mohammad Mohsen Momeni. Enhanced efficiency of DSSC through AC-electrophoretic hybridization of TiO2 nanoparticle and nanotube. Electrochimica Acta 2017, 247 , 410-419. https://doi.org/10.1016/j.electacta.2017.07.036
  13. Sasimonton Moungsrijun, Supphadate Sujinnapram, Supab Choopun, Sutthipoj Sutthana. Chemical vapor treatment of zinc oxide photoelectrodes for efficiency enhancement of dye-sensitized solar cells. Monatshefte für Chemie - Chemical Monthly 2017, 148 (7) , 1191-1196. https://doi.org/10.1007/s00706-017-1952-6
  14. Md Ashraf Hossain, Sehyun Oh, Sangwoo Lim. Fabrication of dye-sensitized solar cells using a both-ends-opened TiO 2 nanotube/nanoparticle hetero-nanostructure. Journal of Industrial and Engineering Chemistry 2017, 51 , 122-128. https://doi.org/10.1016/j.jiec.2017.02.022
  15. Uyi Sulaeman, Ahmad Zuhairi Abdullah. The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency. Renewable and Sustainable Energy Reviews 2017, 74 , 438-452. https://doi.org/10.1016/j.rser.2017.02.063
  16. Seunghyun Weon, Jongmin Choi, Taiho Park, Wonyong Choi. Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental 2017, 205 , 386-392. https://doi.org/10.1016/j.apcatb.2016.12.048
  17. Z. Chamanzadeh, M. Noormohammadi, M. Zahedifar. Enhanced photovoltaic performance of dye sensitized solar cell using TiO2 and ZnO nanoparticles on top of free standing TiO2 nanotube arrays. Materials Science in Semiconductor Processing 2017, 61 , 107-113. https://doi.org/10.1016/j.mssp.2017.01.006
  18. Dongting Wang, Xuehong Zhu, Yuzhen Fang, Jianhong Sun, Cong Zhang, Xianxi Zhang. Simultaneously composition and interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. Nano-Structures & Nano-Objects 2017, 10 , 1-8. https://doi.org/10.1016/j.nanoso.2017.01.001
  19. Weijian Chen, Taotao Wang, Jiawei Xue, Shikuo Li, Zidan Wang, Song Sun. Cobalt-Nickel Layered Double Hydroxides Modified on TiO 2 Nanotube Arrays for Highly Efficient and Stable PEC Water Splitting. Small 2017, 13 (10) , 1602420. https://doi.org/10.1002/smll.201602420
  20. Nianqing Fu, Xiaoyan Li, Yan Liu, Yanchun Liu, Min Guo, Wenfang Li, Haitao Huang. Low temperature transfer of well-tailored TiO2 nanotube array membrane for efficient plastic dye-sensitized solar cells. Journal of Power Sources 2017, 343 , 47-53. https://doi.org/10.1016/j.jpowsour.2017.01.028
  21. Haihua Hu, Jianfeng Shen, Xiaohua Cao, Hao Wang, Huiru Lv, Yichao Zhang, Wenzhe Zhu, Jiahuan Zhao, Can Cui. Photo-assisted deposition of Ag nanoparticles on branched TiO2 nanorod arrays for dye-sensitized solar cells with enhanced efficiency. Journal of Alloys and Compounds 2017, 694 , 653-661. https://doi.org/10.1016/j.jallcom.2016.10.057
  22. Hyeonseok Lee, Peng Zhai, Rui Cheng, Yu-Ting Huang, Shien-Ping Feng. Study on transparency and hierarchical structure with TiO 2 quantum dots for efficient back-side illuminated dye-sensitized solar cells. Electrochimica Acta 2016, 213 , 155-162. https://doi.org/10.1016/j.electacta.2016.07.092
  23. Gyeongho Kang, Jongmin Choi, Taiho Park. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep22987
  24. Ke Liang, Xue Chen, Zhenyu Guo, Tingjun Hou, Xiaohong Zhang, Youyong Li. Lithium intercalation and diffusion in TiO 2 nanotubes: a first-principles investigation. Physical Chemistry Chemical Physics 2016, 18 (35) , 24370-24376. https://doi.org/10.1039/C6CP03830A
  25. York R. Smith, Dhiman Bhattacharyya, Swomitra K. Mohanty, Mano Misra. Anodic Functionalization of Titania Nanotube Arrays for the Electrochemical Detection of Tuberculosis Biomarker Vapors. Journal of The Electrochemical Society 2016, 163 (3) , B83-B89. https://doi.org/10.1149/2.0741603jes
  26. Sung Hoon Ahn, Dong Jun Kim, Won Seok Chi, Jong Hak Kim. Plasmonic, interior-decorated, one-dimensional hierarchical nanotubes for high-efficiency, solid-state, dye-sensitized solar cells. Journal of Materials Chemistry A 2015, 3 (19) , 10439-10447. https://doi.org/10.1039/C5TA00801H
  27. Nianqing Fu, Yan Liu, Yanchun Liu, Wei Lu, Limin Zhou, Feng Peng, Haitao Huang. Facile preparation of hierarchical TiO 2 nanowire–nanoparticle/nanotube architecture for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A 2015, 3 (40) , 20366-20374. https://doi.org/10.1039/C5TA05752C