RETURN TO ISSUEPREVResearch ArticleNEXT

Au/Y-TiO2 Catalyst: High Activity and Long-Term Stability in CO Oxidation

View Author Information
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, A. P. 70-186, Delegación Coyoacán, C.P. 04510, México D. F., Mexico
División de Materiales Avanzados, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055 Col. Lomas 4a. sección C.P. 78216, San Luis Potosí, S.L.P., Mexico
§ Departamento de Química General, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Puebla, Puebla 72570, Mexico
*E-mail: [email protected]. Phone: +52(55)56228635. Fax +52 (55) 55500654.
Cite this: ACS Catal. 2012, 2, 1, 1–11
Publication Date (Web):November 14, 2011
https://doi.org/10.1021/cs200332v
Copyright © 2011 American Chemical Society
Article Views
1901
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

Gold catalysts supported on TiO2 doped with Y (1, 3, and 6 wt % of Y) were prepared by the deposition-precipitation with urea method. Two yttrium precursors were used: yttrium acetylacetonate and yttrium nitrate. The Y-TiO2 supports prepared by the sol–gel method allowed the formation of solids with high specific surface area. The incorporation of yttrium restricted the growth of TiO2 anatase crystals and hindered the transformation to the rutile phase. The average gold particle size was very similar in all the prepared catalysts (∼3 nm). Au/Y-TiO2 catalysts showed higher activity and stability at room temperature than Au/TiO2 in the CO oxidation reaction. This behavior is related to the strong anchoring of the gold particles on the structural defects and oxygen vacancies of the support caused by the doping of the anatase with yttrium. The variation of the yttrium precursor (acetylacetonate or nitrate) did not have an important effect on the catalytic activity or the temporal stability of the catalysts. In the samples with a high content of Y, High Resolution Transmission Electron Microscopy (HRTEM) results suggest the segregation of yttrium as Y2O3 on the surface of TiO2. The presence of Y2O3 crystals on the TiO2 surface had a detrimental effect on the catalytic activity.

Cited By


This article is cited by 39 publications.

  1. Ana E. Torres, Janatan Rodríguez-Pineda, Rodolfo Zanella. Relevance of Dispersion and the Electronic Spin in the DFT + U Approach for the Description of Pristine and Defective TiO2 Anatase. ACS Omega 2021, 6 (36) , 23170-23180. https://doi.org/10.1021/acsomega.1c02761
  2. Sovann Khan, Hiroshi Ikari, Norihiro Suzuki, Kazuya Nakata, Chiaki Terashima, Akira Fujishima, Ken-ichi Katsumata, Vicente Rodríguez-González. One-Pot Synthesis of Anatase, Rutile-Decorated Hydrogen Titanate Nanorods by Yttrium Doping for Solar H2 Production. ACS Omega 2020, 5 (36) , 23081-23089. https://doi.org/10.1021/acsomega.0c02855
  3. Tamao Ishida, Toru Murayama, Ayako Taketoshi, Masatake Haruta. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chemical Reviews 2020, 120 (2) , 464-525. https://doi.org/10.1021/acs.chemrev.9b00551
  4. Mingming Du, Jiale Huang, Daohua Sun, Dan Wang, Qingbiao Li. High Catalytic Stability for CO Oxidation over Au/TiO2 Catalysts by Cinnamomum camphora Leaf Extract. Industrial & Engineering Chemistry Research 2018, 57 (44) , 14910-14914. https://doi.org/10.1021/acs.iecr.8b02458
  5. Bin Zheng, Shujie Wu, Xuwei Yang, Mingjun Jia, Wenxiang Zhang, and Gang Liu . Room Temperature CO Oxidation over Pt/MgFe2O4: A Stable Inverse Spinel Oxide Support for Preparing Highly Efficient Pt Catalyst. ACS Applied Materials & Interfaces 2016, 8 (40) , 26683-26689. https://doi.org/10.1021/acsami.6b06501
  6. Bo Sun, Xinzhen Feng, Yao Yao, Qin Su, Weijie Ji, and Chak-Tong Au . Substantial Pretreatment Effect on CO Oxidation over Controllably Synthesized Au/FeOx Hollow Nanostructures via Hybrid Au/β[email protected] ACS Catalysis 2013, 3 (12) , 3099-3105. https://doi.org/10.1021/cs4009732
  7. Alireza Bahramian . High Conversion Efficiency of Dye-Sensitized Solar Cells Based on Coral-like TiO2 Nanostructured Films: Synthesis and Physical Characterization. Industrial & Engineering Chemistry Research 2013, 52 (42) , 14837-14846. https://doi.org/10.1021/ie402536h
  8. Nihong An, Suying Li, Paul N. Duchesne, Ping Wu, Wenlong Zhang, Jyh-Fu Lee, Soofin Cheng, Peng Zhang, Mingjun Jia, and Wenxiang Zhang . Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe2O3 Catalysts. The Journal of Physical Chemistry C 2013, 117 (41) , 21254-21262. https://doi.org/10.1021/jp404266p
  9. Vicente Rodríguez-González, Mao Sasaki, Junki Ishii, Sovann Khan, Chiaki Terashima, Norihiro Suzuki, Akira Fujishima. Indoor gas phase photoactivity of yttrium modified titanate films for fast acetaldehyde oxidation. Chemosphere 2021, 275 , 129992. https://doi.org/10.1016/j.chemosphere.2021.129992
  10. Devaiah Damma, Dimitrios K. Pappas, Thirupathi Boningari, Panagiotis G. Smirniotis. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx. Applied Catalysis B: Environmental 2021, 287 , 119939. https://doi.org/10.1016/j.apcatb.2021.119939
  11. Tsai-Te Wang, Yi-Ting Yang, Suh-Ciuan Lim, Chao-Lung Chiang, Je-Sie Lim, Yu-Chang Lin, Chun-Kuo Peng, Ming-Chang Lin, Yan-Gu Lin. Hydrogenation engineering of bimetallic Ag–Cu-modified-titania photocatalysts for production of hydrogen. Catalysis Today 2020, 414 https://doi.org/10.1016/j.cattod.2020.11.012
  12. Tsai-Te Wang, Chao-Lung Chiang, Yu-Chang Lin, Venkatesan Srinivasadesikan, Ming-Chang Lin, Yan-Gu Lin. KSCN-activation of hydrogenated NiO/TiO2 for enhanced photocatalytic hydrogen evolution. Applied Surface Science 2020, 511 , 145548. https://doi.org/10.1016/j.apsusc.2020.145548
  13. Rao Lu, Lei He, Yang Wang, Xin-Qian Gao, Wen-Cui Li. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation. Chinese Journal of Catalysis 2020, 41 (2) , 350-356. https://doi.org/10.1016/S1872-2067(19)63439-X
  14. Zuzeng Qin, Xiaodi Wang, Lihui Dong, Tongming Su, Bin Li, Yuwen Zhou, Yuexiu Jiang, Xuan Luo, Hongbing Ji. CO2 methanation on Co/TiO2 catalyst: Effects of Y on the support. Chemical Engineering Science 2019, 210 , 115245. https://doi.org/10.1016/j.ces.2019.115245
  15. Bo Yang, Aohui Peng, Xinzhou Wang, Qiong Huang, Mindong Chen, Yuesong Shen, Haitao Xu, Shemin Zhu. Simultaneous catalytic oxidation of CO and Hg0 over Au/TiO2 catalysts: Structure and mechanism study. Molecular Catalysis 2019, 479 , 110633. https://doi.org/10.1016/j.mcat.2019.110633
  16. Yi-Fan Chen, Jian-Feng Huang, Min-Hui Shen, Jun-Min Liu, Li-Bo Huang, Yu-Hui Zhong, Su Qin, Jing Guo, Cheng-Yong Su. A porous hybrid material based on calixarene dye and TiO 2 demonstrating high and stable photocatalytic performance. Journal of Materials Chemistry A 2019, 7 (34) , 19852-19861. https://doi.org/10.1039/C9TA06038C
  17. SuLei Hu, Wei-Xue Li. Metal-support interaction controlled migration and coalescence of supported particles. Science China Technological Sciences 2019, 62 (5) , 762-772. https://doi.org/10.1007/s11431-018-9407-3
  18. Gautam Kumar Naik, Sanjit Manohar Majhi, Kwang-Un Jeong, In-Hwan Lee, Yeon Tae Yu. Nitrogen doping on the core-shell structured [email protected] nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation. Journal of Alloys and Compounds 2019, 771 , 505-512. https://doi.org/10.1016/j.jallcom.2018.08.277
  19. Sulei Hu, Wei-Xue Li. Influence of Particle Size Distribution on Lifetime and Thermal Stability of Ostwald Ripening of Supported Particles. ChemCatChem 2018, 10 (13) , 2900-2907. https://doi.org/10.1002/cctc.201800331
  20. Mariana Hinojosa-Reyes, Roberto Camposeco-Solis, Rodolfo Zanella, Vicente Rodríguez-González, Facundo Ruiz. Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support. Catalysis Letters 2018, 148 (1) , 383-396. https://doi.org/10.1007/s10562-017-2260-9
  21. Jinhuo Ke, Yuxin Zhao, Yan Yin, Kun Chen, Xinping Duan, Linmin Ye, Youzhu Yuan. Yttrium chloride-modified Au/AC catalysts for acetylene hydrochlorination with improved activity and stability. Journal of Rare Earths 2017, 35 (11) , 1083-1091. https://doi.org/10.1016/j.jre.2017.04.008
  22. Jing Zhu, Wentao Mu, Liqing Su, Xingying Li, Yuyu Guo, Shen Zhang, Zhe Li. Al-doped TiO 2 mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol. Journal of Solid State Chemistry 2017, 248 , 142-149. https://doi.org/10.1016/j.jssc.2017.01.028
  23. Wei Hong, Xiaoqing Yan, Renhong Li, Jie Fan. Gold nanoparticle stabilization within tailored cubic mesoporous silica: Optimizing alcohol oxidation activity. Chinese Journal of Catalysis 2017, 38 (3) , 545-553. https://doi.org/10.1016/S1872-2067(17)62762-1
  24. Alberto Sandoval, Rodolfo Zanella, Tatiana E. Klimova. Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation. Catalysis Today 2017, 282 , 140-150. https://doi.org/10.1016/j.cattod.2016.05.056
  25. Mariana Hinojosa-Reyes, Rodolfo Zanella, Viridiana Maturano-Rojas, Vicente Rodríguez-González. Gold-TiO 2 -Nickel catalysts for low temperature-driven CO oxidation reaction. Applied Surface Science 2016, 368 , 224-232. https://doi.org/10.1016/j.apsusc.2016.01.285
  26. S. R. Islas, R. Zanella, J. M. Saniger. Thermal activation process of Au/TiO 2 system: a molecular spectroscopy study. RSC Advances 2016, 6 (48) , 42554-42560. https://doi.org/10.1039/C6RA08136C
  27. Fang-Fang Wei, Jian Liu, Qiu-Yun Zhang, Yu-Tao Zhang, Xing Zhang, Chang-Yan Cao, Wei-Guo Song. Sharp size-selective catalysis in a liquid solution over Pd nanoparticles encapsulated in hollow silicalite-1 zeolite crystals. RSC Advances 2016, 6 (92) , 89499-89502. https://doi.org/10.1039/C6RA20789H
  28. Yukun Shi, Xiaojing Hu, Baolin Zhu, Shoumin Zhang, Weiping Huang. Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts. Chemical Research in Chinese Universities 2015, 31 (5) , 851-857. https://doi.org/10.1007/s40242-015-5002-9
  29. Elisabetta Rombi, Maria Giorgia Cutrufello, Roberto Monaci, Carla Cannas, Delia Gazzoli, Barbara Onida, Marco Pavani, Italo Ferino. Gold nanoparticles supported on conventional silica as catalysts for the low-temperature CO oxidation. Journal of Molecular Catalysis A: Chemical 2015, 404-405 , 83-91. https://doi.org/10.1016/j.molcata.2015.04.013
  30. Viridiana Evangelista, Brenda Acosta, Serguei Miridonov, Elena Smolentseva, Sergio Fuentes, Andrey Simakov. Highly active [email protected] yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis B: Environmental 2015, 166-167 , 518-528. https://doi.org/10.1016/j.apcatb.2014.12.006
  31. Juanrong Chen, Fengxian Qiu, Wanzhen Xu, Shunsheng Cao, Huijun Zhu. Recent progress in enhancing photocatalytic efficiency of TiO 2 -based materials. Applied Catalysis A: General 2015, 495 , 131-140. https://doi.org/10.1016/j.apcata.2015.02.013
  32. Minggui Wang, Yimin Hu, Jie Han, Rong Guo, Huixin Xiong, Yadong Yin. TiO 2 /NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. Journal of Materials Chemistry A 2015, 3 (41) , 20727-20735. https://doi.org/10.1039/C5TA05839B
  33. Zhenping Qu, Dan Chen, Yahui Sun, Yi Wang. High catalytic activity for formaldehyde oxidation of AgCo/[email protected] prepared by two steps method. Applied Catalysis A: General 2014, 487 , 100-109. https://doi.org/10.1016/j.apcata.2014.08.044
  34. Dafeng Zhang, Peng Diao. Activity and stability of supported gold nano- and submicro-particles toward the electrocatalytic oxidation of carbon monoxide. Applied Catalysis A: General 2014, 469 , 65-73. https://doi.org/10.1016/j.apcata.2013.09.037
  35. Asif Mahmood, Seong Ihl Woo. Enhancement of catalytic activity of Au/TiO2 by thermal and plasma treatment. Korean Journal of Chemical Engineering 2013, 30 (10) , 1876-1881. https://doi.org/10.1007/s11814-013-0120-x
  36. Matiullah Khan, Wenbin Cao. Preparation of Y-doped TiO2 by hydrothermal method and investigation of its visible light photocatalytic activity by the degradation of methylene blue. Journal of Molecular Catalysis A: Chemical 2013, 376 , 71-77. https://doi.org/10.1016/j.molcata.2013.04.009
  37. Yongqing Cai, Zhaoqiang Bai, Sandhya Chintalapati, Qingfeng Zeng, Yuan Ping Feng. Transition metal atoms pathways on rutile TiO 2 (110) surface: Distribution of Ti 3+ states and evidence of enhanced peripheral charge accumulation. The Journal of Chemical Physics 2013, 138 (15) , 154711. https://doi.org/10.1063/1.4801025
  38. Wanjun Sun, Jun Li, Xiangfei Lü, Fengxing Zhang. Preparation, characterization and photocatalytic activity of metalloporphyrins-modified TiO2 composites. Research on Chemical Intermediates 2013, 39 (3) , 1447-1457. https://doi.org/10.1007/s11164-012-0701-z
  39. Raquel Nafria, Pilar Ramírez de la Piscina, Narcís Homs, Joan Ramón Morante, Andreu Cabot, Urbano Diaz, Avelino Corma. Embedding catalytic nanoparticles inside mesoporous structures with controlled porosity: [email protected] Journal of Materials Chemistry A 2013, 1 (45) , 14170. https://doi.org/10.1039/c3ta13346j